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Public policy seeks to influence complex natural, social, and engineered systems to achieve 
desired outcomes. Effective public policies are those which combine good outcomes with high 
reliability such that their choice is robust to a wide range of possible uncertainties. Modeling 
these complex systems and their potential response to proposed policies can provide decision-
makers with an objective basis for policy design. Critical to this design process is the 
development of rigorous methods to evaluate and rank modeled policy effectiveness in context 
of model uncertainty. 

A peer-reviewed complex system model of pandemic influenza propagation is used 
in a test case to illustrate the power of uncertainty-based public policy ranking. The networked-
agent model calculates the effects of both social network-based community mitigation 
practices such as school closure and social distancing, and individually-based treatment options 
such as antiviral treatment and vaccination. A proposed uncertainty-based methodology is 
described. The roles of experimental design, input factor representation, and sensitivity 
analysis methodology illustrate a succinct methodology to rank pandemic disease control 
options. A combination of space-filling experimental designs, modeling policy options as 
continuous rather than categorical variables, and treed Gaussian process and polynomial chaos 
expansion-based sensitivity analysis are projected to yield a straightforward ranking of policy 
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options that is robust to the identified aleatory and epistemic model uncertainties. 
These methods should have the additional advantage of requiring relatively few model runs to 
achieve a consistent and defensible ranking. Phase I of the experimental work to demonstrate 
the proposed uncertainty-based methodology is outlined. This early work indicates that 
analysis of published modeling results can generate a robust composite ranking of public 
policy options for mitigation of pandemic influenza.  

1   Introduction 
Many domains of public policy are well represented as Complex Adaptive Systems 
of Systems (CASoS), including social organizations, economies, and governmental 
bodies. Modeling of public policy options and tradeoffs as Complex Adaptive 
Systems (CASs) has shown promise recently in understanding the structure and 
dynamics of these systems with the goal of improving the quality and reliability of 
public policy decisions. Often modeling of CASs results in some increased 
understanding of the problem space, but little in the way of objective guidance for 
decision makers on how best to formulate policies and regulations to guide the 
systems in socially beneficial directions.  

Computational models of CASoS permit exploration of a wide range of 
possible policy options. High Performance Computing (HPC) enables models to be 
run many thousands of times with different input values. Analysis of the model 
outputs generated from these suites of runs can provide guidance on how systems 
behave under different policy regimes. Vast amounts of data generated by these 
supercomputer deployments can be challenging to interpret. However, automated 
data reduction eventually provides estimates of possible system responses to policy 
changes. 

Simple evaluation of CASoS models across a range of inputs provides much 
needed information to decision makers, but ignores one of their major concerns. 
Policy decisions not only consider the projected end point of the policy 
implementation, but also must consider risk. Few policy makers would choose a 
prospective policy which promises very good quantitative outcomes, but is likely, if it 
should fail, to fail with catastrophic consequences. CASoS-based social, technical, 
and governmental systems and models used for their analysis are fraught with 
massive uncertainties. An ideal policy choice is one which performs well under a 
wide range of uncertainties. Such a policy would be expected to have positive 
outcomes, but perhaps more importantly, to also have a low risk of catastrophic 
failure. 

Methods from the field of uncertainty quantification can provide the 
information needed to classify potential public policy options based on both their 
outcomes and their risk of failure. These powerful techniques enable researchers to 
identify, categorize and manage model and system uncertainty from many sources. 
Such uncertainty estimates permit ranking of policies not only by objective 
quantitative performance metrics, but also by their robustness to unforeseen events. 
While these methods do not yield verifiable predictions of policy outcomes, the 
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combination of modeling-derived metrics, and uncertainty-derived reliability 
estimates permits methodical ranking of policy options. 

2   Overview of Uncertainty Analysis 
Uncertainty analysis of model results provides quantitative estimates of the quality of 
computed model outputs. Sensitivity analysis identifies which model outputs are most 
responsive to uncertain inputs. Factor sensitivities combine with knowledge of model 
structure and dynamics to generate realistic estimates of total uncertainty in model 
outputs. 

2.1   Uncertainty 

Uncertainty is simply a lack of certainty about a process, a quantity, or the state of a 
system. Uncertainty can apply to past and present events, but is most often ascribed 
to unknowable future events. While uncertainty is often interpreted as an undesirable 
property about a system, uncertainty also admits possibilities for advantageous events 
and innovations. Risk is a term that is often applied to uncertain situations or 
conditions; here we consider risk to represent undesirable states of uncertainty with 
implicit or explicit potential for significant loss.  

Computer models exhibit a range of uncertainty types [Helton et al. 2007]. 
Lack of knowledge about true values for input parameters used for modeling runs is 
termed parametric uncertainty. Since research or expert opinion can often narrow 
down the certainty with which input parameters are known, parametric uncertainty is 
often termed reducible uncertainty. Stochastic uncertainty results from an inability to 
forecast future events, such as wind direction next Tuesday, which may be implicit 
within a computer model. Structural uncertainty is a measure of how close a model 
captures the system of interest. Models constructed with incorrect mathematical 
formulations or insufficient detail may be poor analogs of real systems and thus have 
high structural uncertainty. An alternative categorization for uncertainty terms both 
structural uncertainty and parametric uncertainty as epistemic uncertainty, since they 
both arise from a lack of knowledge about values and processes. Stochastic 
uncertainty, on the other hand, captures fundamental inability to specify future events 
and is often termed aleatory uncertainty.  

2.2   Design of Experiments 

Using models to evaluate public policy options requires that they be run in a 
methodical manner that is focused on the issues at hand. Design of Experiments 
(DOE) entails planning model runs and parameter variations to answer a question 
adequately and efficiently [Santner et al. 2010]. DOE has long been a staple of bench 
research; a wide variety of methods and techniques have been developed to address 
cumulative measurement errors and other complications affecting hands-on 
experimentation. Computer experiments differ from bench experiments in that 
models can be configured to run deterministically and produce the exact same output 
for a given input without the variability seen in traditional experiments. Thus, many 
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of the experimental designs developed for bench experiments are not appropriate for 
computer models. Rather than exposing measurement variation within experiments, 
designs for computational experiments focus on efficiently covering the 
multidimensional space of parameters adequately. Space filling designs ensure that 
parameter space is adequately sampled, and is the design of choice for uncertainty 
analysis using computer models. 

2.3   Sensitivity Analysis 

Sensitivity Analysis (SA) apportions variability in the output of a computer model to 
uncertainties in the constituent model inputs [Saltelli et al 2008]. As such, SA is a 
foundational method for understanding and measuring parametric uncertainty. 
Sensitivity analysis generates metrics termed Sensitivity Indices for each parametric 
input for a model which represents the impact that that parameter has on the value of 
the model output. These sensitivity indices are valuable for determining how best to 
decrease uncertainty in a model. Parameters with small sensitivity indices have very 
small effect on the output values; thus, effort to reduce uncertainty associated with 
those parameters may not translate to substantially decreased output uncertainty. 
Efforts to measure or generate more certain parameter estimates would be better 
spent on inputs having large sensitivity indices. Refining these parameter values 
would be expected to greatly improve overall model uncertainty. 
 Sensitivity Analyses fall into two broad categories, univariate and 
multivariate. Univariate methods are more intuitive to execute and interpret, whereas 
multivariate methods provide more information.  
 Univariate SA methods involve running the computer model many times 
with all inputs but one staying fixed. The effect of the single varying input parameter 
on the final output value is then plotted in a simple scatterplot. This method provides 
a wealth of information on general trends within models due to individual inputs. 
However, non-additive effects from combinations of inputs cannot be resolved with 
these simple tools.  
 Multivariate SA techniques methodically vary all inputs for each computer 
runs and rely upon sophisticated mathematical procedures to compute sensitivity 
indices. Techniques such as the Sobol method can generate accurate estimates the 
relative contributions of each input, but can require enormous numbers of model runs 
to generate the needed information. In contrast meta-models or surrogate models use 
fewer runs to generate a representative response surface for the model. The response 
surface is in turn used for detailed sensitivity analysis calculations [Storlie et al. 
2009]. 

2.4   Uncertainty Quantification 

Determining the sources of uncertainty and tracing effects of uncertainty throughout a 
model is termed uncertainty quantification (UQ) [Helton et al. 2007]. Each uncertain 
parameter is investigated to determine which distribution most accurately captures 
the possible values for the input. Similarly, each source of stochastic uncertainty is 
rigorously identified and its effects determined. The combined effects of these 
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carefully estimated uncertainties are traced through to determine their possible effects 
on output uncertainty. Combined nested loop Monte Carlo model execution protocols 
permit concerted calculation of combined effects of epistemic and aleatory 
uncertainties. Results of these analyses are traditionally presented in horse-tail plots 
wherein individual time histories of many runs are plotted on a common set of axes.  

2.4   Decision Analysis 

Once the potential effects of uncertainty are measured and apportioned by various SA 
and UQ methods, policy options represented as parameter settings are analyzed to 
find the most advantageous combinations. Often simple visual inspection of model 
performance verses variability allows the most robust and effective policy to be 
immediately determined. For more involved models, optimization and search 
methods can be used o find the options which best combine objective performance 
and low susceptibility to unforeseen circumstances. 

3   Applying the Methods 
We re-examine the published findings of a peer-reviewed complex system model to 
demonstrate the potential applicability of uncertainty analysis on public policy 
decision making. Davey et al. [Davey 2008] used an agent based model of disease 
propagation through a stylized community to evaluate prevention and mitigation of 
pandemic influenza. This investigation investigated the effects of a range mitigation 
strategies or policies on the severity and duration of epidemic outbreaks. Many 
different parametric combinations were fed into the disease propagation model to 
determine the interventions which were most likely to reduce illness, death and 
economic cost. 

This study will examine the data which was generated by the Davey 
investigation to determine whether additional uncertainty-based methods and 
analyses could refine the published findings. The present study is organized into four 
distinct sequential phases: 

1. Applying additional analyses to the data generated by Davey et al. 

2. Running the Davey model using different experimental designs 

3. Modifying the Davey model to make it more amenable to advanced analyses 

4. Applying quantitative decision analytical methods to model data to 
rigorously rank policy options. 

This paper presents some initial results from Phase 1 of the extended project. 

3.1   Model Description 

Loki-Infect is a networked agent-based computational model developed by the 
National Infrastructure Simulation and Analysis Center (NISAC) at Sandia National 
Laboratories. In this model, agents represent individuals of various age classes who 
are linked to each other within and among social groups (such as households, 
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neighborhoods, school classes, clubs, businesses, etc.) to form an explicit contact 
network reflective of a multiply-overlapping, structured community. Behavioral rules 
for individuals, their interactions, and the performance of network links are specified 
to model the spread of influenza. Community mitigation strategies are implemented 
through modifications of these behavioral rules when a given strategy is imposed 
during a simulation. Intervention strategies are listed in Table 1 

Table 1: Intervention Strategies 

Category Symbol Intervention 
Network-Based S Schools closed. 
Network-Based C  Social distancing of children and teenagers. 
Network-Based A Social distancing of adults and seniors. 
Case-Based Q Household quarantine. 
Case-Based T Antiviral treatment.  
Case-Based P Household member antiviral prophylaxis. 
Case-Based E Extended contact prophylaxis 

 
Davey et al. ran the model for a wide range of compliance values, disease infectivity 
values, mitigation initiation and cessation times for combinations of intervention 
strategies. The model was run 100 times for each set of distinct input parameters to 
explore effectiveness of disease containment across different randomly generated 
community social networks. The model was run over 2,000,000 times to fully cover 
the parameter space.  

Model results were presented in a series of crosstab tables which showed the 
mean number of infected people for each combination of intervention strategies. A 
small portion of a crosstab from the original study is reproduced as Table 2. 

Table 2: Example model run results. Cell values represent mean number of infected 
people from 100 runs. Infectivity=0.75, Compliance=90% 

  None  A  C  C,A  S  S, A  S,C  S,C,A 

None  2780  1872  1111  624  221  207  124  119 

T  1560  765  373  241  164  150  122  117 

Q  984  562  267  237  178  151  125  141 

P  711  379  217  184  161  138  114  123 

Q,T  600  324  218  159  140  132  119  120 

Q,P  329  298  166  160  148  129  121  130 

E  251  208  149  150  146  134  106  111 

Q,E  267  187  138  145  122  117  104  108 



 

 

SAND 2011-3422C  

7 
 

2.2 Data Analysis 

Standard statistical techniques can extract useful information from the data set shown 
in Table 1. Davey et al. looked at a range of variables affecting intervention 
implementation that are not represented in the simplified data subset shown in Table 
2. However, this subset serves well to illustrate potentially useful methods.  

Mean counts of infected people shown in the cells of Table 2 clearly are 
greatest in the upper-left corner and decrease regularly to a minimum in the lower left 
corner. This corresponds to large numbers of infected individuals in cells 
representing few or no interventions grading to fewer infected persons in cells 
representing layered strategies of many interventions applied in concert. However, it 
is not clear from Table 2 exactly which interventions are demonstrably superior to 
others. Recall that the cell values in Table 2 are mean values from 100 individual 
model runs.  

Analysis of Variance (ANOVA) of data matching corresponding to the 
values shown in Table 2 indicates which interventions can be clearly differentiated 
from others based on their mean efficacy at preventing influenza infection. Table 3 
summarizes ANOVA results from a synthetic data set matching the mean values 
shown in Table 2 and corresponding standard deviation values quoted in the by 
Davey et al. Table 3 shows that the data represent six groups of significantly different 
mean values. Five distinct groups exist in the upper left of the table indicating 
treatments which result in mean infected counts of greater than 500, while all 
interventions resulting in less than 500 mean infected represent a single group which 
cannon be resolved into smaller sub-groups at 95% confidence. These findings may 
be overly optimistic; ANOVA only strictly applies when the distributions of the 
individual means is approximately Gaussian, which is unlikely in this case.  

Table 3: ANOVA Results. Cell colors indicates clusters of mean values which are 
significantly different from others at 95% confidence 

 None A C C,A S S, A S,C S,C,A 

None  2780  1872  1111  624  221  207  124  119 

T  1560  765  373  241  164  150  122  117 

Q  984  562  267  237  178  151  125  141 

P  711  379  217  184  161  138  114  123 

Q,T  600  324  218  159  140  132  119  120 

Q,P  329  298  166  160  148  129  121  130 

E  251  208  149  150  146  134  106  111 

Q,E  267  187  138  145  122  117  104  108 

 
ANOVA is unable to differentiate between similar-valued cells in the 

strategy matrix because the cells vary not only in mean value, but also in variability 
among the 100 individual values that the mean cell values represent. Figure 1 
displays a scatter plot of the synthetic data set constructed from the data 
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specifications in the Davey et al. paper. The figure shows both the variation in mean 
values for different protocols (combinations of interventions) and substantial 
difference in the reproducibility of the model runs. 

Figure 1: Scatter plot of data shown in Table 1. Vertical axis is number of infected individuals 
per run. Horizontal axis shows different intervention combinations. Red dots represent results 
from individual model runs 

Model results can be better understood by considering both values and 
variability simultaneously. Figure 2 shows how the data represented in Figure 1 maps 
to such a display. Figure 3 shows how a simple scatter plot of variability as a function 
of mean infected count can yield a categorization of interventions into efficacy and 
reproducibility. Mean infected person count and standard deviation values from 
Figure 2 are plotted in the left pane of Figure 3. Note that model results define a 
broad arc of values in the Low Infectivity/Low Variability category through the Low 
Infectivity/High Variability category to the High Infectivity/High Variability 
category. Those options falling in the lower left region are those which would be 
most attractive to policy makers. They combine good outcomes and show little 
sensitivity to variability between model runs. 

Consideration of the run results from the perspective of a public policy 
decision maker suggests that economic and reliability considerations might also come 
into play. Policy makers would probably prefer solutions which required fewer 
separate interventions to achieve a desirable outcome compared to those requiring 
many layered interventions. Solutions based on fewer interventions would be 
expected to cost less and be easier to coordinate and deploy in the field. Figure 4 
illustrates that both average infected values and variability show strong correlation 
with number of interventions included in the strategy. Model runs with a larger 
number of layered interventions performed much better generating fewer infected 
individuals and less variation. These data suggest that selection of an effective and 
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robust policy involves tradeoffs among conflicting characteristics of cost/complexity, 
effectiveness, and reliability. 
 

Figure 2: Mapping of model results to scatter plot 

Figure 2: Conceptual categorization of scatter plots. Model results falling in lower left 
quadrant represent effective, robust choices. 
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Figure 4. Strategy effectiveness and variability as a function of number of interventions 

An alternate view of the relationships diagrammed in Figure 4 can be seen in the 
scatterplot in Figure 5. This plot demonstrates that best performing low variability 
intervention strategies found in the lower left region of the graph are characterized by 
larger numbers of layered interventions. Options which would be simpler to field and 
presumably cost less are arrayed in the upper right portion of the graph, indicating 
that these options allow more infections and more potentially risky variability.  

Figure 5: Dependence of intervention effectiveness on number of layered interventions 
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One approach to resolving the conflicting aims of public policy decision 
makers in evaluating intervention effectiveness and efficiency is to look for the best 
performing mix of interventions for each cost category. Figure 5 shows that within 
each category of intervention counts, intervention combinations possess differing 
effectiveness and robustness to variation. These plots show that little improvement 
occurs in opting for policies relying on four interventions relative to those requiring 
only three. Similarly, the best performing intervention strategy for the two 
intervention case is about as effective as the best performing four intervention 
strategy. This figure suggests that a ranking of effectiveness by intervention count 
class may be useful to allow decision makers to effectively gauge “bang for the buck” 
of different intervention approaches (Table 4). 

Figure 6: Performance of interventions classified by number of layered interventions 

Table 4 reveals some not only the best performing suites of interventions for 
influenza mitigation, but also which specific interventions are most effective. All of 
the listed best-performing composite intervention strategies contain the school 
closure option (S). Child and teen social distancing (C) is the next most common 
component of the best-performing mitigation strategies. Of the case-based 
interventions, quarantine (Q) and antiviral treatment (T) appear to be effective in 
strategies reliant on few interventions, whereas prophylactic interventions (P and E) 
appear to work well only when applied in conjunction with many other interventions. 
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Table 4: Intervention Policy Rankings 

Number of 
Interventions 

Rank of 
Effectiveness 

Intervention 
Mean 
Infected 

Standard 
Deviation 

1  1  ______S  220.5273  133.8141 

2  ___Q___  984.4853  595.5609 

3  _____C_  1111.12  586.9511 

2  1  _____CS  124.1364  13.89174 

2  T_____S  163.9688  65.28918 

3  ___Q__S  178.0909  62.91812 

3  1  ____ACS  118.6429  14.75235 

2  ___Q_CS  125.1429  24.43471 

3  T____CS  121.875  30.07342 

4  1  TP___CS  114  13.6504 

2  T___ACS  116.75  15.32272 

3  T__Q_CS  118.5714  22.619 

5  1  TP__ACS  123  1.414214 

2  TPE__CS  106  3 

3  T__QACS  119.6667  4.163332 

6  1  TPEQ_CS  103.6  2.50998 

2  TPE_ACS  110.75  5.188127 

3  TPEQA_S  116.5  14.47165 

7  1  TPEQACS  108.3333  1.527525 
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4 Conclusions 
This report presents the initial findings of an extended effort to apply more 
sophisticated data analyses methods to complex adaptive systems. These advanced 
methods and techniques exploit measurements of uncertainty to extract more 
information from suites of model runs than simple summary statistics can provide. 

This initial phase applied standard statistical approaches to published data 
from a peer-reviewed influenza propagation model. The exercise demonstrated that 
mean values from multiple model runs often do not consistently differentiate among 
input values representing the question under investigation. Simple Analysis of 
Variance tests showed that subtle differences between mean values for different 
modeled intervention configurations although evident in tabulated data are not 
statistically significant.  
 Incorporation of an additional factor into the analysis enabled a more 
detailed analysis. The number of interventions which must be applied to achieve a 
desired level of response is a factor which is likely to be of interest to public policy 
decision makers, since it directly relates to implementation cost and complexity. 
Separating the 64 modeled policy combinations into groups based on intervention 
count provided a simple ranking of policy options showing the most effective and 
low-risk policy options for different cost and complexity categories. 
 Phase 2 work underway now addresses the integration of rigorous 
uncertainty quantification to complex adaptive system models to enable robust 
decision making for public health policy questions. 
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