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Networks are Everywhere! 

 Ubiquitous, diverse 

 Computer traffic 

 Social networks 

 Biological signaling 

 Communications 

 Physical interaction 

 Citation 

 Purchasing 

 Etc. 
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Image Credit: KU Leuven 

http://www.esat.kuleuven.be/scd/golub/network.php  

Sample Co-Authorship for Gene Golub Papers 
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Networks are Growing 
 Regular networks 

 O(100) nodes, O(10k) edges 

 O(KB) 

 Analysis trivial 

 big networks 

 O(10k) nodes,  O(1M)  edges 

 O(1MB), fits on a laptop 

 Analysis easy 

 Big networks 

 O(1M) nodes, O(100M) edges 

 O(1GB), fits on a workstation 

 Analysis expensive 

 BIG networks 

 O(100M) nodes, O(1B) edges 

 O(10-100GB), requires cluster or 
supercomputer 

 Analysis really expensive 
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Image credit: Yifan Hu, AT&T Labs Visualization Group 

http://www.cise.ufl.edu/research/sparse/ 

matrices/SNAP/ca-HepTh.html  

Example “big” network:  

Co-authorship Network 

from  ArXiv High Energy Physics 

9k nodes, 25k edges 
Many past 
studies have 
drawn conclusions 
from relatively 
small networks. 
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Example: CL (aka Configuration) 

(Chung & Lu, PNAS, 2002) 

• Desired node degrees  

specified in advance 

• New edges inserted, choosing 

endpoints by desired degree 

• Higher-degree nodes are more 

likely to be selected 

A Good Network Model… 
 Encapsulates underlying driving 

principals 
 “Physics” 

 Captures measurable characteristics 
of real-world data 
 Degree distribution 
 Clustering coefficients 
 Community structure 
 Connectedness, Diameter 
 Eigenvalues 

 Calibrates to specific data sets 
 Quantitative vs. qualitative 
 Surrogate for real data, protecting 

privacy and security 
 Provides results “like” the real data 
 Easy to share, reproduce 

 Yields understanding 
 Serve as null model 
 Statistical sampling  guidance 
 Predictive capabilities 
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Story-driven models 

Structure-driven models 

Example: Preferential Attachment 

(Barabasi & Albert, Science,1999) 

• New nodes joins graph one at  

a time, in sequence 

• Each new node chooses k new 

neighbors, according to degree 

• Node degrees updated after 

each addition – Rich get richer! 

k = 1 

new 

node &  

edge(s) 
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Example: CL (aka Configuration) 
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Degree Dist. Measures Connectivity 
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The degree distribution is one way to 

characterize a graph.  

 
Barabasi & Albert, Science, 1999: 

“A common property of many 

large networks is that the vertex 

connectivities follow a scale-free 

power-law distribution” 
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Clustering Coeff. Measures Cohesion 

2/25/2013 Kolda - SIAM CSE 13 

A 

F 

D E 

B 

C 

G 

K 
L 

J 

H 

The clustering coefficient measures 

the rate of wedge closure.  

 
In social networks, the clustering 

coefficients decrease smoothly as 

the degree increases. High 

degree nodes generally have little 

social cohesion. 
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Current State-of-the-Art Falls Short 
Story-Driven Models 
 Examples 

 Preferential Attachment  
 Barabasi & Albert, Science 1999 

 Forest Fire  
 Leskovec, Kleinberg, Faloutsos, KDD 2005 

 Random Walk  
 Vazquez, Phys. Rev. E 2003 

 Pros & Cons 
 Poor fits to real data 

 Expensive to calibrate to real data  

 Do not scale – inherently sequential 

 

Structure-Driven Models 
 Examples 

 CL: Chung-Lu; aka Configuration Model, 
Weighted Erdös-Rényi  

 PNAS 2002 

 SKG: Stochastic Kronecker Graphs; R-MAT 
is a special case  

 Leskovec et al., JMLR 2010; Chakrabarti, 
Zhan, Faloutsos, SDM 2004 

 Graph 500 Generator! 

 Pros & Cons 

 Do not capture clustering coefficients 

 SKG expensive to calibrate  

 Scales – generation cost O(m log n) 

 CL & SKG very similar in behavior  

 Pinar, Seshadhri, Kolda, SDM 2012 
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Survey: Sala et al., WWW 2010 
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Stochastic Kronecker Graph (SKG)  
as Graph 500 Generator 

 Pros 

 Only 5 parameters 

 2x2 generator matrix (sums to 1) 

 N = 2L = # nodes 

 M = 16N = # edges 

 O(M log N) generation cost 

 Edge generation fully  
parallelizable  

 Except de-duplication 

 Cons 

 Oscillations in degree distribution 
(fixed by adding special noise) 

 Limited degree distribution  
(noisy version is lognormal) 

 Half the nodes are isolated! 

 Tiny clustering coefficients! 
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Seshadhri, Pinar, Kolda, JACM 2012 

L Isolated davg 

26 51% 32 

29 57% 37 

32 62% 41 

36 67% 49 

39 71% 55 

42 74% 62 
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The Physics of Graphs 
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Random graph: 

(1) Formed according to CL Model 

(2) “High” clustering coefficient 

Thm: Must contain a “substantive” subgraph 

that is a dense Erdös-Rényi graph. 

Seshadhri, Kolda, Pinar, Phys. Rev. E 2012 

New 

Story 

Node joins a graph, but doesn’t follow preferential attachment.  

(1) First, joins an “affinity block” and makes within-block connections 

(2) Second, makes outside-block connections (preferential attachment) 

A heavy-tailed network with a high clustering 

coefficient contains many Erdös-Rényi 

affinity blocks. (The distribution of the block 

sizes is also heavy tailed.) 

CL Model 

Global Clustering Coefficient 

Dense Erdös-Rényi Subgraph 
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BTER: Block Two-Level Erdös-Rényi 
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Preprocessing 

• Create affinity blocks of 
nodes with (nearly) same 
degree, determined by 
degree distribution 

• Connectivity per block based 
on clustering coefficient 

• For each node, compute 
desired  

• within-block degree 
• excess degree 

Seshadhri, Kolda, Pinar, Phys. Rev. E 2012 

Kolda, Plantenga, Pinar, Seshadhri, arXiv 2013 
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Phase 2 
• CL model on excess 

degree (a sort of  

weighted Erdös-Rényi) 

• Creates connections 

across blocks 

Phase 1 
• Erdös-Rényi graphs in 

each block 

• Need to insert extra 

links to insure enough 

unique links per block 

 

Occurring independently 



BTER vs. SKG: Co-authorship 
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SKG 

lacking 

enough 

triangles 

SKG parameters from Leskovec et al., JMLR 2010 
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BTER vs. SKG: Social Website 
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SKG parameters from Leskovec et al., JMLR 2010 

Note 

oscillations 

in SKG  
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Community Structure of BTER 
Improves Eigenvalue Fit 
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BTER for BIG Networks 
 Need degree distribution 

 Calculate explicitly for real data 
(dmax parameters) 

 Can provide a formula, e.g., power 
law (1-2 parameters) 
 

 
 Need to specify clustering 

coefficients per degree 
 Calculate explicitly for real data 

(dmax parameters) 
 Can provide an arbitrary formula 

(1-2 parameters) 
 
 

 
 Cost per edge is O(log dmax) 
 Edge generation is parallelizable 
 Requires de-duplication (like SKG) 
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Choose phase 1 or 2? 

Choose block  

proportional to 

number of 

“samples” per 

block 

Create Phase 2 

edge using CL 

model on 

expected 

“excess degree” 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 

Create Phase 1  

in block k 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 
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Clustering Coefficients for BIG Graphs 
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E-F-G is an open wedge 
D-C-E is a closed wedge 

c = fraction of wedges that are closed 

Enumeration: Find every wedge. Check if each is closed. 

c = # closed wedges / # wedges 

Sampling: Sample a few wedges (uniformly). Check if each is closed. 
c ¼ # closed sampled wedges / # sampled wedges 

Seshadhri, Pinar, Kolda, SIAM Intl. Conf. Data Mining 2013 
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Benefits of Wedge Sampling 
 Bounded error for specified sample 

size and desired confidence 

 Work is O(# edges) vs O(# wedges) 

 1000X average speedup versus 
enumeration, k = 32,000 (² = 0.011) 

 Faster than edge sampling (Doulion) 
and less variance 

 Can also compute clustering 
coefficient per degree 
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Bounded Error: Hoeffding’s Inequality 

Theorem: (Hoeffding 1963) Let X1, X2, …, Xk 2 [0,1] 

be independent random variables. Define the sample 

mean: 

Let ¹ be the true mean. Then for ² 2 (0,1-¹),  

 

Hence, for a given error ² and confidence 1-δ, we 

just need to set  

 

 

 

 

Seshadhri, Pinar, Kolda, SIAM Intl. Conf. Data Mining, 2013 
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Data Sets and Machines 
 5 real-world networks  

 Source: Laboratory for Web 
Algorithms (Italy) 

 Largest: 132M nodes, 4.6B edges 

 Observe: # wedges À # edges! 

 

 Compute Servers 
 Big Memory Server: SGI Altix UV 10 

 32 cores (4 Xeon 8-core 2.0GHz 
processors) 

 512 GB DDR3 memory 

 Distributed Server: 32-Node 
Hadoop Cluster 
 32 x Intel 4-Core i7 930 2.8GHz CPU = 

128 cores 

 32 x 12GB = 384GB memory 

 32 x 4 2TB SATA disks = 256TB disk 
storage 
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Wedge Sampling for BIG Graphs 
 32-node Hadoop cluster results using 

wedge sampling 
 Logarithmic bins 

 2000 samples per bin 

 “BIG” graphs benefit from Hadoop 
 Merely “Big” graphs don’t require 

Hadoop – just shown as examples 

 Compare twitter times  
 Sampling: 10 mins  

on 32-node Hadoop cluster 

 Enumeration: 483 mins  
on 1636-node Hadoop cluster  

 Suri & Vassilvitskii, 2011 

 Enumeration: 180 mins  
on 32-core SGI, using 128GB RAM 

 by Jon Berry, 2013 

 No comparisons for uk-union due to 
its size  

2/25/2013 Kolda - SIAM CSE 13 19 

Big BIG 

Kolda, Pinar, Plantenga, Seshadhri, Task, arXiv:1301.5886, 2013 



BTER for BIG Networks 
 Need degree distribution 

 Calculate explicitly for real data 
(dmax parameters) 

 Can provide a formula, e.g., power 
law (1-2 parameters) 
 

 
 Need to specify clustering 

coefficients per degree 
 Calculate explicitly for real data 

(dmax parameters) 
 Can provide an arbitrary formula 

(1-2 parameters) 
 
 

 
 Cost per edge is O(log dmax) 
 Edge generation is parallelizable 
 Requires de-duplication (like SKG) 
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Kolda, Pinar, Plantenga, Seshadhri, arXiv 2013 



BTER Results: amazon-2008 
(4M edges) 
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BTER Timing 

    Generation:   2s 

Deduplication: 10s 

Kolda, Pinar, Plantenga, Seshadhri, arXiv 2013 



BTER Results: ljournal-2008  
(49M edges) 
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BTER Timing 

    Generation:   34s 

Deduplication: 126s 

Kolda, Pinar, Plantenga, Seshadhri, arXiv 2013 



BTER Results: hollywood-2011  
(114M edges = 3.4GB sparse matrix) 
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BTER Timing 

    Generation:   89s 

Deduplication: 362s 

Kolda, Pinar, Plantenga, Seshadhri, arXiv 2013 



BTER Hadoop Results: twitter-2010  
(1.2B edges) 
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Total Time 

222 sec. 

Kolda, Pinar, Plantenga, Seshadhri, arXiv 2013 



BTER Hadoop Results: uk-union  
(4.6B edges) 
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Total Time 

1,638s 

Kolda, Pinar, Plantenga, Seshadhri, arXiv 2013 



Measurable Characteristics of 
Directed Graphs: Reciprocation 

 Degree distribution 
 In-degree 
 Out-degree 
 Reciprocal degree(!) 

 Many directed networks have an 
undirected network at their heart 

 Most “directed” models ignore 
reciprocation  
 SKG has very little reciprocation 
 Forest Fire (FF) has no reciprocation 
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One-Way Edge 

Reciprocal Edge 

Directed Edges 

Durak, Kolda, Pinar, Seshadhri, IEEE Network Science Workshop 2013 

Reciprocal Edges 

Data from Stanford Network Analysis Project (SNAP) 
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Triangles in Directed Networks 
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Seshadhri, Pinar, Durak, Kolda, arXiv 2013 

Directed Wedges Directed Triangles 



Hints on the “Physics”… 
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Seshadhri, Pinar, Durak, Kolda, arXiv 2013 

Directed Wedges Directed Triangles 

Wedges with reciprocal 

edges are much more 

likely to close in social 

and web networks. 

Cycles w/o 

reciprocation  

exceedingly rare 



Wedges and Triangles in Web 
Network: web-Google 
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Contrast to proportions for 

a graph with randomly 

directed edges (in 

appropriate proportions) 

Proportion of Total Wedges in Graph 

Proportion of Total Triangles in Graph 

Proportion of these 

wedges that closed 

into that color 

triangle. 

Data from SNAP 

web-Google: 876K nodes,  5.1M edges, reciprocation = 31%, GCC=0.055 

All wedges but 

“in” are highly 

likely to close! 



Analysis, Models, and Generators  
for BIG Networks 

 Generating networks requires more 
than stories – it requires math! 
 Capture “physics” 

 Can be calibrated 

 Scale 

 Yield understanding 

 Computing cluster coefficients 
 Statistically sound wedge-sampling 

approach for BIG networks 

 BTER model 
 Theory says: Graphs with high 

clustering coefficients must have 
“affinity blocks” 

 Can be used as a generator for 
benchmarks 

 Directed graphs 
 Reciprocation is high in many networks 

 Triangle behavior is not random – 
reciprocation is extremely important for 
wedge closure 
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Real Data 

Generated Data 

Useful 

Measurements 

Mathematical Generative Model 

Measurements 

Inherent 

Properties 
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