Congestion and Cascades in Payment Systems

Walt Beyeler1
Kimmo Soramäki2
Morten L. Bech3
Robert J. Glass1
1Sandia National Laboratories
2European Central Bank
3Federal Reserve Bank of New York

\textit{PAYMENT AND SETTLEMENT SIMULATION SEMINAR AND WORKSHOP}

Helsinki August 2006

The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.
Physics of Payment Systems

• Purpose of “complexity” models
 – Understand how interactions among many agents can generate system-level behavior
 – Understand regimes of behavior and what governs transitions among them
• Models are accordingly abstract and usually very simple because accurate simulation of a specific system or situation is not the goal
• Payment systems as complex systems
 – Understand how liquidity controls congestion
 – Characterize congested state
 – Understand how liquidity markets relieve congestion
Payment Physics Model

1. Agent instructs bank to send a payment
2. Depositor account is debited
3. Payment is settled or queued
4. Payment account is debited
5. Payment account is credited
6. Depositor account is credited
7. Queued payment, if any, is released
Instruction Arrival

- Each bank has a given level of customer deposits (D_i)
- Each unit of deposits has the same probability of being transformed into a payment instruction

$$\langle I_i(t) \rangle = \lambda_i \cdot \frac{D_i(t)}{D_i(0)}$$

where λ_i is the initial rate

- When a bank receives a payment its deposits increase
 - \rightarrow the instruction arrival rate increases
- When a bank sends a payment its deposits decrease
 - \rightarrow the instruction arrival rate decreases
Influence of Liquidity

When liquidity is high, payments are submitted promptly and banks process payments independently of each other.

Summed over the network, instructions arrive at a steady rate.
Reducing liquidity leads to episodes of congestion when queues build, and cascades of settlement activity when incoming payments allow banks to work off queues. Payment processing becomes coupled across the network.
At very low liquidity payments are controlled by internal dynamics. Settlement cascades are larger and can pass through the same bank numerous times.

Influence of Liquidity
Influence of Market

A liquidity market substantially reduces congestion using only a small fraction (e.g. 2%) of payment-driven flow.
Liquidity and Markets Influence Congestion

![Graph showing the relationship between liquidity factor and average settlement cascade size for different market conditions and congestion levels.](image)
Influence of Return Time on Congestion

Amount of deposits determines the variability of a bank’s net position

Less variability leads to less congestion
What determines transition?

- Three key time constants
 - Time over which a bank is in surplus or deficit \((d_0) \)
 - Time to deplete initial liquidity \((L) \)
 - Time for the market to redistribute liquidity \((1/c) \)
What we’re learned

• System performance can be greatly improved by moving small amounts of liquidity to the places where it’s needed

• System congestion seems to be determined by the relative values of three time constants
 – Liquidity depletion time
 – Net position return time
 – Liquidity redistribution time through the market

• What about disruptions? …