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The Conclusion

When building ensembles of decision trees to

classify extremely skew data,

such as Border Gateway Protocol (BGP) data,

use the Hellinger Distance metric, rather than

the traditional Infogain metric,

for increased accuracy.

(And be sure to use a sensible metric for “accuracy”.)
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Skew vs. Supervised Machine Learning

When data is skew,

the safe choice is

“accurate” —

and useless.

Minority class overwhelmed.
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Accuracy (A) vs Class-Averaged Accuracy (Ac)

Classification confusion matrices.
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Accuracy (A) vs Class-Averaged Accuracy (Ac)

Classification confusion matrices.
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Previous Best Solution: SMOTE for Skew Data

Not enough minority data? Invent some!

Minority class overwhelmed Minority class filled out by SMOTE[2]
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Decision Trees and Purity Metrics

Partition attribute space to maximize purity of children. Recurse.
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Infogain is the Traditional Purity Metric

W,Q are the classes of interest

N = the total number of samples

Ni = number of samples in class i

Ns = total number of samples in the L/R split
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Hellinger Pays Attention to Class Statistics

W,Q are the classes of interest

N = the total number of samples

Ni = number of samples in class i

Ns = total number of samples in the L/R split
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i = number of samples in class i in L/R split
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Infogain vs Hellinger on Gaussian Data
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Infogain vs Hellinger on Gaussian Data
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Infogain vs Hellinger on Gaussian Data
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Infogain vs Hellinger on Gaussian Data
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Border Gateway Protocol (BGP) Data

Count“withdrawals” and“announcements” over 30 second intervals.

(Our thanks to Max Planck, New Mexico Institute of Mining and Technology, for data

acquisition and feature extraction.)
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Example: Event 34, Internet Worm

• Start: 5:28 AM, 01/25/2003.

• End: Noon, 01/26/2003.

• ⇒ 2224 worm event samples.

• What happens as skew increases?

Proportion of worm samples 0.114 0.011 0.002 0.001

Infogain Bagging, Ac 0.897 0.833 0.773 0.757

Hellinger Bagging, Ac 0.899 0.838 0.783 0.769

Advantage of Hellinger 0.002 0.005 0.010 0.014
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New, Improved Event 34, With Extra SMOTE

• Start: 5:28 AM, 01/25/2003.

• End: Noon, 01/26/2003.

• ⇒ 2224 worm event samples.

• What happens as skew increases?

Proportion of worm samples 0.114 0.011 0.002 0.001

Infogain Bagging, Ac 0.897 0.833 0.773 0.757

SMOTE + Infogain Bagging, Ac 0.933 0.929 — —

Hellinger Bagging, Ac 0.899 0.838 0.783 0.769

SMOTE + Hellinger Bagging, Ac 0.931 0.934 — —
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Access to AvatarTools and Hellinger Trees

• Use the code on the ICC:

– For $CLUS equal to tbird, shasta, or spirit:

∗ Add /projects/ascdd/avatar/$CLUS/current/bin to PATH

∗ Add /projects/ascdd/avatar/$CLUS/current/man to
MANPATH

• Or build it yourself:

– www.ca.sandia.gov/avatar

– Standard Unix process; unpack tarball, configure, make.

– Builds and passes tests on Mac, Linux, and Solaris.

– Includes tutorial and example data.
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The Conclusion

When building ensembles of decision trees to

classify extremely skew data,

such as Border Gateway Protocol (BGP) data,

use the Hellinger Distance metric, rather than

the traditional Infogain metric,

for increased accuracy.

(And be sure to use a sensible metric for “accuracy”.)
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Ensembles: Efficient, Robust, Optimal Accuracy

Traditional: Use 100% of training data to

build a sage.

Ensembles: Use randomized 100% of

training data to build an expert. Repeat

to build many experts. Vote them.

Sandia: Use a semi-random 1% of the

training data to build a “bozo”.

Repeat to build very many bozos. Vote

them.

The experts beat the sage[1].

The bozos beat the experts[3].

Sage sees all the data.

Each expert sees 2/3rds of the data.

Each bozo sees a tiny fraction.
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