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The Conclusion

When building ensembles of decision trees to

classify extremely skew data,

such as Border Gateway Protocol (BGP) data,

use the Hellinger Distance metric, rather than

the traditional Infogain metric,

for increased accuracy.

(And be sure to use a sensible metric for “accuracy”.)
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Invented Training Data, for Search Relevance

Queries Relevant? PageRank Fresh? Unique? . . . Distinct?

Truth a1 a2 a3 . . . aK

q1 Yes 12 1003 0.97 . . . 0.12

q2 Yes 99 2 0.33 . . . 0.03

q3 No 3 27 0.12 . . . 0.13

q4 Yes 16 183 0.08 . . . 0.58

q5 No 17 665 0.36 . . . 0.64

q6 No 44 1212 0.29 . . . 0.42

q7 No 42 24 0.33 . . . 0.88

q8 Yes 78 42 0.44 . . . 0.52

..

.
..
.

..

.
..
.

.

..
.
..

qN No 12 3141 0.92 . . . 0.17
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Supervised Machine Learning Overview

Also known as: pattern recognition, statistical

inference, data mining.

• Input: “ground truth” data.

– Samples, with attributes, and labels.

– Example: search result data

∗ Samples: a query string

∗ Attributes: features of the search

∗ Labels: “relevant”, “irrelevant”

• Apply suitable method:

decision trees, neural nets, SVMs.

• Output:

rules for labeling new, unlabeled data.

Equivalently:

a partitioning of attribute space.
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Machine Learning, Before Ensembles

Traditional: Use 100% of training data to

build a sage.

Sage sees all the data.
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Note: Even Sage is Not Perfectly Accurate

Class distributions can overlap inextricably.

“Bayes error” is the best any classifer can do.
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Machine Learning, With Ensembles

Traditional: Use 100% of training data to

build a sage.

Ensembles: Use randomized 100% of

training data to build an expert. Repeat

to build many experts. Vote them.

Sage sees all the data.

Each expert sees 2/3rds of the data.

The experts beat the sage[1]!
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Reminder: The Unaltered Training Data

Queries Relevant? PageRank Fresh? Unique? . . . Distinct?

Truth a1 a2 a3 . . . aK

q1 Yes 12 1003 0.97 . . . 0.12

q2 Yes 99 2 0.33 . . . 0.03

q3 No 3 27 0.12 . . . 0.13

q4 Yes 16 183 0.08 . . . 0.58

q5 No 17 665 0.36 . . . 0.64

q6 No 44 1212 0.29 . . . 0.42

q7 No 42 24 0.33 . . . 0.88

q8 Yes 78 42 0.44 . . . 0.52

..

.
..
.

..

.
..
.

.

..
.
..

qN No 12 3141 0.92 . . . 0.17
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First Expert Sees A Sampling With Replacement

Queries Relevant? PageRank Fresh? Unique? . . . Distinct?

Truth a1 a2 a3 . . . aK

q1 Yes 12 1003 0.97 . . . 0.12

q2 Yes 99 2 0.33 . . . 0.03

q2 Yes 99 2 0.33 . . . 0.03

q4 Yes 16 183 0.08 . . . 0.58

q4 Yes 16 183 0.08 . . . 0.58

q5 No 17 665 0.36 . . . 0.64

q8 Yes 78 42 0.44 . . . 0.52

q9 No 59 7012 0.37 . . . 0.23

.

..
.
..

.

..
.
..

.

..
.
..

qN−1 Yes 36 1812 0.47 . . . 0.17

q2 and q4 are repeated; q3 and others are missing.
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Second Expert Sees A Different Sampling

Queries Relevant? PageRank Fresh? Unique? . . . Distinct?

Truth a1 a2 a3 . . . aK

q1 Yes 12 1003 0.97 . . . 0.12

q1 Yes 12 1003 0.97 . . . 0.12

q2 Yes 99 2 0.33 . . . 0.03

q3 No 3 27 0.12 . . . 0.13

q3 No 3 27 0.12 . . . 0.13

q3 No 3 27 0.12 . . . 0.13

q6 No 44 1212 0.29 . . . 0.42

q8 Yes 78 42 0.44 . . . 0.52

.

..
.
..

.

..
.
..

.

..
.
..

qN No 12 3141 0.92 . . . 0.17

q3 is repeated; q4 and others are missing.
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“Bagging” is the Formal Name for This Method
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Why Do Ensembles Work? (A)

• A statistical model is a noisy model of re-

ality.

• Bias error:

Model too simple, underfits.

• Variance error:

Model too complex, overfits.

• Bias/variance is a trade-off.

• Ensembles:

– Use methods with low bias. . .

but high variance . . .

and average to reduce variance!

• Result:

low bias error and low variance error.

No hand tuning needed.

XX X
X

X

X

X

Too simple a model underfits the data.

XX X
X

X

X

X

Too complex a model overfits the data.
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Why Do Ensembles Work? (B)

One key is diversity [5].

Imagine: three classes, each expert only 10% accurate, and when wrong, chooses at random

among the three classes.

Then the crowd of experts is perfectly, 100% accurate!

One group of unconfused experts amid the foggy error.

Note: diverse, random error is difficult to achieve[2].
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The Conclusion

When building ensembles of decision trees to

classify extremely skew data,

such as Border Gateway Protocol (BGP) data,

use the Hellinger Distance metric, rather than

the traditional Infogain metric,

for increased accuracy.

(And be sure to use a sensible metric for “accuracy”.)
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Skew vs. Supervised Machine Learning

When data is skew,

the safe choice is

“accurate” —

and useless.

Minority class overwhelmed.
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Accuracy (A) vs Class-Averaged Accuracy (Ac)

Classification confusion matrices.
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Accuracy (A) vs Class-Averaged Accuracy (Ac)

Classification confusion matrices.
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Accuracy (A) vs Class-Averaged Accuracy (Ac)

Classification confusion matrices.
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The Conclusion

When building ensembles of decision trees to

classify extremely skew data,

such as Border Gateway Protocol (BGP) data,

use the Hellinger Distance metric, rather than

the traditional Infogain metric,

for increased accuracy.

(And be sure to use a sensible metric for “accuracy”.)
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Previous Best Solution: SMOTE for Skew Data

Not enough minority data? Invent some!

Minority class overwhelmed Minority class filled out by SMOTE[3]
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Decision Trees and Purity Metrics

Partition attribute space to maximize purity of children. Recurse.
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Infogain is the Traditional Purity Metric

W,Q are the classes of interest

N = the total number of samples

Ni = number of samples in class i

Ns = total number of samples in the L/R split

Ns
i = number of samples in class i in L/R split

E =
∑

i∈(W,Q)

−NL
i
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log2
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+
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−NR
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NR
i

NR

Kegelmeyer, Situational Awareness at Internet Scale . . . Page 22 of 33



Hellinger Pays Attention to Class Statistics

W,Q are the classes of interest

N = the total number of samples

Ni = number of samples in class i

Ns = total number of samples in the L/R split

Ns
i = number of samples in class i in L/R split
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∑
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Infogain vs Hellinger on Gaussian Data
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Infogain vs Hellinger on Gaussian Data
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Infogain vs Hellinger on Gaussian Data
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Infogain vs Hellinger on Gaussian Data
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The Conclusion

When building ensembles of decision trees to

classify extremely skew data,

such as Border Gateway Protocol (BGP) data,

use the Hellinger Distance metric, rather than

the traditional Infogain metric,

for increased accuracy.

(And be sure to use a sensible metric for “accuracy”.)
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Border Gateway Protocol (BGP) Data

Count“withdrawals” and“announcements” over 30 second intervals.

(Our thanks to Max Planck, New Mexico Institute of Mining and Technology, for data

acquisition and feature extraction.)
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Anecdote: Event 34, Internet Worm

• Start: 5:28 AM, 01/25/2003.

• End: Noon, 01/26/2003.

• ⇒ 2224 worm event samples.

• What happens as skew increases?

Proportion of worm samples 0.114 0.011 0.002 0.001

Infogain Bagging, Ac 0.897 0.833 0.773 0.757

Hellinger Bagging, Ac 0.899 0.838 0.783 0.769

Advantage of Hellinger 0.002 0.005 0.010 0.014
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New, Improved Event 34, With Extra SMOTE

• Start: 5:28 AM, 01/25/2003.

• End: Noon, 01/26/2003.

• ⇒ 2224 worm event samples.

• What happens as skew increases?

Proportion of worm samples 0.114 0.011 0.002 0.001

Infogain Bagging, Ac 0.897 0.833 0.773 0.757

SMOTE + Infogain Bagging, Ac 0.933 0.929 — —

Hellinger Bagging, Ac 0.899 0.838 0.783 0.769

SMOTE + Hellinger Bagging, Ac 0.931 0.934 — —
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Bagging, Hellinger vs. Infogain, Quantitatively

• Skew data: 19 datasets, Wilcoxian rank test ⇒ Hellinger statistically
significantly more accurate than Infogain, at 95% confidence.

• Balanced data: 8 data sets, Wilcoxian rank test ⇒ no difference
between Hellinger and Infogain, at 99% confidence.

Conclusion (so far): Always use Hellinger! It never hurts, and it often helps.
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The Conclusion

When building ensembles of decision trees to

classify extremely skew data,

such as Border Gateway Protocol (BGP) data,

use the Hellinger Distance metric, rather than

the traditional Infogain metric,

for increased accuracy.

(And be sure to use a sensible metric for “accuracy”.)
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Ensembles: Efficient, Robust, Optimal Accuracy

Traditional: Use 100% of training data to

build a sage.

Ensembles: Use randomized 100% of

training data to build an expert. Repeat

to build many experts. Vote them.

Sandia: Use a semi-random 1% of the

training data to build a “bozo”.

Repeat to build very many bozos. Vote

them.

The experts beat the sage[1].

The bozos beat the experts[4].

Sage sees all the data.

Each expert sees 2/3rds of the data.

Each bozo sees a tiny fraction.
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