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Abstract. Symmetric tensor operations arise in a wide variety of computations. However, the
benefits of exploiting symmetry in order to reduce storage and computation is in conflict with a desire
to simplify memory access patterns. In this paper, we propose a blocked data structure (blocked
compact symmetric storage) wherein we consider the tensor by blocks and store only the unique
blocks of a symmetric tensor. We propose an algorithm by blocks, already shown of benefit for
matrix computations, that exploits this storage format by utilizing a series of temporary tensors to
avoid redundant computation. Further, partial symmetry within temporaries is exploited to further
avoid redundant storage and redundant computation. A detailed analysis shows that, relative to
storing and computing with tensors without taking advantage of symmetry and partial symmetry,
storage requirements are reduced by a factor of O(m!) and computational requirements by a factor
of O((m + 1)!/2™), where m is the order of the tensor. However, as the analysis shows, care
must be taken in choosing the correct block size to ensure these storage and computational benefits
are achieved (particularly for low-order tensors). An implementation demonstrates that storage is
greatly reduced and the complexity introduced by storing and computing with tensors by blocks is
manageable. Preliminary results demonstrate that computational time is also reduced. The paper
concludes with a discussion of how insights in this paper point to opportunities for generalizing recent
advances in the domain of linear algebra libraries to the field of multilinear computation.
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1. Introduction. A tensor is a multidimensional or m-way array. Tensor com-
putations are increasingly prevalent in a wide variety of applications [22]. Alas, li-
braries for dense multilinear algebra (tensor computations) are in their infancy. The
aim of this paper is to explore how ideas from matrix computations can be extended
to the domain of tensors. Specifically, this paper focuses on exploring how exploiting
symmetry in matrix computations extends to computations with symmetric tensors,
tensors whose entries are invariant under any permutation of indices, and exploring
how block structures and algorithms extend to computations with symmetric tensors.

Libraries for dense linear algebra (matrix computations) have long been part of
the standard arsenal for computational science, including the basic linear algebra sub-
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program (BLAS) interface [23, 12, 11, 17, 16], LAPACK [3], and more recent libraries
with similar functionality, like the BLAS-like interface software framework (BLIS) [37],
and libflame [41, 36]. For distributed memory architectures, the ScaLAPACK [10],
PLAPACK [35], and Elemental [27] libraries provide most of the functionality of
BLAS and LAPACK. High-performance implementations of these libraries are avail-
able under open source licenses.

For tensor computations, no high-performance general-purpose libraries exist.
The MATLAB Tensor Toolbox [5, 4] defines many commonly used operations that
would be needed by a library for multilinear algebra but does not have any high-
performance kernels nor special computations or data structures for symmetric ten-
sors. The PLS Toolbox [13] provides users with operations for analyzing data stored
as tensors, but does not expose the underlying system for users to develop their own
set of operations. Targeting distributed memory environments, the tensor contraction
engine (TCE) project [7] focuses on sequences of tensor contractions and uses compiler
techniques to reduce workspace and operation counts. The cyclops tensor framework
(CTF) [33] focuses on exploiting symmetry in storage for distributed memory par-
allel computation with tensors, but at present does not include efforts to optimize
computation within each computational node.

In a talk at the Eighteenth Householder Symposium meeting (2011), Charlie
Van Loan stated, “In my opinion, blocking will eventually have the same impact in
tensor computations as it does in matrix computations.” The approach we take in
this paper heavily borrows from the FLAME project [36]. We use the change-of-basis
operation, also known as a symmetric tensor times same matrix (in all modes) (sttsm)
operation [5], to motivate the issues and solutions. In the field of computational
chemistry, this operation is referred to as an atomic integral transformation [8] when
applied to order-4 tensors. This operation appears in other contexts as well, such as
computing a low-rank Tucker-type decomposition of a symmetric tensor [21] and blind
source separation [32]. We propose algorithms that require significantly less (possibly
minimal) computation relative to an approach based on a series of successive matrix-
matrix multiply operations by computing and storing temporaries. Additionally, the
tensors are stored by blocks, following similar solutions developed for matrices [24, 29].
In addition to many of the projects mentioned previously, other work, such as that by
Ragnarsson and Van Loan [30] suggest devising algorithms in terms of tensor blocks
to aid in computation with both symmetric tensors and tensors in general.

Given that we store the tensor by blocks, the algorithms must be reformulated to
operate with these blocks. Since we need only store the unique blocks of a symmetric
tensor, symmetry is exploited at the block level (both for storage and computation)
while preserving regularity when computing within blocks. Temporaries are formed to
reduce the computational requirements, similar to work in the field of computational
chemistry [8]. To further reduce computational and storage requirements, we exploit
partial symmetry within temporaries. It should be noted that the symmetry being
exploited in this article is different from the symmetry typically observed in chemistry
fields. One approach for exploiting symmetry in operations is to store only unique
entries and devise algorithms which only use the unique entries of the symmetric
operands [40]. By contrast, we exploit symmetry in operands by devising algorithms
and storing the objects in such a way that knowledge of the symmetry of the operands
is concealed from the implementation (allowing symmetric objects to be treated as
nonsymmetric objects).

The contributions of this paper can be summarized as reducing storage and com-
putational requirements of the sttsm operation for symmetric tensors by
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e utilizing temporaries to reduce computational costs thereby avoiding redun-
dant computations;
e using blocked algorithms and data structures to improve performance of the
given computing environment;
e providing a framework for exploiting symmetry in symmetric tensors (and
partial symmetry in temporaries) thereby reducing storage requirements.
The paper analyzes the computational and storage costs demonstrating that the
added complexity of exploiting symmetry need not adversely impact the benefits
derived from symmetry. An implementation shows that the insights can be made
practical. The paper concludes by listing additional opportunities for generalizing
advancements in the domain of linear algebra libraries to multilinear computation.

2. Preliminaries. We start with some basic notation, and the motivating tensor
operation.

2.1. Notation. In this discussion, we assume all indices and modes are num-
bered starting at zero.

The order of a tensor is the number of ways or modes. In this paper, we deal
only with tensors where every mode has the same dimension. Therefore, we define
R™") to be the set of real-valued order-m (or m-way) tensors where each mode has
dimension n; i.e., a tensor A € R™™ can be thought of as an m-dimensional cube
with n entries in each direction.

An element of A is denoted as ajy...;,, _,, where i, € {0,...,n—1} for all k €
{0,...,m —1}. This also illustrates that, as a general rule, we use lower case Greek
letters for scalars («, ¥, .. .), bold lower case Roman letters for vectors (a, x, .. .), bold
upper case Roman letters for matrices (A, X,...), and upper case scripted letters for
tensors (A, X,...). We denote the ith row of a matrix A by a; . If we transpose this
row, we denote it as a;.

2.2. Partitioning. For our forthcoming discussions, it is useful to define the
notion of a partitioning of a set S. We say the sets S, S1, ..., Sy—1 form a partitioning
of § if

§;NS;=0foranyi,je{0,....,k—1} with ¢ # j,
S; # 0 for any i € {0,...,k — 1},

and

k—1
Usi=s.
=0

2.3. Partial symmetry. It is possible that a tensor A may be symmetric in
two or more modes, meaning that the entries are invariant to permutations of those
modes. For instance, if A is a 3-way tensor and symmetric in all modes, then

Qigirip = Qigigiy = Qiyigia = Qiyinio — Qigigiy — Qigiyig-

It may also be that A is only symmetric in a subset of the modes. For instance,
suppose A is a 4-way tensor that is symmetric in modes § = {1,2}. Then

Qigirigiz = Qigigiyig:

We define this formally below.
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Let S be a finite set. Define IIs to be the set of all permutations on the set S
where a permutation is viewed as a bijection from S to §. Under this interpretation,
for any 7 € Ils, m(x) is the resulting element of applying 7 to z.t

Let S € {0,...,m — 1}, and define IIs to be the set of all permutations on S as
described above. We say an order-m tensor A is symmetric in the modes in S if

Quipin il = Qigig iy

for any index vector i’ defined by

y {w(ij) if j €S,
Uy =

ij otherwise

for j=0,...,m—1and 7 € Ils.
Technically speaking, this definition applies even in the trivial case where S is a
singleton, which is useful for defining multiple symmetries.

2.4. Multiple symmetries. It is possible that a tensor may have symmetry
in multiple sets of modes at once. As the tensor is not symmetric in all modes, yet
still symmetric in some modes, we say the tensor is partially symmetric. For instance,
suppose A is a 4-way tensor that is symmetric in modes Sy = {1, 2} and also in modes
&1 ={0,3}. Then

Qigivigiz — Migirigio — Nigigiriz = Nigigizio-
We define this formally below.

Let Sp, 81, - - ., Sk—1 be a partitioning of {0, ...,m—1}. We say an order-m tensor
A has symmetries defined by the mode partitioning {.S; i:ol if

Qi gt .t = Qg
TG0t g 1091 Tm—1

for any index vector i’ defined by

Wo(ij) 1f] ESQ,
7T1(ij) ifjeSl,

Tr—1(i5) 1 j € Sk

for j=0,....m—1land mp € 1Ils, for £ =0,...,k—1.

Technically, a tensor with no symmetry whatsoever still fits the definition above
with k = m and |S;] =1fori=0,....,m—1. If k =1 and Sp = {0,...,m — 1},
then the tensor is symmetric. If 1 < k < m, then the tensor is partially symmetric.
Later, we look at partially symmetric tensors such that So = {0,...,¢} and |S;| =1
fori=1,...,k—1.

2.5. The sttsm operation. The operation used in this paper to illustrate issues
related to storage of, and computation with, symmetric tensors is the change-of-basis
operation
(21) e:Z[A;X,...,X]:AXQXX1---melx,

——

m times

I Throughout this paper, 7 should be interpreted as a permutation, not as a scalar quantity. All
other lowercase Greek letters should be interpreted as scalar quantities.
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where A € RI™™ is symmetric and X € RP*" is the change-of-basis matrix. This is
equivalent to multiplying the tensor A by the same matrix X in every mode. The
resulting tensor € € RI™ P! is defined elementwise as

n—1 n—1
Yo dm—1 T E e E Qigeevipn 1 Xjoto Xgrin * " Xjm—18m—17

10=0 T —1=0

where ji € {0,...,p— 1} for all k € {0,...,m—1}. It can be observed that the
resulting tensor € is itself symmetric. We refer to this operation (2.1) as the sttsm
operation.

The sttsm operation is used in computing symmetric versions of Tucker and CP
(notably the CP-opt) decompositions for symmetric tensors [22]. In the CP decompo-
sition, the matrix X of the sttsm operation is a single vector. In the field of computa-
tional chemistry, the sttsm operation is used when transforming atomic integrals [8].
Many fields utilize a closely related operation to the sttsm operation, which can be
viewed as the multiplication of a symmetric tensor in all modes but one. Problems
such as calculating Nash equlibria for symmetric games [15] utilize this related opera-
tion. We focus on the sttsm operation not only to improve methods that rely on this
exact operation, but also to gain insight for tackling related problems of symmetry in
related operations.

3. The matrix case. We build intuition about the problem and its solutions
by first looking at symmetric matrices (order-2 symmetric tensors).

3.1. The operation for m = 2. Letting m = 2 yields C := [A; X, X], where
A € RI™™ is an n x n symmetric matrix, C € RI™?! is a p x p symmetric matrix,
and [A; X, X] = XAX”. For m = 2, (2.1) becomes

n—1n—1

(31) Yiojr = Z Z Qigiy Xjoio Xjrit-

10=01%1=0

3.2. Simple algorithms for m = 2. Based on (3.1), a naive algorithm that
only computes the upper triangular part of symmetric matrix C = XAX7 is given in
Figure 1 (top left), at a cost of approximately 3p*n? floating point operations (flops).
The algorithm to its right reduces flops by storing intermediate results and taking
advantage of symmetry. It is motivated by observing that

XAXT =x AXT
——

T
oY o7
(32) = A ( Xo - ﬁpfl ) = ( %\0 oo %\pfl ) s
T — — ST
Xp—1 ( to o tpo1 ) Xp—1

where t; = AX; € R" and X; € R" (recall that X; denotes the transpose of the jth
row of X). This algorithm requires approximately 2pn? + p*n flops at the expense of
requiring temporary space for a vector t.

3.3. Blocked compact symmetric storage (BCSS) m = 2. Since matrices
C and A are symmetric, it saves space to store only the upper (or lower) triangular
part of those matrices. We consider storing the upper triangular part. While for
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Algorithms that reduce computation
at the expense of extra workspace
A is a matrix (m = 2): C:= XAX” = [A; X, X]
for j;, =0,....,p—1
fOI'j():O,...,jl
fyjojI;:O fOE‘\jlfO,...,p—l
foriO:O,...,n—l t:th1:A§j1
for iy =0,....,n—1 for jo=0,...,71
Yiod1 = Yjoj1 + Qigiy Xjoio Xj1i1 Yioj1 ‘= ﬁg;t
endfor endfor
endfor endfor
endfor
endfor
A is a 3-way tensor (m = 3): €:= [A; X, X, X]
for jo=0,....,.p—1
forj1:0,...,j2 .
. . for jo=0,....p—1
for jo=0,...,51 @) 2) 7
I T =T = A x5 X}
Viojije *= . J2 . J2
fori, =0,....,n—1 for j1 =0,...,j2
forip =0,...,n—1 t :ztﬁz-z:T@)xlﬁ;‘-rl
fori():(),...,n—l fOI'jQZO,...,jl
7j0j1j2+ = Yiojije = t(l) X0 QZ;
Qigivin Xjoio Xg1i1 Xjziz endfor
endfor endfor
endfor
endfor
A is an m-way tensor: € := [A; X,
for j,,_1=0,...,p—1 .
Jm=1 b for j,,_1=0,.
fOI‘jQZO,...,jl

’ij"'jnzfl = 0

for i,,_1=0,...,n—1
for ip =0,....,n—1
7j0"'j7n71+ =
Qig--ia Xgoio """ Xjm—1im—1
endfor

endfor

endfor

..,p—1
gm=U .= 7,

m—l — A Xm—1 X5

T
Jm—1

: Jm 1=T(2) X1XT
fOI‘jQ—O,...,jl
Vigimr =6 xo K],
endfor
endfor

Fic. 1. Algorithms for € := [A; X, ..., X] that compute with scalars. In order to facilitate the
comparing and contrasting of algorithms, we present algorithms for the special cases where m = 2,3

(top and middle) as well as the general case (bottom). For each, we give the naive algorithm on the

left and the algorithm that reduces computation at the expense of temporary storage on the right.
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matrices the savings is modest (and rarely exploited), the savings is more dramatic
for tensors of higher order.

To store a symmetric matrix, consider packing the elements of the upper triangle
tightly into memory with the following ordering of unique elements:

01 3
2 4
5

Variants of this theme have been proposed over the course of the last few decades
but have never caught on due to the complexity that is introduced when indexing the
elements of the matrix [18, 6]. Given that this complexity only increases with the
tensor order, we do not pursue this idea.

Instead, we embrace an idea, storage by blocks, that was introduced into the
libflame library [24, 41, 36] in order to support algorithms by blocks. Submatri-
ces (blocks) become units of data and operations with those blocks become units of
computation. Partition the symmetric matrix A € R"*" into submatrices as

Ago Aoy Ay - Agmo

A A Ap 0 Aoy

(3.3) A=| A2 Ag A 0 Agmoy
An—10 Am-1n1 A@-12  Am-n@E-1)

Here each submatrix A;;, € R'A*%A We define 72 = n/ba, where, without loss of
generality, we assume ba evenly divides n. Hence A is a blocked n x n matrix with
blocks of size ba X ba. The blocks are stored using some conventional method (e.g.,
each Az, is stored in column-major order). For symmetric matrices, the blocks below
the diagonal are redundant and need not be stored (indicated by gray coloring). We
do not store the data these blocks represent explicitly; instead, we store information
at these locations informing us how to obtain the required data. By doing this, we
can retain a simple indexing scheme into A that avoids the complexity associated
with storing only the unique entries. Although the diagonal blocks are themselves
symmetric, we do not take advantage of this in order to simplify the access pattern
for the computation with those blocks. We refer to this storage technique as BCSS
throughout the rest of this paper.

Storing the upper triangular individual elements of the symmetric matrix A re-
quires storage of

n(n+1)/2 = ("; 1) foats.

In contrast, storing the upper triangular blocks of the symmetric matrix A with BCSS
requires

n+1
n(n+ba)/2 =b% <n—2|— ) floats.
The BCSS scheme requires a small amount of additional storage, depending on ba.

Figure 2 illustrates how the storage for BCSS approaches the cost of storing only the
upper triangular elements (here n = 512) as the number of blocks increases.
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Relative storage of BCSS n=[n/bal
2 4 8

H H

1)/2
relative to minimal storage | /2 | 067 | 080 | 089 | 0.94
n(n+ba)/2
2
relative to dense storage I 1.33 1.60 1.78 1.88
n(n +ba)/2

Fic. 2. Storage savings factor of BCSS when n = 512.

3.4. Algorithm by blocks for m = 2. Given that C and A are stored with
BCSS, we now need to discuss how the algorithm computes with these blocks. Parti-
tion A as in (3.3),

Coo - Cop-n) Xoo o Xom-1)
C= : : ,and X = : : ;
Co-10 -+ Cup-ne-1) Xp-no - Xp-n@-n

Without loss of generality, p = p/bc is integral, and the blocks of C and X are of size
bc X bc and bc X ba, respectively. Then C := XAXT means that

A - Agm- X;{o
Cjojl = ( ono on(ﬁ—l) ) : ..
Am-1o " Ama—nm-1 X;irl(ﬁ_l)
(3.4)
n—1 n—1 n-1n-1
= Xj—ogOAgOng;:rﬂ1 = Z [Azpi: ;s X5o70, X517, (in tensor notation).
20=0721=0 270=01721,=0

This yields the algorithm in Figure 3, in which an analysis of its cost is also given.
This algorithm avoids redundant computation, except within symmetric blocks on the
diagonal. Comparing (3.4) to (3.1), we see that the only difference lies in replacing
scalar terms with their block counterparts. Consequently, comparing this algorithm
with the one in Figure 1 (top right), we notice that every scalar has simply been
replaced by a block (submatrix). The algorithm now computes a temporary matrix
T = AX;:FI: instead of a temporary vector t = AX;, as in Figure 1 for each index
0 <71 < p. It requires n x bc extra storage instead of n extra storage in addition to
the storage for C and A.

4. The 3-way case. We extend the insight gained in the last section to the
case where € and A are symmetric order-3 tensors before moving on to the general
order-m case in the next section.

4.1. The operation for m = 3. Now € := [A; X, X, X], where A € RI™7]
@ e RI™Pl and [A; X, X, X] = AxpX x1 X x2X. In our discussion, .A is a symmetric
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Algorithm Ops Total # of Temp.
(flops) | times executed | storage
for 7 =0,...,p—1
Tk Ago Ag(r—1) x.7T10
N ; . : : 2bgn® P ben
Tl | Ar-10 " Aa-1)(a-1) xT oy
_ -_—
T A xT
7
for o =0,..., 11
T
Ty
. 2 o
Cron = (Xg0 -+ Xypa-1)) | Wgn | pE+1)/2
T
Th 1
endfor
endfor

Total temporary storage: bcn = z (

1

Total Cost: 2bcn2ﬁ+2b n(pE+1)/2) = z ( bd+1 2— d(

0
de+1n1—d)

d=0

entries

p+d
d+1

)) ~ 2pn? + p°n flops

Fia. 3. Algorithm by blocks for computing C := XAXT =

[A; X, X].

The algorithm assumes

that C is partitioned into blocks of size b X be, with p = [p/bc|. An expression using summations
is given to help in identifying a pattern later on.

tensor, as is € by virtue of the operation applied to A. Now,

Yjojida

4.2. Simple algorithms for m

_ ST ST ST
=A X0 on X1 le X9 Xj2

n—1 n—1

n—1

i0=0

> | 2 (AxeZh)u XX

10=0 \i1=0

n—1n—1n-1

10

E E E Qigiqig onloxjﬂl ijlz

7,2:0 11 =01 0= 0

X0 Xjoio

T T
E (.A X1 X5, Xa2 Xj2)i0 X0 Xjoio

ure 1 (middle left). The cheaper algorithm to its right is motivated by

AXOXX1XX2X

X0 X0 X0
A X0 X1 : X9 :
T T =T
X, 1 X, 1 X, 1
X0 X5
(T((JQ) -TZ(,Q,)l) X0 X1
T oT
72 Xp—1 Xp—1
(1) (1) ~
too to (p 1) X(j;
X0 )
(1) 4+ (D) T
to-1o " temn-1) *p-1

3. A naive algorithm is given in Fig-
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where

T e R™™ and T = A x2 %L,

tgllzz eR" and tgfzz = T(2) X1 XL = A xa X x1 X,
;T c Rlxn.

This algorithm requires p(2n> + p(2n® + 2pn)) = 2pn® + 2p*n? + 2p>n flops at the
expense of requiring workspace for a matrix T of size n x n and vector t of length n.

4.3. BCSS for m = 3. In the matrix case (section 3), we described BCSS,
which stores only the blocks in the upper triangular part of the matrix. The storage
scheme used in the 3-way case is analogous to the matrix case; the difference is that
instead of storing blocks belonging to a 2-way upper triangle, we must store the blocks
in the “upper triangular” region of a 3-way tensor. This region is comprised of all
indices (ig,41,42) where ig < i1 < is. For lack of a better term, we refer to this as the
upper hypertriangle of the tensor.

Similar to how we extended the notion of the upper triangular region of a 3-
way tensor, we must extend the notion of a block to three dimensions. Instead of a
block being a two-dimensional submatrix, a block for 3-way tensors becomes a 3-way
subtensor. Partition tensor A € R*™ into cubical blocks Az, Of size by xbaxba:

Aooo Aowo - Aoga—
Ao Ao 0 A
A::O - . . 9 )
Awn-1)00 Aa-1)10 " - A@m-1)(n-1)0
Aoon-1)  Aorim-1y - Aom-1)(a-1)
Aomn-1y  Aum-1y - A@-nm-1
As-1) = : : . : ’

Am-1om-1) Am-ni@-1) " A@-1)(r-1)m-1)

where 7. = n/ba (without loss of generality, assume b4 divides n). These blocks
are stored using some conventional method and the blocks lying outside the upper
hypertriangular region are not stored. Once again, we do not take advantage of any
symmetry within blocks (blocks with 29 = 71, 790 = %2, or 71 = 72) to simplify the access
pattern when computing with these blocks.

As summarized in Table 1, we see that while storing only the upper hypertriangu-
lar elements of the tensor A requires (" ;’ 2) storage, BCSS requires »% (" ;’ 2) elements.
However, since (" ;’ 2)b3A ~ —3b 3 = —3 we achieve a savings of approximately a factor of
6 if 7 is large enough, relatlve to stormg all elements. Once again, we can apply the
same storage method to € for additional savings.

Blocks such that 79 = 71 # 72, 70 = 72 # 71, Or 71 = 12 # 7o still have some
symmetry and so are referred to as partially symmetric blocks.

4.4. Algorithm by blocks for m = 3. We now discuss an algorithm by blocks
for the 3-way case. Partition € and A into blocks of size be X be X be and bg X ba X ba,
respectively, and partition X into be X bg blocks. Then, extending the insights we
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TABLE 1
Storage requirements for a tensor A under different storage schemes.

Compact (minimum) | Blocked compact (BCSS) | Dense
9 (n—;l)n:<n—2|—1) bi{(n;—l) 2
3 (n—3|—2> b§1<n;2> 3
e d (n—l—;l—l) bi{(n+;l—1) i

gained from the matrix case, € := [A; X, X, X] means that

|
|
—
3
|
—
3
|
—

ejojﬂz - ‘Afoﬁb X0 Xiofo X1 Xiﬂ1 X2 ijh

S|

o

Il
= o

|

o

I M
= o

o3|

V)

; M
= o

3
|
3
|
3
|

= [‘Aﬂﬂﬂz ; onfo ) Xiﬂ1 ) ijh]'

1

Il
o
|
Il
o
S|
Il
o

=|

0 2

This yields the algorithm in Figure 4, in which an analysis of its cost is also given.
This algorithm avoids redundant computation, except for within blocks of € that
are symmetric or partially symmetric. The algorithm computes temporaries F2) =
A xo X5,. and g — g x1 Xjz,: for each index, where 0 < 7 < p and 0 < 51 < 7o.
The algorithm requires ben? + bzen extra storage (for 7 and T(l), respectively), in
addition to the storage for € and A.

5. The m-way case. We now generalize to tensors € and A of any order.

5.1. The operation for order-m tensors. For general m, we have
€ = [A;X,X,...,X], where A € R™" € e R™? and [A;X,X,...X] =
A xg X x1 X+ X1 X. In our discussion, A is a symmetric tensor, as is € by
virtue of the operation applied to A.

Recall that ;i .-.5,._, denotes the (jo, j1, ..., jm—1) element of the order-m tensor
€. Then, by simple extension of our previous derivations, we find that

_ ST ST ST
Yiojr-fm—1 — A X0 on X1 le o Xom—1 ij—1

n—1 n—1
= E U § Qigiy iy —1 Xjoio X1 " Xgm—18m—1-

im—1=0 10=0

5.2. Simple algorithms for general m. A naive algorithm with a cost of
(m+1)p™n™ flops is given in Figure 1 (bottom left). By comparing the loop structure
of the naive algorithms in the 2-way and 3-way cases, the pattern for a cheaper
algorithm (in terms of flops) in the m-way case should become obvious. Extending the
cheaper algorithm in the 3-way case suggests the algorithm given in Figure 1 (bottom
right). This algorithm requires

m—1
2pnm + 2p2nm—1 R 2pm—1n —9 Z pi+1nm—i ﬂOpS
=0
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Algorithm Ops Total # of Temp.
(flops) times executed storage
for 2 =0,...,p—1
(2) (2)
Joo D—O(ﬁfl)
@ g
T(ﬁfl)o T(ﬁfl)(ﬁfl) 5 )
A X2 (Xj2() o Xy (1) ) 2ben D ben
forn=0,...,72
1 (2) (2) o
it Joo Tom-1) p(p+1)/2
o . . . 2,2 = 2
(:1) B ( ): ; (2) : e (ﬁ—i_l) ben
2 2
U -0 " Ta—1)m-1) 2
x1 (Xg0 - Xjya-1) )
for 70 =0,..., 1
Chomm =
b PE+1)FE+2)
. o~ 3 6
(:1) x0 (Xj00 Xyo(n-1) ) 2ben (ﬁ+ 2)
Tanl1 3
endfor
endfor
endfor
2 _ :
o +d p p3n
Total Cost: opdtin3—a (P )z2 Spp224 P20
otal Cos ;)( e <d+1> pn” + p n” + 3 ops
1
Total temporary storage: ben? + b%n = Z (bde+1n2_d> entries
d=0

Fic. 4. Algorithm by blocks for computing [A;X,X,X]|. The algorithm assumes that € is
partitioned into blocks of size be X be X be, with p = [p/be]. An expression using summations is
given to help in identifying a pattern later on.

at the expense of requiring workspace for temporary tensors of order 1 through m — 1
with modes of dimension n.

5.3. BCSS for general m. We now consider BCSS for the general m-way
case. The upper hypertriangular region now contains all indices (ig,%1,...,0m—1),
where ig < i3 < -+ < 4,,,—1. Using the 3-way case as a guide, one can envision by
extrapolation how a block partitioned order-m tensor looks. The tensor A € R
is partitioned into hypercubical blocks of size b”;. The blocks lying outside the upper
hypertriangular region are not stored. Once again, we do not take advantage of
symmetry within blocks.

As summarized in Table 1, storing only the upper hypertriangular elements of the
tensor A requires (" +:‘ 1) storage, and BCSS requires (" +: - 1)#} elements which
achieves a savings factor of m! (if 7 is large enough).

Although the approximation (" e 1)b’;; ~ "W: is used, the lower-order terms have
a significant effect on the actual sto?age Savirfés factor. In Figure 5, we show the
actual storage savings of BCSS (including storage required for metadata entries) over
storing all entries of a symmetric tensor. Examining Figure 5, we see that as we
increase m, a larger 7 is required to have the actual storage savings factor approach
the theoretical factor. While this figure only shows the results for a particular value
of bga, the effect applies to all values of bg. This idea of blocking has been used in
many projects including the TCE project [7, 31, 14].
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Fia. 5. Actual storage savings of BCSS on A with block dimension by = 8. This includes the
number of entries required for associated metadata.

5.4. Algorithm by blocks for general m. For € and A for general m stored
using BCSS, we discuss how to compute with these blocks. Assume the partioning

discussed above. Then,

€j071“'jm—1

1

3 8
Il
= o

S|

S
Il
o

e E ‘Afoﬁ---fmq X0 onfo X1 Xiﬂ1 o Xme—1 ij—1fm—1

E [Afof1~~~?m—1 ; onfo ) Xiﬂu ) ij—1fm—1]'

This yields the algorithm given in Figure 6, which avoids much redundant computa-
tion, except for within blocks of € that are symmetric or partially symmetric. The

algorithm computes temporaries

j’(m—l) = A X;_1 ijfw
j’(m72) = j'(mil) Xm—2 ij—2:’

= T(Q) X1 Xj1;

for each index, where 0 < 73 < 72 < -+ < 7;p—1 < p. This algorithm requires
ben™ 4 bEn™ 2 4. -+b’é172n extra storage (for g(m=1) through g, respectively),
in addition to the storage for € and A.

We realize this approach can result in a small loss of symmetry (due to numerical
instability) within blocks. We do not address this effect at this time as the asymmetry
only becomes a factor when the resulting tensor is used in subsequent operations. A
postprocessing step can be applied to correct any asymmetry in the resulting tensor.
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Algorithm Ops Total # of Temp.
(flops) times executed | storage
for 7;,—1=0,...,p—1 B
T = At (Xgm10 - Xy (n-1)) 2ben™ @) ben™ !
fOI‘jl :07"'7‘72
p -2
TO =73 1 (X0 Xy 1)) e L) | e
m—
forj():Oi"‘7jl
Clom - dm—1
=T %o (Xioo T Xio(ﬁ—l))
T e
=1 xo (Koo X)) | 20 | ( )
m
70,
endfor
endfor
endfor
m—1 ﬁ"‘d
Total Cost: 2% pm—d ) f
otal Cos ;( e M <d+l> ops
m—2
Total additional storage: Z (bé"'lnm_l_d) floats
d=0

Fic. 6. Algorithm by blocks for computing € := [A; X, ..., X].
is partitioned into blocks of size [m,be] with p = [p/be].

The algorithm assumes that C

6. Exploiting partial symmetry. We have shown how to reduce the complex-
ity of the sttsm operation by O(m!) in terms of storage. In this section, we describe
how to achieve the O((m + 1)!/2™) level of reduction in computation.

6.1. Partial symmetry. Recall that in Figure 6 we utilized a series of tempo-
raries to compute the sttsm operation. To perform the computation, we explicitly
formed the temporaries T®) and did not take advantage of any symmetry in the ob-
jects’ entries. Because of this, we were only able to see an O(m) reduction in storage
and computation.

However, as we now show, there exists partial symmetry within each temporary
that we can exploit to reduce storage and computation as we did for the output
tensor €. Exploiting this partial symmetry allows the proposed algorithm to match
the theoretical reduction in storage and computation.

THEOREM 6.1. Given an order-m tensor A € RIO>>XIm—1 yhat has modes 0
through k symmetric (thus Iy =1y = --- = I, ), then € = A X, X has modes 0 through
k — 1 symmetric.

Proof. We prove this by construction of €.

Since A has modes 0 through & symmetric, we know (from section 2.4) that

aiéi/l"'i;ciwrl“'im—l = aioil...ikik+1...im_1

under the relevant permutations. We wish to show that

Vigineis L dkedme1 — Vioiiik—1Jk o dm—1
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for all indices in €.

n—1
Vit ndmes = D Qi il Gk g1 Xl
£=0
n—1
= Z Qigiy i1 jpg1Jm—1 Xgul = Vioir-ik—_1jkJm—1"

£=0
Since Yigit it jygmo1 = Yioir-ix_1jx-jm—1 10U all indices in €, we can say that €
has modes 0 through k£ — 1 symmetric. d

By applying Theorem 6.1 to the algorithm in Figure 6, we observe that all tempo-

raries of the form T formed have modes 0 through £ —1 symmetric. It is this partial
symmetry we exploit to further reduce storage and computational complexity.?

6.2. Storage. A generalization of the BCSS scheme can be applied to the par-
tially symmetric temporary tensors as well. To do this, we view each temporary ten-
sor as being comprised of a group of symmetric modes and a group of nonsymmetric
modes. There is once again opportunity for storage savings as the symmetric indices
have redundancies. As in the BCSS case for symmetric tensors, unique blocks are
stored and metadata indicating how to transform stored blocks to the corresponding
block are stored for all redundant block entries.

6.3. Computation. Recall that each temporary is computed via gk =
g(k+1) Xk+1 B, where T and TEH) have associated symmetries (fT(m) = A when

computing T(m_l)), and B is some matrix. We can rewrite this operation as
:T(k) = ‘.T(kJrl) Xk+1 B = :T(kJrl) X0 I X1 Xk I Xk+1 B Xk+2 I Xk+3 " Xm—1 I7

where I is the first p rows of the n x n identity matrix. An algorithm akin to that
of Figure 6 can be created (care is taken to only update unique output blocks) to
perform the necessary computation. Of course, computing with the identity matrix is
wasteful and, therefore, we only implicitly compute with the identity matrix to save
on computation.

6.4. Analysis. Utilizing this optimization allows us to arrive at the final cost
functions for storage and computation shown in Table 2.

Taking, for example, the computational cost (assuming n = p and bgq = be), we
have the following expression for the cost of the BCSS algorithm:

m—1 ,_ _ d
. m p+d\[/mn+m—d—2 b_e
2rbebi (d+1)( m—d—1 ) (bA>

d=0
m—1 ,_ _

Com a+d\ /fa+m—(d+1)—1 d

_anAE)(qul)( m— (d+1) )(1)

Cam(2REm =2\ o (2a)™ (2n)"

To achieve this approximation, the Vandermonde identity, which states that
T
m+n m n
(") =200

21t is true that the other modes may have symmetry as well, however, in general this is not the
case, and therefore we do not explore exploiting this symmetry.

was employed.
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TABLE 2
Costs associated with different algorithms for computing € = [A; X, ..., X]|. The BCSS column
takes advantage of partial symmetry within the temporaries. The '™, p™*, and A%t terms corre-
spond to the number of metadata elements associated with our choice of storage scheme. The term
memops refers to memory operations.

BCSS Dense

A m(n+m-—1 —m m
(elements) b m ) o "

cC m p+m— 1 —m m
(elements) be ( m ) tp P

X n n
(elements) P P

. —2 _ d m—2
All temporaries 1 n+m-—d—2 be _de1 1 p\d
beb’) ) — ) +adt pn™ (—)
(elements) A ;J m—d—1 ba ; n
. -1 _ _ d m—1
Computation _ < p+d\/m+m—d—2 be p\d
h 2mbetii 3= (51 ))( ) (i 2™ 3 ()
(flops) SR m—d—1 ba o \n
i b L ptdy atm—d—2y (be\? = pyd
Permutation a4 2le b (p + ) (n +m ) be (1 4 23) nm (2)
(memops) ba d+1 m—d—1 ba n n
d=0 d=0
TABLE 3

Approzimate costs associated with different algorithms for computing € = [A; X, ..., X]. The
BCSS column takes advantage of partial symmetry within the temporaries. In the above costs, it is
assumed that the tensor dimensions and block dimensions of A and € are equal, i.e., n = p and
ba = be. We assume n'™ > n"™.

BCSS Dense
A, @€ pm (ﬁ +m — 1) m
(elements) A "
X 2 2
(elements) " "
All temporaries n™ m
(elements) ‘m! (m = Dn
Computation (2n)m+1 o™+l
(flops) m! ™
Permutation _ (2n)™ m
(memops) (R +2) m! s

Using similar approximations, we arrive at the estimates summarized in Table 3.
Comparing this computational cost to that of the dense algorithm (as given in
Table 3), we see that the BCSS algorithm achieves a reduction of

dense cost  2mn™*t!  (m+1)!
BCSS cost ((271)"’“’1) Toom

in terms of computation.

6.5. Analysis relative to minimum. As we are storing some elements redun-
dantly, it is important to compare how the algorithm performs compared to the case
where we store no extra elements, that is, we only compute the unique entries of €.
Assuming A € RI™7 @ e RI™P] p =1, and by = be = 1, the cost of computing the
sttsm operation is

m—1
—d—2 2 -2 2n)™ o2n)mtl
2n2<n—|—d><n+m d )xzn(n—km )z2n(n) :(n) 7

d=0

d+1 m—d-—1 m m! m!

which is of the same order as our blocked algorithm.



USING SYMMETRY IN TENSORS FOR HIGH PERFORMANCE C469

@ o0 @ 71—~ 10'°
5 10 5 g ol ]
£ 10° = 1l 2 1
T s - £ 102 ]
3 10 2 1 g% 1
o 10 2 107 10%° i
g 10° 5 ] 8 . 1
o 3 o 10 1
2 10° o 1 8 .6 ]
> 9 g 5 10 b
o 10 £ 1 € 10% 1
% 10° o 4 J o] 4
s N w 10 P S o 102 oy
0 100200300400500600 700800 0 100200300400500600 700800 0 100200300400500600 700800
L S S T
10° /«’4"4_’* E +’4_4_ o
%) - 1% > - 4
3 * - - - -% -u a ¥ i
@ o @
- o -
8100 M e o - x— X e x| 3 |
210 hg 2 ]
8 ! g g W -E-E-E--8- -8
00 -0-0-0- -0 -0 -0
0 K= X— =X =% = % = X=X
10 L L L L L L L 0 -0 00 0 -0 -0 102 L L ' ' ' ' '
0 100200300400500600 700800 0 100200300400500600 700800 0 100200300400500600 700800
tensor dimension (n=p) tensor dimension (n=p) tensor dimension (n=p)

Fia. 7. Comparison of dense to BCSS algorithms for fized block size. Solid and dashed lines
correspond to dense and BCSS, respectively. From left to right: storage requirements, cost from
computation (flops), cost from permutations (memops). For these graphs by = be = 8.

— 16
2 1glo o 1 10
5% 18 8 el ]
£ 10° i £ 1 gty 1
3 10° 13 1 g1o2r 1
v 107 E |l E [ i
& 5 € 210 E
T 10 {1 8 1 8 L i
2 10° m=2ll 5 1 g 10°t 1
[ 4 m=3 £ > - j
s 10 m=al] = 1 E 10°t 1
3 10° i m=53  © 1 & I 1
s N . [ L T
0 100200300400500600700800 0 100200300400500600700800 10 0 100200300400500600700800
4.0 T T T T T T T 4.0 T T T T T T T 2.4 T T T T T T T
35 it 4 = 4 = A e = — 4 ] 35 ++—+—4—~+——¢»—+—+- 2.2 1
A 50l | @30 1 729 1
g g5 [ Bag ]
Ez.s--._._._..._._._.- Ezto EE-E- 8- 8 B -B-0 | 51.6-[1-.-1-1-1——}—--
5 2.0 1 &5 5 14T 1
[a} RX X — X — X— —X— =% —% — X O LSPEOE = 5= X X =6 =% = X o 0 1.2F b
1.5F b 1omee-0-o- o -0 -0-0 | 1.0 R m R N A X e =X
1.0@02 " 9" 0" -0 osb— ogLee-0-0-0 0 ;0 -0
0 100200300400500600 700800 "0 100200300400500600 700 800 ""0 100200300400500600 700 800
tensor dimension (n=p) tensor dimension (n=p) tensor dimension (n=p)

Fia. 8. Comparison of dense to BCSS algorithms for fixed number of blocks. Solid and dashed
lines correspond to dense and BCSS, respectively. From left to right: storage requirements, cost
from computation (flops), cost from permutations (memops). Here i = p = 2.

6.6. Summary. Figures 7-8 illustrate the insights discussed in this section. The
(exact) formulas developed for storage, flops, and memops are used to compare and
contrast dense storage with BCSS.

In Figure 7, the top graphs report storage, flops, and memops (due to permuta-
tions) as a function of tensor dimension (n) for different tensor orders (m) for the case
where the storage block size is relatively small (bg = be = 8). The bottom graphs
report the same information, but as a ratio. The graphs illustrate that BCSS dra-
matically reduces the required storage and the proposed algorithms reduce the flops
requirements for the sttsm operation, at the expense of additional memops due to the
encountered permutations.

In Figure 8, a similar analysis is given, but for the case where the block size is
half the tensor dimension (i.e., i = p = 2). It shows that the memops can be greatly
reduced by increasing the storage block dimensions, but this then adversely affects
the storage and computational benefits.
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It would be tempting to discuss how to choose an optimal block dimension. How-
ever, the real issue is that the overhead of permutation should be reduced and/or
eliminated. Once that is achieved, in future research, the question of how to choose
the block size becomes relevant.

7. Experimental results. In this section, we report on the performance at-
tained by an implementation of the discussed approach. It is important to keep in
mind that the current state of the art of tensor computations is first and foremost
concerned with reducing memory requirements so that reasonably large problems can
be executed. This is where taking advantage of symmetry is important. With that
said, another primary concern is ensuring the overall time of computation is reduced.
To achieve this, a reduction in the number of flops as well as an implementation that
computes the necessary operations efficiently are both desired. Second to that is the
desire to reduce the number of flops to the minimum required. The provided analysis
shows that our algorithms perform the minimum number of flops (under approxima-
tion). Although our algorithms do not yet perform these operations efficiently, our
results show that we are still able to reduce the computation time (in some cases
significantly).

7.1. Target architecture. We report on experiments on a single core of a Dell
PowerEdge R900 server consisting of four six-core Intel Xeon 7400 processors and 96
GBytes of memory. Performance experiments were gathered under the GNU/Linux
2.6.18 operating system. Source code was compiled by the GNU C compiler, version
4.1.2. All experiments were performed in double-precision floating-point arithmetic
on randomized real domain matrices and tensors. The implementations were linked to
the OpenBLAS 0.1.1 library [1, 39], a fork of the GotoBLAS2 implementation of the
BLAS [17, 16]. As noted, most of the time is spent in the permutations necessary to
cast computation in terms of the BLAS matrix-matrix multiplication routine dgemm.
Thus, the peak performance of the processor and the details of the performance at-
tained by the BLAS library are mostly irrelevant at this stage. The experiments
merely show that the new approach to storing matrices as well as the algorithm that
takes advantage of symmetry has promise, rather than making a statement about
optimality of the implementation. For instance, as argued previously, we know that
tensor permutations can dominate the time spent computing the sttsm operation.
These experiments make no attempt to reduce the number of tensor permutations
required when computing a single block of the output. Algorithms reducing the effect
of tensor permutations have been specialized for certain tensor operations and have
been shown to greatly increase the performance of routines using them [26, 34]. Much
room for improvement remains.

7.2. Implementation. The implementation was coded in a style inspired by
the libflame library [41, 36] and can be found in the Google Code tlash project
(http://code.google.com/p/tlash). An API similar to the FLASH APT [24] for storing
matrices as matrices of blocks and implementing algorithm by blocks was defined and
implemented. Computations with the (tensor and matrix) blocks were implemented
as the discussed sequence of permutations interleaved with calls to the dgemm BLAS
kernel. No attempt was yet made to optimize these permutations. However, an
apples-to-apples comparison resulted from using the same sequence of permutations
and calls to dgemm for both the experiments that take advantage of symmetry and
those that store and compute with the tensor densely, ignoring symmetry.
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7.3. Results. Figures 9-12 show results from executing our implementation on
the target architecture. The dense algorithm does not take advantage of symmetry nor
blocking of the data objects, whereas the BCSS algorithm takes advantage of both.
All figures show comparisons of the execution time of each algorithm, the associated
speedup of the BCSS algorithm over the dense algorithm, and the estimated storage
savings factor of the BCSS algorithm not including storage required for metadata.

For the experiments reported in Figure 9 we fix the dimensions n and p, and
the block sizes bgq and be, and vary the tensor order m. Based on experiment, the
BCSS algorithm begins to outperform the dense algorithm after the tensor order is
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F1c. 12. Ezperimental results when the order m = 3, n = p = 1000, and the block dimensions
ba = be are varied. The solid black line is used to indicate a unit ratio.

greater than or equal to 4. This effect for small m should be understood in context
of the experiments performed. As n = p = 16, the problem size is quite small (the
problems for m = 2 and m = 3 are equivalent to matrices of size 16 x 16 and 64 x 64,
respectively) reducing the benefit of storage by blocks (as storing the entire matrix
contiguously requires minor space overhead but benefits greatly from more regular
data access). Since such small problems do not provide useful comparisons for the
reader, the results of using the BCSS algorithm with problem parameters m = 3,
n = p = 1000, and varied block dimensions are given in Figure 12. Figure 12 shows
that the BCSS algorithm is able to outperform the dense algorithm given a large
enough problem size and an appropriate block size. Additionally, notice that BCSS
allows larger problems to be solved; the dense algorithm was unable to compute the
result when an order-8 tensor was given as input due to an inability to store the
problem in memory.

Our model predicts that the BCSS algorithm should achieve an O ((m + 1)!/2™)
speedup over the dense algorithm. Although it appears that our experiments are only
achieving a linear speedup over the dense algorithm, this is because the values of m
are so small that the predicted speedup factor is approximately linear with respect
to m. In terms of storage savings, we would expect the BCSS algorithm to have an
O (m!) reduction in space over the dense algorithm. The fact that we are not seeing
this in the experiments is because the block dimensions b4 and be are relatively large
when compared to the tensor dimensions n and p, meaning the BCSS algorithm does
not have as great an opportunity to reduce storage requirements.

In Figure 10 we fix the order m, the block sizes b, and be, and vary the tensor
dimensions n and p. We see that the BCSS algorithm outperforms the dense algorithm
and attains a noticeable speedup. The experiments show a roughly linear speedup
when viewed relative to n with perhaps a slight leveling off effect towards larger
problem dimensions. We would expect the BCSS algorithm to approach a maximum
speedup relative to the dense algorithm. According to Figure 7, we would expect the
speedup of the BCSS algorithm over the dense algorithm to level off completely when
our problem dimensions (n and p) are on the order of 400 to 600. Unfortunately, due
to space limitations we were unable to test beyond the n = p = 64 problem dimension
and therefore were unable to completely observe the leveling off effect in the speedup.

In Figure 11 we fix m, n, and p, and vary the block sizes b4 and be. The rightmost
point on the axis corresponds to the dense case (as bg = n = be = p) and the leftmost
point corresponds to the fully compact case (where only unique entries are stored).
There now is a range of block dimensions for which the BCSS algorithm outperforms
the dense algorithm. Further, the BCSS algorithm performs as well or worse than
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tensor block dimension (bg, be) is varied. The solid line represents the number of flops (due to
computation) required for a given problem (left axis), and the dashed line represents the number of
memops (due to permutation) required for a given problem (right axis).

the dense counterpart at the two endpoints in the graph. This is expected toward the
right of the figure as the BCSS algorithm reduces to the dense algorithm, however,
the left of the figure requires a different explanation.

In Figure 13, we illustrate (with predicted flop and memop counts) that there
exists a point where smaller block dimensions dramatically increases the number of
memops required to compute the operation. Although a smaller block dimension
results in fewer flops required for computing, the number of memops required increases
significantly more. As memops are typically significantly more expensive than flops,
we can expect that picking too small a block dimension can be expected to drastically
degrade overall performance.

8. Conclusion and future work. We present storage by blocks, BCSS, for ten-
sors and show how this can be used to compactly store symmetric tensors. The benefits
are demonstrated with an implementation of a new algorithm for the change-of-basis
(sttsm) operation. Theoretical and practical results show that both the storage and
computational requirements are reduced relative to storing the tensors densely and
computing without taking advantage of symmetry.

This initial study exposes many new research opportunities for extending insights
from the field of high-performance linear algebra to multilinear computation, which
we believe to be the real contribution of this paper. We finish by discussing some of
these opportunities.

Optimizing tensor permutations. In our work, we made absolutely no attempt to
optimize the tensor permutation operation. Without doubt, a careful study of how
to organize these tensor permutations will greatly benefit performance. It is likely
that the current implementation not only causes unnecessary cache misses, but also a
great number of translation lookaside buffer misses [17], which cause the core to stall
for a hundred or more cycles.

Optimized kernels/avoiding tensor permutations. A better way to mitigate the
tensor permutations is to avoid them as much as possible. If n = p, the sttsm operation
performs O(n™"!) operations on O(n™) data. This exposes plenty of opportunity to
optimize this kernel much like dgemm, which performs O(n?) computation on O(n?)
data, is optimized. For other tensor operations, the ratio is even more favorable.
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We are developing a BLAS-like library, BLIS [37], that allows matrix operations
with matrices that have both a row and a column stride, as opposed to the traditional
column-major order supported by the BLAS. This means that computation with a
planar slice in a tensor can be passed into the BLIS matrix-matrix multiplication
routine, avoiding the explicit permutations that must now be performed before calling
dgemm. How to rewrite the computations with blocks in terms of BLIS, and studying
the performance benefits, is a future topic of research.

One can envision creating a BLAS-like library for blocked tensor operations. One
alternative for this is to apply the techniques developed as part of the PHIPAC [9],
TCE, SPIRAL [28], or ATLAS [38] projects to the problem of how to optimize com-
putations with blocks. This should be a simpler problem than optimizing the com-
plete tensor contraction problems that, for example, TCE targets now, since the sizes
of the operands are restricted. The alternative is to create microkernels for tensor
computations, similar to the microkernels that BLIS defines and exploits for matrix
computations, and to use these to build a high-performance tensor library that in
turn can then be used for the computations with tensor blocks.

Algorithmic variants for the sttsm operation. For matrices, there is a second algo-
rithmic variant for computing C := XAX”. Partition A by rows and X by columns:

ag
A = and X:(xo xn,l).
a,
Then
ag
C= XAXT = ( Xo r Xp-—1 ) XT = Xo(agXT)—F' . '+Xn_1(3571XT).
aT71

We suspect that this insight can be extended to the sttsm operation, yielding a new
set of algorithm by blocks that will have different storage and computational charac-
teristics.

Extending the FLAME methodology to multilinear operations. In this paper, we
took an algorithm that was systematically derived with the FLAME methodology for
the matrix case and then extended it to the equivalent tensor computation. Ideally,
we would derive algorithms directly from the specification of the tensor computation,
using a similar methodology. This requires a careful consideration of how to extend
the FLAME notation for expressing matrix algorithms, as well as how to then use
that notation to systematically derive algorithms.

Multithreaded parallel implementation. Multithreaded parallelism can be accom-
plished in a number of ways.

e The code can be linked to a multithreaded implementation of the BLAS, thus
attaining parallelism within the dgemm call. This would require one to hand
parallelize the permutations.

e Parallelism can be achieved by scheduling the operations with blocks to
threads much like the SuperMatrix [29] runtime does for the libflame li-
brary, or PLASMA [2] does for its tiled algorithms.

We did not yet pursue this because at the moment the permutations contribute a
significant overhead to the overall computation which we speculate consumes signifi-
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cant bandwidth. As a result, parallelization does not make sense until the cost of the
permutations is mitigated.

Ezploiting accelerators. In a large number of papers [19, 20, 25, 2], we and others
have shown how the algorithm-by-blocks (tiled algorithm) approach, when combined
with a runtime system, can exploit (multiple) GPUs and other accelerators. These
techniques can be naturally extended to accommodate the algorithm by blocks for
tensor computations.

Distributed parallel implementation. Once we understand how to derive sequential
algorithms, it becomes possible to consider distributed memory parallel implementa-
tion. It may be that our insights can be incorporated into the CTF [33], or that
we build on our own experience with distributed memory libraries for dense matrix
computations, the PLAPACK [35] and Elemental [27] libraries, to develop a new
distributed memory tensor library.

General multilinear library. The ultimate question is, of course, how the insights
in this paper and future ones can be extended to a general, high-performance multi-
linear library, for all platforms.

Appendix A. Casting tensor-matrix multiplication to BLAS. Given
a tensor A € RIOXIm-1 5 mode k, and a matrix B € R7*/_ the result of
multiplying B along the kth mode of A is denoted by € = A X, B, where € €
R0 X Tk—1 X Ix DX Im—1 and each element of € is defined as

Iy,
eiomik—1joik+1'”im71 = § aiomim—lﬁjoik'

i, =0

This operation is typically computed by casting it as a matrix-matrix multiplication
for which high-performance implementations are available as part of the BLAS routine
dgemm.

The problem viewing a higher-order tensor as a matrix is analogous to the problem
of viewing a matrix as a vector. We first describe this simpler problem and show how
it generalizes to objects of higher dimension.

Matrices as vectors (and vice versa). A matrix A € can be viewed as a
vector a € RM | where M = mn by assigning a;,i,m = Ay, (This is analogous
to column-major order assignment of a matrix to memory.) This alternative view
does not change the relative order of the elements in the matrix, since it just logically
views them in a different way. We say that the two dimensions of A are merged or
“grouped” to form the single index of a.

Using the same approach, we can view a as A by assigning the elements of A
according to the mentioned equivalence. In this case, we are in effect viewing the
single index of a as two separate indices. We refer to this effect as a “splitting” of the
index of a.

Tensors as matrices (and vice versa). A straightforward extension of grouping of
indices allows us to view higher-order tensors as matrices and (inversely) matrices as
higher-order tensors. The difference lies with the calculation used to assign elements
of the lower-order/higher-order tensor.

As an example, consider an order-4 tensor € € . We can view € as
a matrix C € RJ"XJl, where Jy = Iy x I; and J; = I3 x I3. Because of this particular
grouping of indices, the elements as laid out in memory need not be rearranged (rela-
tive order of each element remains the same). This follows from the observation that
memory itself is a linear array (vector) and realizing that if C and € are both mapped

Rmxn

RIOXII XIQ ><13
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to a one-dimensional vector using column-major order and its higher-dimensional ex-
tension (which we call dimensional order), both are stored identically.

The need for permutation. If we instead view our example @ € RIox[1x12xIs 54
a matrix C € RJOX‘h, where, for instance, Jyo = I; and J; = Iy x Iy X I3, then a
rearrangement of the data is required. This is because, in general, mapping C and C
to memory using dimensional order will not, in general, produce the same result for
both. This is a consequence of changing the relative order of indices in our mappings.

This rearrangement of data is what is referred to as a permutation of data. By
specifying an input tensor A € R0 *Im=1 and the desired permutation of in-
dices of A, 7, we define the transformation € = permute(/l,w) that yields € €
R w0 *Im XXy so that €, = Ai,...i,,_,, where i’ corresponds to the result of

applying the permutation 7 to 1. The related operation ipermute 1nverts this transfor-
I —1 X~ XI —1

mation when supplied 7 so that € = ipermute(A, 7) yields € € R ot Tm—1
where €;;...x = Aj... where i’ corresponds to the result of applying the per-

mutation 7! to i.

Casting a tensor computation in terms of a matriz-matrix multiplication. We can
now show how the operation € = A x;, B, where A € RIoX>*Im-1 B ¢ R7*k and
@ g RIoX X koy X IxDepa XX Im-1 can he cast as a matrix-matrix multiplication if the
tensors are appropriately permuted. The following describes the algorithm.

1. Permute: P4 < permute(A, {k,0,...,k— 1, k+1,...,m—1}).
2. Permute: Pe < permute(C,{k,0,....k— 1L, k+1,...,m—1}).
3. View tensor P4 as matrix A: A « Py, where A € R'*™@7 and J; =
IARERY Y PUSTEERY PSR
4. View tensor Pe as matrix C: C ¢« Pe, where C € R*/t and J; =
I Ip—1dpy1-- Im—a.
5. Compute matrix-matrix product: C := BA.
6. View matrix C as tensor Pe: Pe < C, where Pe €
7. “Unpermute”: € < ipermute(Pe, {k 0,....k—1,k+1,. —1}).
Step 5 can be implemented by a call to the BLAS routine dgemm Wthh is typically
highly optimized.

Tm—1)

RJXIOX“'XIk—l ><Ik+1><---><lm_1.

Appendix B. Design details. We now give a few details about the particular
implementation of BCSS, and how this impacts storage requirements. Notice that
this is one choice for implementing this storage scheme in practice. One can envision
other options that, at the expense of added complexity in the code, reduce the memory
footprint.

BCSS views tensors hierarchically. At the top level, there is a tensor where each
element of that tensor is itself a tensor (block). Our way of implementing this stores
a description (metadata) for a block in each element of the top-level tensor. These
metadata add to memory requirements. In our current implementation, the top-level
tensor of metadata is itself a dense tensor. The metadata in the upper hypertriangular
tensor describe stored blocks. The metadata in the rest of the top-level tensor ref-
erence the blocks that correspond to those in the upper hypertriangular tensor (thus
requiring an awareness of the permutation needed to take a stored block and trans-
form it). This design choice greatly simplifies our implementation (which we hope
to describe in a future paper). We show that although the metadata can potentially
require considerable space, this can be easily mitigated. We use A as an example.

Given A € RI"™™ stored with BCSS with block dimension ba, we must store
metadata for " blocks, where i = [n/b4|. This means that the total cost of storing
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as block dimension changes.

A with BCSS is
Cstorage (A) = k'ﬁm + b% <n tme 1> ﬂO&tS,
m

k is a constant representing the amount of storage required for the metadata associated
with one block, in floats. Obviously, these metadata are of a different data type, but
floats will be our unit.
There is a trade-off between the cost for storing the metadata and the actual
entries of A, parameterized by the block size bg:
e if bg = n, then we only require a minimal amount of memory for metadata,
k floats, but must store all entries of A since there now is only one block, and
that block uses dense storage. We thus store slightly more than we would if
we stored the tensor without symmetry;
e if by = 1, then 7 = n and we must store metadata for each element, meaning
we store much more data than if we just used a dense storage scheme.
Picking a block dimension somewhere between these two extremes results in a smaller
footprint overall. For example, if we choose a block dimension bgq = v/n, then n = v/n
and the total storage required to store A with BCSS is
n% +m—1
)

> =n? <k+ E) floats,
! m!

which, provided that k < %, is significantly smaller than the storage required for
the dense case (n"*). This discussion suggests that a point exists that requires less
storage than the dense case (showing that BCSS is a feasible solution).

In Figure 14, we illustrate that as long as we pick a block dimension that is
greater than 4, we avoid incurring extra costs due to metadata storage. It should be
noted that changing the dimension of the tensors also has no effect on the minimum;
however, if they are too small, then the dense storage scheme may be the minimal

n - 1 m m
Cstoragc(fl) = kn™ + b% (n + :Z > =knz2 +nz2
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storage scheme. Additionally, adjusting the order of tensors has no real effect on the
block dimension associated with minimal storage. However increasing the amount of
storage allotted for metadata slowly shifts the optimal block dimension choice towards
the dense storage case.
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