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Abstract

In a graph, a community may be loosely defined as a group
of nodes that are more closely connected to one another
than to the rest of the graph. One common theme is many
formalizations is that flows should tend to stay within com-
munities. Hence, we expect short cycles to play an impor-
tant role. For undirected graphs, the importance of trian-
gles – an undirected 3-cycle – has been known for a long
time and can be used to improve community detection. To
identify communities in directed networks, we propose an
undirected edge-weighting scheme based on directed trian-
gles. We also propose a new metric on quality of the com-
munities that is based on the number of 3-cycles that are
split across communities. To demonstrate the impact of our
new weighting, we use the standard METIS graph partition-
ing tool to determine communities and show experimentally
that the resulting communities result in fewer 3-cycles be-
ing cut. The magnitude of the effect varies between a 10%
and 50% reduction. We also find that this weighting scheme
improves a task where plausible ground-truth communities
are known.
keywords: community detection, directed networks, tri-

angles, reciprocity, 3-cycles

1 Introduction

Many different systems can be viewed as complex networks
made up of objects (nodes) and connections between them
(links or edges). Over the past several decades the study
of such networks has become important in many disciplines
[5, 6, 9, 23]. A recurrent research theme is finding the com-
munities or modules within these networks. These commu-
nities reveal important structures hidden within the net-
work data.
Thus far, the majority of work in community detection

has focused on undirected networks (see the survey [10]),
although, recently, more research has focused on directed
networks (see the survey [20]). Often, a community is a
group of nodes that are more closely connected to each
other than to the rest of the network. Community assign-
ment methods use only topological features of the network
unless additional information about the components of the
network is known; thus the connectivity between nodes is
often used alone to define metrics measuring the “quality”
of the assigned groups. Common quality metrics measure

(i) the density of links within a group (modularity) [21], (ii)
the number (or weight) of cut edges relative to the group
size (conductance), (iii) the stationary distribution of a ran-
dom walk within the network (LinkRank) [17], (iv) and the
probability of a (directed) link between two nodes [33].

In our paper, we propose a simple weighting scheme that
converts a directed graph into a weighted undirected graph.
This model enables us to utilize the richness and complex-
ity of existing methods to find communities in undirected
graphs. In particular, various schemes have been developed
to optimize those four types of connectivity metrics, see
[4, 12, 13, 24, 22, 32] among others.

Our specific weighting scheme is based on extending the
idea that, within “good” communities, information can be
shared within a community more easily than between com-
munities. As information can flow along edges, short (di-
rected) paths and (directed) cycles can be seen as impor-
tant in the function of communities within networks. For
instance, a short path between two nodes indicates that in-
formation can travel between them quickly—or can travel
quickly from the source to the destination in the case of a
directed path. A short cycle indicates that information can
travel quickly among a group of nodes and, thus, is even
more important in the indicating a community than a short
path. The simplest cycle is a path that follows an undi-
rected edge and then returns, and the second simplest cycle
is a path that follows a triangle. Consequently, triangles are
the basis of many community structures. They also arise be-
cause of homophily, the fact that friends of friends are likely
to become friends. Directed networks, however, pose a more
complicated problem since there are 7 different types of tri-
angles and their contribution to the community structure
can be interpreted differently. Here, we focus on the im-
portance of reciprocated edges and directed 3-cycles. Our
weighting schemes are designed to increase the weight asso-
ciated with edges involved in both of these scenarios when a
given directed graph is converted to a weighted undirected
graph.

The specific contributions of our paper are:

• We introduce a scheme that uses information about
directed triangles to improve community detection in
directed networks.

• Our scheme involves creating an undirected but
weighted version of the network, which allows us to
utilize the wealth of existing community detection
schemes for undirected networks.
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• We propose a new metric on the quality of directed
communities based on the number of edges contained
in 3-cycles split across communities.

• We show up to a 50% reduction in the number of cy-
cles cut in a partitioning into communities compared
to simply ignoring the direction of each edge without a
meaningful change to existing community metrics.

2 Background and Motivation.

2.1 Directed Triangles

In undirected networks, there is only one type of triangle.
Directed networks have seven triangle types (as observed by,
for instance, [28]). We show the difference between these
seven types in Figure 1. Of these seven triangles, only a
few are relevant for community detection. Recall that the
reason triangles are important in community detection in
undirected networks is that the presence of a triangle in-
dicates a mutually close relationship and ability to share
information between three nodes. This is not the case for
all types of directed triangles. Only triangles containing
a 3-cycle (closed path of length three) enable information
sharing among three nodes. The directed triangles which
contain a 3-cycle are types in the bottom row of the figure.

2.2 Notation

An undirected network G = (V,E) consists of a set of |V | =
n nodes and |E| = m edges consisting of unordered pairs
of nodes. In a directed network, the edges are formed by
ordered pairs of nodes. Let di denote the degree of node
vi in an undirected network. In a directed network, each
node vi has an in-degree, denoted dini , which is the number
of edges that point into node vi, an out-degree, douti , which
is the number of edges pointing out of vi, and a reciprocal
degree, dreci , consisting of the number of reciprocal pairs of
links in which node vi is involved. The reciprocal edges do
not contribute to the in- and out- degrees of node vi. The
adjacency matrix of a network G is given by:

A = (aij); aij =

{

1 if (vi, vj) ∈ E,
0 otherwise.

If G is undirected, A will be symmetric and if G is directed,
A will not be. In the case of a directed network, let As

be the symmetric part of A and Ans be the nonsymmetric
part. Then, the unweighted, undirected representation of
G is given by the matrix Aud = As + Ans + AT

ns. This is
equivalent to simply dropping the direction information on
each edge in G.
A common quality measure for community assignment is

modularity [21, 22]. The modularity of a community assign-
ment on an undirected network is given by

Q =
1

2m

∑

i,j

[

Aij −
didj
2m

]

δ(ci, cj)

where ci is the community membership of node vi and
δ(ci, cj) = 1 if ci = cj and 0 otherwise. Modularity mea-
sures the difference between the observed density of edges

within communities and the expectation in a random net-
work with the same degree distribution. The concept of
modularity can be extended to directed networks through
directed modularity [2]. The directed modularity of a com-
munity assignment is:

Qd =
1

m

∑

i,j

[

Aij −
(douti + dreci )(dinj + drecj )

m

]

δ(ci, cj).

2.3 Related Work.

Triangle structure. The existence of triangles has been
shown to be important in the formation of complex net-
works, especially those with an underlying community
structure [8, 25, 27, 28]. Additionally, triangle structure
has been shown to be important in community detection in
undirected networks [3, 25, 26]. For example in [25], the
authors define a “good” community to be a group of nodes
that is dense in terms of triangles and introduce a commu-
nity quality metric called Weighted Community Clustering
(WCC). They experimentally show that a community with
high WCC will be denser and contain more triangles than
a community with high modularity and low WCC. The use
of 3-node motifs (triangles and wedges) to identify commu-
nities of different types was introduced in [26]. The authors
introduce a generalized version of modularity which takes
these motifs into account and a spectral algorithm for ap-
proximating its maximum.
Weighting. It is well known that most community find-

ing methods are heuristics and suffer from many poten-
tial faults. For instance, communities detected by these
schemes can overlook important network characteristics
[11]. Weighting schemes often enable simple algorithms to
overcome these faults. In undirected networks, weighting
edges based on the number of triangles in which the edge is
involved has improved the quality of communities [3]. Ad-
ditionally, this weighting scheme enables the Clauset, New-
man, and Moore algorithm to discover communities smaller
than the resolution limit of modularity. Other weighting
schemes have also been used successfully [16]. In directed
networks, the number of reciprocal (bidirectional) edges cut
by community assignments has been used as a measure of
the “goodness” of a community [19], and a weighting scheme
based on the stationary distribution of a directed graph was
also shown to generalize the notation of conductance in a
network [7].
Algorithms. The majority of the quality optimization

algorithms for community detection have been developed
for undirected networks, especially those which are efficient
enough to be applied to datasets of large size [4, 13, 24].
However, optimizing a community quality measurement
(e.g. modularity) on the underlying unweighted, undirected
network ignores important information about the direction
of the links as we show via the next example.

3 The cycle cut ratio metric

We now introduce a new metric to measure the quality of a
directed community assignment:
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Undirected Trans. Out recip. In recip.

Cycle 1-Recip. 2-Recip. 3-Recip.

Figure 1: An undirected triangle and the seven types of directed triangles. The four triangles in the bottom row all contain a
directed 3-cycle and form the basis of our weighting scheme to indicate community structure in directed networks; the three
directed triangles in the top row only indicate partial information flow and we do not use them in our weightings.

Definition (k-cycle cut ratio) The k-cycle edges of a graph
are those that are contained within any directed length k-
cycle. Given a partition of the vertices of the network, the
k-cycle cut ratio is the fraction of k-cycle edges cut by the
partition.

The measure generalizes the number of reciprocal edges
cut in a directed network, which is equivalent to the the
2-cycle cut ratio. Due to the importance of triangles in
the formation of network communities, we propose that the
3-cycle cut ratio is an important new metric to evaluate
directed communities.

Let us demonstrate this idea through an example. Con-
sider the network in Figure 2. Nodes 1-5 form a clique as
do nodes 6-10 and 11-13. Node 15 sits between the cliques.
This node can both send and receive information to the first
clique (nodes 1-5), but can only send information to the sec-
ond (nodes 6-10) and can only receive information from the
third (nodes 11-13).

Let community A be the community assignment where
node 15 is grouped with nodes 1-5 and community B be
where node 15 is grouped with nodes 6-10. Intuitively, node
15 should be grouped in a community with nodes 1 through
5 because those are the nodes that node 15 can both send
information to and receive information from.

However, the quality of the community assignment mea-
sured under either undirected or directed modularity is the
same whether node 15 is grouped with nodes 1 to 5 or with
nodes 6 to 10. The values for these measures can be found
in Table 1. This example shows the importance of mea-
suring how many directed 3-cycles are cut in a community
assignment. When only the number of reciprocal edges cut
is considered, the two community assignments are the same.
By minimizing the number of 3-cycles cut, it becomes clear
that node 15 should be grouped with nodes 1-5.

1

2

3 4

5

6

7

8
9

10

11

12
13

14

15

Figure 2: It is not clear whether node 15 should be grouped
in a community with nodes 1-5 or with nodes 6-10.

Q Qd

comm A 0.4703 0.5318
comm B 0.4703 0.5318

Table 1: Comparison community quality metrics for two
community assignments of the nodes in the network in Fig-
ure 2 when edges are unweighted.

4 3-cycle weighting

Now that we have illustrated the importance of 3-cycles in
the communities of a network, we wish to design a weighting
scheme to turn a directed network into a weighted undi-
rected network with large weights on the edges in the 3-
cycles.
To calculate the weights for the 3-cycle weighting, we

need to know the type of 3-cycles in which each edge par-
ticipates. For each edge, we wish to know if it is:
• in a directed 3-cycle?
• in a directed 3-cycle with one reciprocal edge?
• in a directed 3-cycle with two reciprocal edges?
• in a directed 3-cycle with three reciprocal edges?
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Let r0, r1, r2, r3 be indicator vectors over the edges of the
graph denoting whether that edge is involved in any of these
cases. Once we have this information, we compute a weight-
ing vector over the edges:

w = max(4r3, 3r2, 3r1, 2r0, 1).

Once we have this weight for each directed edge, we convert
to an undirected weighted network by taking the maximum
weight of edge (i, j) and (j, i). (Any edge that does not
exist has weight 0.)
A simple strategy to compute these vectors begins by

building a list of all directed cycles in the network. For each
cycle, we then check on the number of reciprocal edges, and
then update indicator vectors r0, r1, r2, r3 for each edge in-
volved in the triangle. Our implementation uses this strat-
egy, however, we walk through the list of directed 3-cycles
algorithmically without writing out an explicit list. This
simplification greatly accelerates the computation as there
are often an incredibly large number of directed cycles, and
building an explicit in-memory list is expensive. The strat-
egy to walk the list implicitly starts with a directed edge
(s, t), indexes the set of out-neighbors of t, and then searches
the set of in-neighbors of s for any common vertex with the
out-neighbors of t. We then check the reciprocal status for
each edge in this cycle and update the appropriate vector.

5 Empirical Evaluation

Our goal is to evaluate if our new 3-cycle based weighting
scheme yields improved communities of directed networks.
Thus, we examined the effects of edge-weighting on the di-
rected modularity, the percentage of reciprocal edges cut,
and the percentage of edges contained in 3-cycles cut during
community partitioning on a number of real world networks.
The weightings we evaluate are:
• unweighted: The undirected, unweighted network is
used:

Aud = As +Ans +AT
ns.

• reciprocal: the underlying network is used, with edges
that were reciprocal in the original network being given
weight 2 and the remaining edges being given weight
1:

Ar = 2As +Ans +AT
ns.

• 3-cycle: the 3-cycle weighting scheme we proposed in
the last section.

We first review the method we use to identify communi-
ties in each network, then review the networks we study, and
finally show the results of our weightings on each network.

5.1 Community detection

For the task of extracting communities from an undirected,
weighted network, we use METIS, a well established and
understood community detection method that is easy to
adapt to edge-weights on a network.
The METIS software is a high-quality implementation

of a multi-level graph partitioning method [15, 1]. It con-
structs a multi-level representation of an input graph by

merging nodes and edges to form coarser representations,
partitions the coarsest graph, and then propagates and re-
fines the partitioning as it un-coarsens. It was originally
designed to yield balanced, minimum edge-cut-style parti-
tions suitable for distributed computing; yet it also produces
useful sets for clustering [14] and community detection. For
community detection, in particular, METIS is often used as
a benchmark or baseline method [31].
Each network was partitioned into 5, 10, 25, 50, and 100

communities using the three weighting schemes.

5.2 Network data

We examined a total of 9 networks from a variety of real-
world sources. Basic information on these networks can be
found in Table 2; more detail is given in the extended ver-
sion [18]. If any network had edge weights, we remove them
before running our methods. All of the networks (other
than the Wikipedia network) can be found in SNAP [29].
The Wikipedia network is made up of the largest strongly

connected component of the Wikipedia article-link graph,
restricted to pages in categories containing at least 100
pages. We used the Wikipedia article dump from 2011-09-
01 [30]. For each page, we also have category annotations
from Wikipedia (these indicate topics within the encyclo-
pedia) that we use as a surrogate for communities. We will
make this data publicly available when this paper is pub-
lished. In total, there are 17,364 categories. The average
category contains 274 pages and the median category con-
tains 149 pages. The largest category has 418k pages and
includes all living people with pages on Wikipedia.

Table 2: Basic network data for the 9 networks that we
use in our empirical evaluation. We report the number of
vertices n, number of directed edges m, the number of re-
ciprocal edges, and the fraction of reciprocal edges. Then
we also list the number of directed 3-cycles with 0, 1, 2, and
3 reciprocal edges.

Network r 3-cycle 1-recip. 2-recip. 3-recip.

amazon0505 0.547 623 67k 809k 837k
Celegans 0.168 72 179 148 16
soc-Epinions1 0.405 7.7k 84k 328k 160k
soc-Slashdot0902 0.854 92 10k 77k 406k
wb-cs-Stanford 0.476 185 470 2197 6898
web-BerkStan 0.250 177 2185 12k 72k
web-NotreDame 0.517 9.5k 41k 107k 6,780k
wiki-Vote 0.057 6.8k 18k 15k 2.1k
Wikipedia 0.215 553k 2,529k 3,929k 1,091k

5.3 Results

The directed modularity, number of reciprocal edges cut,
and number of edges in 3-cycles cut in the networks un-
der examination were calculated with the three weighting
schemes. Detailed results can be found in the extended
version of this paper [18]. Table 3 reports the percentage
decrease in the number of 3-cycles cut under the reciprocal
and 3-cycle based weighting schemes when compared to the
unweighted partition for the number of communities that
had the best overall weighting scheme (as measured by di-
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rected modularity); Figure 3 displays the change in 3-cycle
ratio visually.
The first aspect of our data that we wish to highlight is

that the weight schemes do not appreciably change the di-
rected modularity scores. These indicate that the partitions
we produce through this scheme have not greatly reduced
the quality of the communities by traditional community
detection metrics. The largest drop in directed modular-
ity between the two sets of communities occurs in the soc-
Epinions1 network, where the directed modularity decreases
by 0.0130. This decrease is not especially significant.

Table 3: The percentage decrease in the number of 3-cycles
cut under reciprocal and 3-cycle weighting as compared to
the unweighted case for the community partition with the
highest directed modularity. The results show that our
weighting scheme can be highly effective in networks such
as web-NotreDame.

Network # comm reciprocal
weighting

3-cycle
weighting

1 amazon0505 50 15.28% 32.77%
2 Celegans 5 11.20% 40.00%
3 soc-Epinions1 25 2.78% 14.44%
4 soc-Slashdot0902 25 2.37% 0.64%
5 wb-cs-Stanford 50 5.69% 20.06%
6 web-BerkStan 25 19.55% 41.50%
7 web-NotreDame 100 53.78% 82.91%
8 wiki-Vote 10 -2.25% 9.63%
9 Wikipedia 25 5.24% 12.34%

The second aspect we wish to note is that, for each of
the networks examined, weighting the edges of the network
based on participation in 3-cycles significantly decreases the
3-cycle cut ratio. Table 3 presents the relative effects of the
reciprocal and 3-cycle based weighting schemes on the 3-
cycle cut ratio compared to the unweighted case. For all
the networks considered, with the exception of wiki-Vote
network, reciprocal weighting also increases the 3-cycle cut
ratio, although often not nearly as significantly as 3-cycle
weighting; and, for all of the networks considered, 3-cycle
weighting improves the 3-cycle cut ratio, often by a very sig-
nificant margin. In the web-NotreDame network, the 3-cut
cycle ratio is improved by over 80% compared to the un-
weighted case. The only network where the improvement is
not significant is the web-BerkStan network, which shows
an improvement of only 0.64%. For all the networks ex-
amined (with the exception of the wiki-Vote network), the
reciprocal edge-based weighting scheme also increases the
number of 3-cycle edges which are preserved, although not
as significantly as under the 3-cycle based weighting.
We refine our understanding of this change in Figure 3.

The results presented in Figure 3 demonstrate that weight-
ing edges based on participation in 3-cycles improves the
ratio of 3-cycles cut in almost all partitions. The exceptions
are the wb-cs-Stanford network when 5 and 10 communities
are considered and the web-BerkStan and wiki-Vote net-
works when 100 communities are considered. In all other
cases, weighting edges by participation in 3-cycles reduces
the 3-cycle cut ratio, often very significantly.
The third, and final aspect, we wish to mention that

in the majority of cases (except wb-cs-Stanford), weight-

ing the edges based on participation in 3-cycles also signif-
icantly reduces the number of reciprocal edges cut. For
the Celegans, web-BerkStan, web-NotreDame, and wiki-
Vote networks, the 3-cycle based weighting scheme results
in the greatest number of reciprocal edges being preserved.
For the amazon0505, soc-Epinions1, soc-Slashdot0902, and
Wikipedia networks, the number of reciprocal edges pre-
served increases from the unweighted case but is lower than
under the reciprocal edge-based weighting scheme. The wb-
cs-Stanford network is the only network where the number
of reciprocal edges preserved decreases from the unweighted
case to the case where weights are based on 3-cycles.

5.4 Wikipedia categories

Our final empirical evaluation consists of comparing the
communities that result from our three weighting schemes
to the categories in Wikipedia. We are primarily concerned
with the number of intra-category edges that were cut
by each of the schemes. These are the edges that are
within the ground-truth communities in Wikipedia, but
are separated by our methods. We use the partition of
Wikipedia into 25 communities because that had the
highest directed modularity. The results are shown in the
following table, which lists the number of edges cut by
each of the methods, the number of within-community
edges cut, the fraction of total cut edges that are within a
community, and the improvement in that fraction relative
to the unweighted scheme.

cut edges cuts within ratio

unweighted 10030459 768484 0.0766 0%
reciprocal 9958426 730711 0.0734 4%
3-cycle 10249256 743340 0.0725 5%

Both weighting schemes reduce the number of within-
category edges cut and improve the fraction of within-
community edges cut. Although the 3-cycle scheme actu-
ally cuts more within community edges than the reciprocal
scheme, it also makes many more cuts in general, and thus
its ratio of within community edges cut is lower. We see
these results as evidence that these weighting schemes are
effective at improving detection of real world communities.

6 Conclusions.

We have described a simple weighting scheme to improve
the detection of communities in directed networks. We have
also described a new metric for directed communities, the
3-cycle cut ratio. When we use our weighting scheme to
convert a directed network into a weighted undirected net-
work and apply a standard network partitioning tool, we
find a substantial reduction in the 3-cycle cut ratio, with-
out any appreciable change in the traditional community
detection metrics such as modularity. Due to the simplic-
ity of this approach, and the property that it reduces to
a weighted, undirected network that can be analyzed with
any new method, we are optimistic that this scheme will be
used by others to study directed community detection.
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Figure 3: The 3-cycle cut ratio, relative to the unweighted case, for the nine networks considered (labeled according to their
number in Table 2) for various numbers of communities. For network number 7 (the web-NotreDame network), the reciprocal
weighting doubles 3-cycle cut ratio, which is cut off in the plot. Overall, these results show that we are able to reduce the
3-cycle cut ratio by 10-50%.

There are a few ways to continue investigating this idea.
First, it is known that real world communities often overlap.
Thus, it would likely be fruitful to extend this method to
overlapping community detection. Second, the current set
of weights assigned to each edge was not optimized at all; we
conjecture that it will be possible to further improve upon
our results by optimizing these weights for specific types of
graphs. This step, however, requires care not to overtune
the weights to a particular type of network. Third, it is
possible that using easy-to-compute graph structures such
as biconnected components, k-cores, and other well-studied
features may enable faster community detection in light of
these weights and the directed triangle structure.
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•  The! examina*on! of! addi*onal! weigh*ng! schemes!
and! experimenta*on! to! see! how! this! weigh*ng!
affects!other!community!detec*on!algorithms.!

•  The! extension! of! this! idea! to! overlapping!
communi*es.!
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!In!a!graph,!a!community!may!be!loosely!defined!as!a!group!of!
nodes!that!are!more!closely!connected!to!one!another!than!to!
the!rest!of!the!graph.!While!there!are!a!variety!of!metrics!that!
can!be!used!to!specify!the!quality!of!a!given!community,!one!
common!theme!is!that!flows!tend!to!stay!within!communi*es.!
For!undirected!graphs,!the!importance!of!triangles!>>!an!
undirected!3>cycle!>>!has!been!known!for!a!long!*me!and!can!
be!used!to!improve!community!detec*on.!In!directed!graphs,!
the!situa*on!is!more!nuanced.!The!smallest!cycle!is!simply!
two!nodes!with!a!reciprocal!connec*on.!Using!informa*on!
about!reciproca*on!has!proven!to!improve!community!
detec*on.!Our!new!idea!is!based!on!the!four!types!of!directed!
triangles!that!contain!cycles.!To!iden*fy!communi*es!in!
directed!networks,!then,!we!propose!an!undirected!edge>
weigh*ng!scheme!based!on!the!type!of!the!directed!triangles!
in!which!edges!are!involved.!We!also!propose!a!new!metric!on!
quality!of!the!communi*es!that!is!based!on!the!number!of!3>
cycles!that!are!split!across!communi*es.!

Undirected Trans. Out recip. In recip.

Cycle 1-Recip. 2-Recip. 3-Recip.

1 2 3 4 5 6 7 8 90
0.25
0.5

0.75
1

1.25
1.5

5 communities

1 2 3 4 5 6 7 8 90
0.25
0.5

0.75
1

1.25
1.5

10 communities

1 2 3 4 5 6 7 8 90
0.25
0.5

0.75
1

1.25
1.5

25 communities

1 2 3 4 5 6 7 8 90
0.25
0.5

0.75
1

1.25
1.5

50 communities

1 2 3 4 5 6 7 8 90
0.25
0.5

0.75
1

1.25
1.5

100 communities

 

 

unweighted
reciprocal weighting
3−cycle weighting

In!a!directed!network,!there!are!seven!types!of!directed!
triangles,!4!of!which!contain!3>cycles.!!We!use!a!weigh*ng!
scheme!in!which!edges!which!par*cipate!in!these!3>cycles!are!
given!large!weights.!

For!each!edge,!we!need!the!following!informa*on:!
•  is!it!in!a!directed!3>cycle?!
•  is!it!in!a!1>reciprocal!cycle?!
•  is!it!in!a!2>reciprocal!cycle?!
•  is!it!in!a!3>reciprocal!cycle?!

Let!r0,$r1,!r2,!and!r3!be!indicator!vectors!answering!these!
ques*ons.!!These!are!used!to!compute!a!weigh*ng!vector!on!
the!edges:!!

w = max(4r3, 3r2, 3r1, 2r0, 1)

One!we!have!the!weights!for!each!directed!edge,!the!network!
is!converted!to!an!undirected!network!by!taking!the!maximum!
weight!on!(i,j)!and!(j,i).!

COMMUNITY DETECTION 

We!evaluate!three!types!of!edge!weigh*ng:!
!
•  unweighted:!!
!
•  reciprocal:!!

•  31cycle:!the!3>cycle!weigh*ng!scheme!is!used!
!
To!extract!communi*es,!we!use!the!METIS!sohware1.!Each!
network!was!par**oned!into!5,!10,!25,!50,!and!100!
communi*es.!
!

Aud = As +Ans +AT
ns

Ar = 2As +Ans +AT
ns

CYCLE CUT RATIO METRIC 

Defini5on!(k>cycle!cut!ra*o):!The$k0cycle$edges$of$a$graph$
are$those$that$are$contained$within$any$directed$length$k0
cycle.$Given$a$parAAon$of$the$verAces$of$the$network,$the$k0
cycle$cut$raAon$is$the$fracAon$of$k0cycle$edges$cut$by$the$
parAAon.$
!
This!measure!is!a!generaliza*on!of!the!number!of!
reciprocal!edges!cut!in!a!community!par**on.!
!
The!quality!of!the!found!communi*es!was!measured!using:!
directed!modularity2,!LinkRank3,!and!the!3>cycle!cut!ra*o.!
!

We!used!9!directed!networks!from!
a!variety!of!real>world!sources!in!
our!empirical!evalua*on.!!Basic!
data!on!these!networks!can!be!
found!in!the!table!to!the!leh.!
!
The!different!weigh*ng!schemes!
do!not!appreciably!change!the!
directed!modularity!or!LinkRank!
scores!of!the!output!communi*es.!
!

The!figure!to!the!right!displays!the!3>cut!ra*o,!
rela*ve!to!the!unweighted!case,!for!the!nine!
networks!examined.!
!
Overall,!our!3>cycle!weigh*ng!scheme!results!
in!a!reduc*on!of!the!3>cycle!cut!ra*on!by!
10>50%.!

When!the!weigh*ng!schemes!are!applied!to!the!Wikipedia!
dataset,!we!can!measure!how!many!intra>category!edges!
which!are!cut.!!That!is,!how!many!edges!within!ground>truth!
communi*es!are!cut!by!each!weigh*ng!scheme.!
!
The!3>cycle!weigh*ng!scheme!results!in!the!lowest!ra*o!of!cut!
edges!being!intra>community!edges.!

We!have!introduced!a!scheme!that!uses!informa*on!
about!directed!triangles!to!improve!community!
detec*on!in!directed!network.!!This!method!creates!
an!undirected,!but!weighted,!version!of!the!network!
that!can!be!input!into!already!exis*ng!community!
detec*on!algorithms!for!undirected!networks.!
!
Addi*onally,!we!propose!a!new!metric!for!measuring!
the!quality!of!directed!networks:!the!30cycle$cut$raAo.!
!
Finally,!we!show!up!to!a!50%!reduc*on!on!the!
number!of!3>cycles!cut!in!a!par**oning!into!
communi*es!of!real!networks!with!our!weigh*ng!
scheme!compared!with!simply!ignoring!edge!
direc*onality!without!compromising!other!metrics.!

The!Sandia!Na*onal!Laboratories!work!was!funded!by!the!DARPA!
GRAPHS!program.!Sandia!Na*onal!Laboratories!is!a!mul*>program!
laboratory!managed!and!operated!by!Sandia!Corpora*on,!a!wholly!
owned!subsidiary!of!Lockheed!Mar*n!Corpora*on,!for!the!U.S.!
Department!of!Energy's!Na*onal!Nuclear!Security!Administra*on!under!
contract!DE>AC04>94AL85000.!
!
Gleich’s!work!was!supported!by!NSF!CAREER!award!1149756>CCF.!

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 1


