
A Comparison of Derivative-Free

Optimization Methods for Groundwater

Supply and Hydraulic Capture Community

Problems

K. R. Fowler a,∗ J. P. Reese b C. E. Kees c J. E. Dennis, Jr., d

C. T. Kelley e C. T. Miller f C. Audet g A. J. Booker d

G. Couture g R. W. Darwin e M. W. Farthing c D. E. Finkel i

J. M. Gablonsky d G. Gray h and T. G. Kolda h

aDepartment of Mathematics and Computer Science, Clarkson University

Potsdam, NY 13699-5815, USA

bSchool of Computational Sciences, Dirac Science Library, Florida State

University, Tallahassee, FL 32306-4120 USA

cUS Army Engineer Research and Development Station, ATTN: CEERD-HF-HG,

3909 Halls Ferry Rd., Vicksburg, MS 39180-6133, USA

dThe Boeing Company, PO Box 24346, MS 7L 21, Seattle, WA 98124-0346, USA

eDepartment of Mathematics, North Carolina State University, Raleigh, NC

27695-8205, USA

fDepartment of Environmental Sciences and Engineering, University of North

Carolina, Chapel Hill, NC 27599-7400, USA

gEcole Polytechnique de Montréal - GERAD, C. P. 6079, Succ. Centre-ville,

Montréal, Québec, H3C 3A7, Canada

hSandia National Labs, Livermore, CA 94551-9159, USA

iMIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420-9108 USA

Abstract

Management decisions involving groundwater supply and remediation often rely
on optimization techniques to determine an effective strategy. We introduce several
derivative-free sampling methods for solving constrained optimization problems that
have not yet been considered in this field, and we include a genetic algorithm for
completeness. Two well-documented community problems are used for illustration
purposes: a groundwater supply problem and a hydraulic capture problem. The
community problems were found to be challenging applications due to the objective
functions being nonsmooth, nonlinear, and having many local minima. Because the
results were found to be sensitive to initial conditions for some methods, guidance is

Preprint submitted to Elsevier 3 July 2007

provided in selecting initial conditions for these problems that improve the likelihood
of achieving significant reductions in the objective function to be minimized. In
addition, we suggest some potentially fruitful areas for future research.

∗ Corresponding author
Email addresses: kfowler@clarkson.edu (K. R. Fowler), jreese@scs.fsu.edu

(J. P. Reese), Christopher.E.Kees@erdc.usace.army.mil (C. E. Kees),
dennis@rice.edu (J. E. Dennis, Jr.,), tim kelley@ncsu.edu (C. T. Kelley),
casey miller@unc.edu (C. T. Miller), charlesa@gerad.ca (C. Audet),
andrew.j.booker@boeing.com (A. J. Booker), Gilles.Couture@gerad.ca (G.
Couture), rwdarwin@unity.ncsu.edu (R. W. Darwin),
matthew.w.farthing@erdc.usace.army.mil (M. W. Farthing),
dfinkel@ll.mit.edu (D. E. Finkel), joerg.m.gablonsky@boeing.com (J. M.
Gablonsky), gagray@sandia.gov (G. Gray), tgkolda@sandia.gov (and T. G.
Kolda).

2

1 Introduction

Problems involving the design of groundwater supplies and contaminant con-
tainment and removal from subsurface systems can be difficult to solve in any-
thing approaching an optimal fashion for at least three main reasons. First,
the objective function of interest is often discontinuous, nonlinear, nonconvex,
and replete with local minima. Second, evaluation of the objective function
often requires the solution of an approximate numerical simulation model,
which can be both expensive and subject to under resolution of the physical
phenomena of concern. And third, the natural systems of concern are often
described by models that include parameters that are stochastic in nature.
Thus, the difficulties of achieving an optimal solution for groundwater supply
and contaminant transport problems have their roots in physical aspects of
the problems of concern, which are manifest in terms of a challenging set of
mathematical characteristics.

Two additional impediments to the advancement of optimal design approaches
exist for this class of problems. First, many potential methods exist, but most
work focuses on only a small number of available methods for an idealized
example problem, which may not have the same range of difficulty as the real
class of problems of concern. Second, many optimization methods exist that
have yet to be compared and in some noteworthy cases have yet to even be
considered by the water resources community.

In response to these observations Mayer et al. [54] proposed a set of so-called
“community problems” (CPs), which included a range of supply and remedi-
ation problems. The CPs offer a set of challenging and realistic applications
to support methods comparison and advancement. An additional hope in in-
troducing the CPs was that the existence of these problems would catalyze
the introduction of new methods into the water resource field and perhaps
unite subsets of the optimization community by stimulating the joint solution
of interesting and difficult problems with a range of methods, which in total
would be beyond the reach of any single research group in a reasonable length
of time. Overall, it was hoped that the CP’s would serve to hasten the rate of
maturation of optimization methods for important water resources problems
and improve the community’s ability to arrive at effective designs for realistic
problems.

Indeed, the CPs have received consideration in the literature [28, 29], and
interest in these problems appears to be increasing in scope and frequency
[35, 39, 40, 53]. Two areas in which the CPs have yet to be successful are the
introduction of broad new classes of methods into the water resources field by
experts in mathematical optimization and comparisons of significant sets of
methods for the same problem.

3

Because the CPs are realistic, they possess many of the mathematical diffi-
culties previously alluded to: they have nonsmooth, nonlinear, discontinuous,
nonconvex objective functions that have many local minima. Derivative-based
optimization methods are well known to perform poorly on problems with
these characteristics, which has given rise to an increase in popularity of ge-
netic algorithms (GAs) [34, 41, 42] and simulated annealing methods [47] in
the water resources field [18, 23, 24, 58], which do not require the evaluation
of derivatives of the objective function with respect to decision variables.

Such optimization problems arise in many other areas of science as well [8,
14, 61]. The mathematical optimization community frequently uses a class
of deterministic methods which we refer to here as sampling methods to ap-
proximate the solution of such problems [8, 14, 61]. Sampling methods do not
require derivatives of the objective function and in general rely upon a direct
search of the decision space guided by a pattern or search algorithm. Many
specific approaches exist in this general class resulting in a range of sampling
methods. Deterministic sampling methods are a potentially important class
of optimization methods which have received only limited use in the water re-
sources literature [9, 28, 29, 35, 39, 60], and most such sampling methods have
yet to be considered at all by the water resources community. These methods
are different from commonly used sampling approaches such as GAs in that
there is no randomness in the method, and there are rigorous convergence
results. We include a very robust GA in the results of this work, so that the
deterministic sampling methods can be compared to an approach that is more
commonly used in water resources.

The overall goal of this work is to introduce and evaluate several members
of an important class of optimization method by solving a subset of the CPs.
The specific objectives of this work are: (1) to detail several sampling methods
suitable for solving challenging water resources problems, such as the CPs; (2)
to evaluate the performance of the sampling methods in terms of the solution
achieved and computational effort required for a subset of the CPs as a func-
tion of the problem specification and initial conditions; (3) to provide guidance
for selecting an initial condition for the CPs that improves the performance of
the optimizers; and (4) to use the results of the work to suggest algorithmic
approaches that warrant additional consideration.

4

2 Model Problems

2.1 Overview

The CPs of concern in this work are a subset of a broad class of problems
described by Mayer et al. [54, 55]. The CPs consist of model formulations
and a wide range of physical domains, objective functions, and constraints
for a total of 30 design applications. In the sections that follow, we describe
the model problems of focus in this work and specify the hydrologic setting,
objective function, constraints, simulator, and method details and links.

2.2 Model Problems

We consider two CPs, a water supply problem and a hydraulic capture prob-
lem, which are described in Mayer et al. [54, 55]. The water supply problem is
also described by Fowler et al. [29]. The objective of the water supply problem
is to minimize the cost to supply a specific quantity of water subject to a set
of constraints. The cost involves installation and operation cost for a set of
extraction wells subject to constraints on the net extraction rate, pumping
rates, and hydraulic head. The decision variables are the {(xi, yi)}

n
i=1 loca-

tions and pumping rates {Qi}
n
i=1, of the wells, and the number of wells n. We

also considered a case in which only the locations of a fixed number of wells
pumping at a specified rate were decision variables.

The objective of the hydraulic capture CP is to minimize the cost needed to
prevent an initial contaminant plume from spreading by using wells to control
the direction and extent of advective fluid flow. Several approaches exist to
model the migration of a contaminant plume, including particle-tracking ad-
vective control, flow-based gradient control, and constraining a target concen-
tration contour [2, 4]. The particle-tracking method has been shown to define
a capture zone effectively, yet it is more computationally complex than the
gradient control method. Enforcing constraints on the concentration is expen-
sive because a transient transport simulation must be performed in addition
to the groundwater flow solve. We use a gradient control approach, which only
relies upon information from a flow solve and is common in practice [3]. To
capture the plume with the gradient control method, we impose constraints on
head differences at certain points around the plume. The decision variables for
this problem are the pumping rates {Qi}

n
i=1, the well locations {(xi, yi)}

n
i=1,

and the number of wells n ≤ Nw. Here n is the number of wells in the fi-
nal deign. Since it is not clear how many wells will be needed to contain the
plume, we start with a set of Nw candidate wells and include the number of

5

wells implicitly as a decision variable.

2.3 Hydrological Setting

We consider a physical domain Ω = [0, 1000] × [0, 1000] × [0, 30] m. Flow in
saturated porous media is described by

Ss

∂h

∂t
= ∇ · (K∇h) + S, (1)

where Ss is the specific yield, h is the hydraulic head, and K is the hydraulic
conductivity. We consider homogeneous aquifers with K = 5.01 × 10−5 m/s
Here the source term S represents a well model that satisfies

∫

Ω

S(t)dΩ =
n∑

i=1

Qi. (2)

The source S is where the decision variables enter the state equations. To
describe the unconfined aquifer that applies to both CPs, we use the following
boundary and initial conditions:

∂h

∂x

∣
∣
∣
∣
∣
x=0

=
∂h

∂y

∣
∣
∣
∣
∣
y=0

=
∂h

∂z

∣
∣
∣
∣
∣
z=0

= 0, t > 0 (3)

qz(x, y, z = h, t > 0) = −1.903 × 10−8 m/s, (4)

h(1000, y, z, t > 0) = 20 − 0.001y m, (5)

h(x, 1000, z, t > 0) = 20 − 0.001x m, (6)

S(x, y, z, t = 0) = 0.0 m3/s, (7)

h(x, y, z, 0) = hs. (8)

Here Ss = 2.0×10−1 1/m is the specific yield, qz evaluated at z = h is the Darcy
flux out of the domain (the negative value specified represents recharge into
the aquifer), and hs is the steady state solution to the flow problem without
wells. The ground surface elevation for the unconfined aquifer is zgs = 30 m.

6

2.4 Objective Function

We consider a capital cost f c to install a well and an operational cost f o

to pump a well, and we seek to minimize the total cost f T = f c + f o. A
negative pumping rate means that a well is extracting and a positive pumping
rate means that a well is injecting. Our simulation time is tf = 5 years. The
objective function, as proposed in [54, 55] is given by

fT =
n∑

i=1

c0d
b0
i +

∑

i,Qi<0.0

c1|Q
m
i |

b1(zgs − hmin)b2

︸ ︷︷ ︸

fc

(9)

+

tf∫

0




∑

i,Qi<0.0

c2Qi(hi − zgs) +
∑

i,Qi>0.0

c3Qi



 dt

︸ ︷︷ ︸

fo

,

where cj and bj are cost coefficients and exponents, di = zgs is the depth of
well i, Qm

i is the design pumping rate for which we use Qm
i = 1.5Qi m3/s,

hmin is the minimum allowable head, and hi is the hydraulic head in well i.

Injection wells are assumed to operate under gravity feed conditions. In f c

the first term accounts for drilling and installing all the wells and the second
term is an additional cost for pumps for the extraction wells. In f o, the term
pertaining to the extraction wells includes a lift cost to raise the water to the
surface. The cost data is given in Table 1.

Table 1
Objective function parameters

Parameter Value Units

c0 5.5 × 103 $/mb0

c1 5.75 × 103 $/[(m3/s)b1 · mb2]

c2 2.90 × 10−4 $/m4

c3 1.45 × 10−4 $/m3

b0 0.3 -

b1 0.45 -

b2 0.64 -

zgs 30 m

di zgs m

Qm
i 1.5Qi m3/s

7

2.5 Constraints

We constrain the pumping rates and hydraulic head for the objective function
given in Eq. (9). The constraints are given by

Qemax ≤ Qi ≤ Qimax, i = 1, ..., n, (10)

hmin ≤ hi ≤ hmax, i = 1, ..., n, (11)

where Qemax is the maximum extraction rate, Qimax is the maximum injection
rate, hmax is the maximum allowable head, and hmin is the minimum allowable
head. Constraints (10) and (11) are enforced at each well. Constraint (10)
reflects physical limits on the pumps and well design. Well designs are limited
by the size distribution of the porous medium and the resulting size of the well
screen. The upper bound in constraint (11) keeps the hydraulic head below
the surface elevation, while the lower bound limits the allowable drawdown
in a well. Constraint (11) is a linear function of the pumping rates if an
aquifer is confined under the assumption that well losses are ignored and
a nonlinear function for the unconfined case. Moreover, constraint (11) is a
highly nonlinear function with respect to the locations of the wells.

For the water supply CP, we define the total amount of water to supply as

QT =
n∑

i=1

Qi ≤ Qmin
T , (12)

where Qmin
T is the minimum allowable total extraction rate. We require that

the wells be situated at least 200 m from the Dirichlet boundaries, given by

0 ≤ xi, yi ≤ 800 m. (13)

For the hydraulic capture CP, we constrain the net pumping rate with

QT =
n∑

i=1

Qi ≥ Qmax
T , (14)

where Qmax
T is the maximum allowable total extraction rate.

In Mayer et al. [54] the authors leave it to the reader to choose the concentra-
tion that defines the plume boundary and to choose the constraint to capture
the plume. For this work, we chose the 5× 10−5 kg/m3 concentration contour
line as the boundary of the plume. We used a gradient control approach to
ensure capture. Although a transport simulator was used to create the initial

8

plume and to verify the effectiveness of the optimal point, only a flow simula-
tor was required for the optimization. A gradient constraint was formulated as
a constraint on the difference in hydraulic head values at specified locations,
such that

hk
j − hk

j+1 ≥ d, k = 1 . . .M, (15)

where hj, hj+1 are hydraulic head values at adjacent nodes and d is the bound
on the difference. Here M is the number of gradient constraints imposed
around the boundary. If hj, hj+1 are aligned in the x−directions, dividing
Eq. (15) by ∆x and multiplying by the hydraulic conductivity K yields

K

(

hk
j − hk

j+1

∆x

)

≥ K
d

∆x
, (16)

where the term on the left coincides with the x component of the Darcy
velocity of the fluid. Table 2 shows the constraint data for the two applications.

Table 2
Constraint parameters

Parameter Value Units

Qmin
T −3.2 × 10−2 m3/s

Qmax
T −3.2 × 10−2 m3/s

Qemax −6.4 × 10−3 m3/s

Qimax 6.4 × 10−3 m3/s

hmin 10 m

hmax 30 m

d 10−4 m

The installation cost of an extraction well is roughly $20,000 while the annual
operational cost is approximately $1,000. Having a pumping rate of zero in-
dicates that there is no need to install a well. However, it is unlikely that a
method will choose exactly zero. Instead, we set a threshold on the pumping
rate and we remove a well from the design if the pumping rate falls below the
threshold. The resulting objective function is discontinuous but the ability to
remove a well can greatly reduce the cost of the design.

If in the course of the optimization, a well rate satisfies

|Qi| < 10−6 m3/s, (17)

then it is removed from the design space and not included in the flow simula-
tion or cost calculations. In [39], the authors compare this approach with the
multiplicative penalty coefficient from [59] and a branch-and-bound approach

9

using a surrogate model on the hydraulic capture problem described above
in § 2. The results obtained when using the inactive-well threshold and the
approach from [59] did not differ significantly in terms of the optimal point
found or the computational expense. Note that although the multiplicative
approach leads to a continuous problem, finite-difference derivatives still were
used in [59] due to the black-box formulation of the problem. By black-box
formulation, we mean a decoupling of the numerical method used to approx-
imate the physics of concern from the optimization approach that is used to
approximate the design solution.

2.6 Simulator

Note that to evaluate Eq. (9) the values of the hydraulic head in the wells,
hi, must be computed for a given set of pumping rates {Qi}

n
i=1 at locations

{(xi, yi)}
n
i=1. Obtaining the head values requires a call to a groundwater flow

simulator for a solution to Eq. (1). For this work, we used the U.S. Geolog-
ical Survey code MODFLOW-96 [56, 57]. MODFLOW is a widely used and
well supported block-centered finite difference code that simulates saturated
groundwater flow.

A MODFLOW simulation that involves wells requires a well input data file
containing the grid locations of the wells and the pumping rates. For this work,
the locations and pumping rates are decision variables and hence change as
the optimization progresses. Moreover, the optimization techniques used here
output real-valued well locations, while the version of MODFLOW used ex-
pects node numbered grid locations for sources and sinks. Hence each function
evaluation required rounding the well locations to grid points, which creates a
step function, and writing a new well file containing the current well locations
and pumping rates. Once the well file was created, a call to the MODFLOW
executable simulated the flow system and the values of hi were extracted to
evaluate Eq. (9).

2.7 Method Details and Links

To facilitate the work of others, a web site was created that includes problem
details and links to simulators and optimizers for the two CPs of concern in
this work

http://www4.ncsu.edu/~ctk/community.html

While many other simulation and optimization approaches are possible, the
links provided yield a simple starting point for some of the methods considered

10

in this work.

3 Optimization Methods

All of the optimization methods we consider in this paper use only function
values to guide the minimization of Eq. (9). By this, we mean that the opti-
mization is controlled by evaluating the objective function and constraints at
points in design space, and those evaluations are used to decide what to do
next. All but the GA have an explicit resolution or level, which changes as the
optimization progresses. In most of the methods, this means that the size of
a stencil or pattern upon which the search is based is reduced.

The optimization methods considered in this paper have several common fea-
tures and strategies, which we use as a way to describe the methods. We will
not describe detailed technical features or convergence theory of these method,
but refer the reader to the papers we cite below.

The methods are:

• APPS (Asynchronous Parallel Pattern Search) [43, 48, 49, 50] from Sandia
National Laboratories;

• DE (Boeing Design Explorer) [1, 8, 12, 17] from the Boeing Company;
• DIRECT (DIviding RECTangles) [44] with implementations from North

Carolina State University [25, 30, 31, 32] and others [10];
• IFFCO (Implicit Filtering for Constrained Optimization) [15, 33, 46] from

North Carolina State University;
• NOMAD (Nonlinear Optimization for Mixed vAriables and Derivatives)

[7, 16] from Rice University, the Air Force Institute of Technology, and the
Ecole Polytechnique de Montréal; and

• GA (NSGA-II: Non-dominated Sorting Genetic Algorithm) [21, 63] from
Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology.

Of these, only DE is a commercial product.

The codes we used in this paper are easily available and well-documented. All
of these codes are being updated, and the versions the reader may download
could well be more general, robust, and efficient than the versions we describe
here.

Several of the methods (NOMAD, DE, IFFCO, and APPS), manage their
search with a pattern, grid, or stencil, and a resolution parameter. In § 3.1 we
describe the way this is done via a search-poll paradigm, how the resolution
parameter is used, and then we list the specifics for each approach. DIRECT

11

and the GA use a more unstructured search and no stencil. However, DIRECT
does have a level, which is the volume of the smallest hyper-rectangle at a
given stage of the optimization. We will describe the search methods used by
DIRECT and the GA in § 3.2.

All the methods deal with constraints, and we refer the reader to the literature
on the methods for most of the technical details. In § 3.3 we describe the
classification of constraints which is common to most of the methods, and
discuss the issue of “hidden” or “yes-no” constraints. Two of the methods
use surrogates, i.e. cheap-to-evaluate substitutes for the objective function
and/or constraints to help guide the search. We discuss this, and the merits
of surrogate models in general, in § 3.4.

3.1 Search-Poll Paradigm

We begin the discussion of the optimization methods by first considering the
mesh/stencil based methods: NOMAD, IFFCO, DE, and APPS. These meth-
ods use a conceptual discretization of the space of decision variables into a
stencil or pattern of points. For IFFCO and APPS, the discretization is only
local, i.e. defined only near the current approximation to the solution, but for
NOMAD and DE, it is global, i.e. a grid defined on all of design space. This
distinction can be explained in terms of a search-poll paradigm. The general
idea is that a search step allows a great deal of freedom in seeking a better
point with the understanding that if this fails to produce improvement, then
the algorithm will fall back on a local poll of nearby points before allowing a
smaller step to be tried.

For our purposes, a mesh is an iteration dependent, global discretization of
the decision variable space. The meshes in the structured algorithms must
satisfy certain technical conditions [5, 52] in order for the convergence theory
to hold. The most important of these is that the directions in the stencil be
a positive spanning set: a set of n + 1 or more directions whose nonnegative
linear combinations span the decision space [52]. Results here are given for
versions of NOMAD using n + 1 and 2n such directions. NOMAD, IFFCO,
and APPS sample points in a search phase seeking a better point (i.e., one
with a lower objective function value).

If the search succeeds, the mesh/stencil stay the same size for the next itera-
tion. But, if the search fails to find a better point, then a local stencil/mesh
search is carried out (the poll step) to see if a better point can be found by
steps of the current size in the current positive spanning set of directions. If
so, the current sizing parameter stays the same or is increased for the next
iteration. But otherwise, the sizing parameter is decreased, usually by a factor

12

of two.

The situation is different for IFFCO. IFFCO begins an iteration by evaluating
the function at all the points required for a poll step. This sounds profligate,
but it is not. The idea is that this information provides an estimate of the
gradient of the objective function. The Hessian estimate is provided by a
quasi-Newton update [22, 46]. This provides a quadratic surrogate, or model,
of the objective function which is used in the search step. If the search step
fails, then the complete polling information is already at hand. If a better
point was found in the poll, then it is taken, and otherwise the stencil size is
reduced for the next iteration.

APPS is a parallel generating search set method that, when running in parallel,
reduces the step-size independently along each direction, enabling efficient
utilization of parallel resources.

For bound constrained problems, such as those considered in this paper, APPS
and IFFCO use the coordinate directions to define the search pattern, and this
gave them an advantage in some of the results we report in § 4.

3.2 Unstructured Searches

DIRECT is a deterministic sampling algorithm that was first introduced in
[44], motivated by a modification to Lipschitzian optimization. It was created
in order to solve difficult global optimization problems with bound constraints
and a real-valued objective function. DIRECT systematically searches for the
minimum by dividing the feasible region into hyper-rectangles. The algorithm
continues the search by choosing some of the hyper-rectangles to sub-divide; a
decision that is based on the size of the hyper-rectangle, and the value of the
function at its center. After hyper-rectangles are subdivided, the new centers
are sampled and a new iteration begins. The algorithm terminates when a
given budget of function evaluations has been exhausted. A modified version
of DIRECT, named DIRECT-L [25], is utilized in this study. The DIRECT-l
algorithm biases DIRECT towards local searches (at the expense of the global
search), and can improve convergence rates for some problems. A detailed
description can be found in [25, 31, 44].

A genetic algorithm is a search technique that is inspired by evolutionary
biological processes such as mutation, inheritance, selection, and crossover [34].
In this work, we use the non-dominated sorting genetic algorithm NSGA-II,
which is described in [19, 20, 21, 63].

13

3.3 Constraints

We differentiate between three classes of constraints present in the problems.
There are bound constraints such as the limits on the pumping rates and
locations given by Eq. (10) and (13). IFFCO, DIRECT, and APPS incorporate
bound constraints into definition of the algorithms.

The next class of constraints are simple linear constraints such as the limit
on the net pumping rates given by Eq. (12) or Eq. (14). The versions of the
stencil-based codes (APPS, DE, IFFCO, and NOMAD) used in this paper
handle linear and nonlinear constraints by the simple expedient of rejecting
any infeasible point as a possible next iterate without even evaluating the
objective function. DIRECT also handles linear constraints in this way.

This approach has been rigorously justified for linear constraints in the cases
of NOMAD, DE, DIRECT, and APPS, given certain conditions on the pattern
[13, 25, 26, 38, 51]. This result is almost surely true for IFFCO as well, but to
our knowledge, the analysis has not been done. This guarantee may require
extra function evaluations when the iteration approaches the boundary of the
feasible region.

There are also more complex nonlinear inequality constraints as in Eq. (11). Of
the specific codes tested here, only DIRECT [25, 26], can be shown rigorously
to work for nonlinear constraints by the above simple “barrier” approach of
declaring an infeasible point to be unacceptable as a next iterate. The next
version of NOMAD has this property via algorithms given in [7], but the
present results are not for that version. The results in [25, 26] use the analytical
methods of [7].

Another way some of the methods treat nonlinear constraints is by replacing
the objective function by a penalty function, i.e., by minimizing an uncon-
strained objective consisting of the objective function plus a penalty con-
stant times a measure of the aggregate constraint violation. The choice of
the penalty constant is problematic, especially for the methods here which
do not use any constraint derivative information. Furthermore, this procedure
vaguely requires the penalty function to be “sufficiently large” for the `1 norm
of the constraint violations, and it is required to increase to infinity for the `2

norm aggregate constraint violations. Both the GA and DIRECT can use this
approach to handle constraints, and no real problem was encountered here in
setting the penalty constant for all the runs. The forthcoming NAPPSPACK
(‘N’ for nonlinear constraints) will provide several methods for handling non-
linear constraints.

NOMAD [6] and DE [8] handle nonlinear constraints using a variant of the
filter method from [27]. In the present context, however, the analysis given in

14

[6] is not a guarantee of convergence. The penalty constant is not needed for the
filter approach, a significant advantage. NGSA-II can also handle constraints
without the use of penalty parameters [19, 20].

All of the methods have some way to deal with a point at which the evaluation
of the constraints or objective function fails. These methods are described
in the references for the various algorithms, and are important parts of the
optimization, since these failures are not uncommon. Such a failure could
be caused by a failure to converge for an internal iteration in the simulator,
for example. While we saw no such failures in the computations reported in
this paper, we used this feature in the codes to efficiently handle the linear
constraints on the pumping rates.

3.4 Surrogates

A surrogate is a function that can be used as a stand-in during the search
phase for the expensive objective function and constraints used to define the
optimization problem. The idea is to use a surrogate that is much cheaper
to evaluate that the real objective function. We do not call it an approxima-
tion because this implies some effort to make the surrogate approximate the
function, and yet popular surrogates can not be guaranteed to be close to the
function they replace in the search phases of the optimization. NOMAD can
be used with surrogates, but this was not done for the results in this paper.

DE uses DACE surrogates (Design and Analysis of Computer Experiments)[11,
12]. The DACE surrogates are intended to indicate global trends in the func-
tions they stand in for. However, at an arbitrary point, they may not be close
to the function at all. At the other end of the spectrum are the local Taylor
series based quadratics used by quasi-Newton methods. There, one matches
the true gradient with the surrogate gradient at the current point, and so
the surrogate, which is generally called a local model in this case, resembles
the objective function with increasing accuracy as the distance to the current
point decreases.

Between these two extremes lie the quadratic surrogates used by IFFCO.
IFFCO begins each iteration by evaluating the objective on a stencil defined
by a current stencil size parameter and a positive spanning set of directions.
These values are used to build the gradient of the quadratic surrogate. The
Hessian is updated by either the SR1 or BFGS update [22]. As the iteration
closes in on an optimal solution, the stencil size becomes smaller, and so the
approximation becomes more like the Taylor series local model, when it exists.

15

3.5 Termination

All of the methods will terminate if a budget of function evaluations has
been exhausted. In most instances, the total number of function evaluations
is checked against the budget only after an iteration is complete, so the final
number of function evaluations can be over the budget.

The stencil-based methods (APPS, IFFCO, NOMAD, DE) also terminate
when the stencil reaches a minimum size. The defaults in the codes vary.
However, for this application, the codes were set to terminate when the stencil
size was equivalent to the resolution of the spatial grid in the simulator.

3.6 Scaling

The components of the vector of decision variables u can differ significantly in
magnitude. The five orders of magnitude difference between pumping rates and
physical locations is one example. Such poor scaling can cause the optimization
to stagnate well before finding a good solution. To remedy this, most of the
methods scale u to a reference domain. For example, IFFCO, APPS, and
DIRECT scale u so that all lower bounds are 0 and all upper bounds are
1. There can also be scaling issues with the constraints, but we did not see
problems with constraint scaling in this work. As a general rule, one should
try to scale the constraints so that the constraint violations reflect the relative
amounts of infeasibility one feels are appropriate for the particular initial
iterate.

3.7 Software

Implicit filtering codes are available in both FORTRAN and MATLAB from
http://www4.ncsu.edu/~ctk/iffco.html.

We used the FORTRAN version in this work. The MATLAB code is under
development and when finished will replace the FORTRAN code.

The version of NOMAD used in these tests is C++ optimization software
based on the generalized pattern search (GPS) algorithm. Both C++ and
MATLAB implementations are available from
http://www.gerad.ca/NOMAD/

Design Explorer is a suite of experimental design, modeling and optimization
tools for use with computer simulations. A typical DE modeling session in-

16

volves defining the problem, the design objectives, and identifying the input
and output parameters of the system. Design Explorer is set up to run the
simulation automatically. For information on obtaining Design Explorer con-
tact Howard Lohr at
howard.c.lohr@boeing.com.
The FORTRAN implementation of DIRECT that was used to obtain the re-
sults presented in this paper can be obtained from
http://www4.ncsu.edu/ ctk/iffco.html.

In addition, a MATLAB implementation can be found at
http://www4.ncsu.edu/ ctk/Finkel Direct/

and an alternative MATLAB implementation is part of the TOMLAB package
[10].

NSGA-II is implemented in C and is available for downloading from
http://www.iitk.ac.in/kangal.

The user is required to implement problem-specific routines for evaluating the
objective function and constraints.

APPSPACK is a C++ implementation of APPS that can be used in serial
mode or in parallel with MPI. It can be obtained from
http://software.sandia.gov/appspack.

The target platforms for APPSPACK are the loosely-coupled parallel systems
now widely available. To find a solution to these problems, we used version
4.0 [36].

4 Results

4.1 Overview

A variety of numerical experiments were performed to evaluate the derivative-
free optimization methods of focus in this work. Specifically, we considered the
water supply CP and the hydraulic capture CP. We also considered alternative
approaches to posing the optimization problem by varying the set of design
parameters and the initial iterates. Initial iterates were of interest because of
the complex nature of the feasible solution space and the need of APPS and
IFFCO for a feasible initial iterate, which we do not consider a significant
limitation for most applications of concern here.

When comparing optimization methods, multiple aspects of the solution are
important, which complicates such comparisons. An obvious metric of interest
is the quality of the solution obtained, which in this case is measured by the
value of the cost function that is minimized for each application. Assuming

17

all methods achieve the same minimum cost, the computational effort needed
to achieve the solution, which we measure in terms of function evaluations,
is another metric of primary importance. For difficult problems such as those
considered in this work, it is not expected that all methods will obtain the
identical cost function value, which complicates the comparison of methods.
To aid such comparisons, we present results in terms of the cost profile as a
function of the number of function evaluations. In addition, the initial feasi-
ble iterate, problem formulation, and method specific settings can all affect
the results achieved. We examined the effect of the initial iterate and the
problem formulation, but we avoided detailed tuning of settings in the meth-
ods. Changes in parameter settings for the individual methods or changes in
the algorithms for any of these methods could, of course, change the results.
Indeed, one of the objectives of this work was to catalyze such algorithmic
advancements.

For both problems, we used MODFLOW to simulate the flow field for the
domain described in § 2.3 using an equally spaced 50 × 50 × 10 grid. Wells
were simulated by assigning a stress to a set of grid blocks corresponding to the
rounded location of the wells. The initial conditions for both problems required
a steady state simulation for an unconfined flow problem, which is depicted
in Figure 1. The head field depicted in this figure corresponds to the value
in the fourth layer from the top of the domain, since under these boundary
conditions the top three layers are dry. These dry layers were included in the
model to allow for local increases in head due to injection, which was needed
to resolve the initial conditions for the hydraulic capture CP.

x (meters)

y
 (

m
e

te
rs

)

24

23

22.5

22

21.5

21

20.5

20

19.5

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Fig. 1. Steady state head distribution in meters.

18

4.2 Water Supply Problem

4.2.1 Five-Well Design

It is easy to prove by examination of the objective function and constraints
that a feasible solution to the water supply CP requires a minimum of five
wells, and the number of wells in the optimal solution is the minimum needed
to obtain a feasible solution. For Nw = 5, the extraction rates of all wells
must be {Qi}

5
i=1 = −0.0064 m3/s to satisfy the constraints. Based upon these

observations and the need of APPS and IFFCO for a feasible initial iterate,
we searched a five-well design space using the fixed MODFLOW discretization
summarized above. We found feasible solutions in this space, but the feasi-
ble region was sparse and the landscape complicated. Because the number of
wells and their pumping rates are fixed in this scenario, ten decision variables
remain, which are the optimal locations {(xi, yi)}

5
i=1 of the wells.

Table 3 shows the function value obtained at the initial iterate, the minimum
function value, and the number of function evaluations performed by each
optimizer before the termination criteria were met. Table 4 shows the initial
(x, y) coordinates for the five wells and the optimal locations. Figure 2 shows
the value of the objective function as a function of the number of function
evaluations for each of the methods considered. We used the initial iterate for
APPS and IFFCO, which required such a point. We also used the initial iterate
for the two versions of NOMAD, which was not strictly required. DIRECT-L,
GA, and DE did not rely upon the initial iterate.

Table 3
Optimal solutions for the five-well water supply CP

Method Minimum f Number of Function

Evaluations

Initial Iterate $ 127,421 —

IFFCO $ 125,129 165

DIRECT-L $ 125,085 648

NOMAD(2N) $ 124,386 539

NOMAD(N+1) $ 124,389 346

GA $ 124,386 925

DE $ 125,598 510

APPS $ 124,427 117

All methods obtained a reasonable solution for this particular problem. If
viewed in terms of the total cost, the optimal solutions differed by less than
1%. This is a bit misleading because the fixed cost represented about 80% of
the total cost. The initial iterate was about 10% higher in operational cost than
the best solution found. The magnitude of these numbers would of course be
shifted if the design life was increased or if a different initial iterate was used.

19

Table 4
Optimal well locations for the five-well water supply CP

Initial Iterate IFFCO DIRECT-L NOMAD NOMAD GA DE APPS

(m) (2N) (N+1)

x(1) 350.0 326.1 275.2 160.0 160.0 164.3 778.7 510.0

y(1) 725.0 800.0 381.1 800.0 800.0 792.4 795.4 800.0

x(2) 775.0 800.0 795.3 800.0 800.0 452.3 673.6 800.0

y(2) 775.0 800.0 795.3 800.0 800.0 792.4 193.7 480.0

x(3) 675.0 677.1 795.4 460.0 460.0 799.9 186.1 800.0

y(3) 675.0 664.9 229.0 800.0 800.0 797.7 772.6 800.0

x(4) 200.0 160.0 200.0 800.0 800.0 793.3 784.8 200.0

y(4) 200.0 800.0 795.6 140.0 140.0 130.0 344.5 800.0

x(5) 725.0 753.2 553.7 800.0 800.0 799.7 570.0 800.0

y(5) 350.0 242.1 795.7 460.0 440.0 469.2 742.1 150.0

10
0

10
1

10
2

10
3

1.235

1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

1.28
x 10

5

Number of Function Evaluations

F
u

n
c
ti
o

n
 V

a
lu

e
 (

$
)

IFFCO
Direct−L
Nomad2N
NomadN+1
GA
DE
APPS

Fig. 2. Solution profiles for five-well water supply CP.

Thus care is needed in interpreting these results. Nonetheless, some aspects of
these results warrant note.

First, NOMAD and the GA achieved the lowest cost, followed closely by APPS.
DE returned the highest cost, but still a good design by most reasonable
standards.

Second, the optimal designs returned by NOMAD and the GA are very close.
The APPS design, while nearly as good as the best solution found, differed
in the location of some of the wells compared to NOMAD. This is consistent

20

with our observation that within the feasible region, the objective function
was not highly sensitive to the location of the wells, meaning relatively flat
regions exist in the feasible region landscape. Designs returned by the other
methods varied as well.

Third, the solution profiles shown in Figure 2 show that up to the termination
point of APPS the lowest cost design for a given number of function evaluations
was achieved by this method. NOMAD and the GA achieved slightly lower
objective function values but required significantly more function evaluations
to do so. It can also be observed from this figure that in general the solution
profiles for the methods that were seeded with an initial iterate showed a
more efficient solution than the methods that were not seeded with the initial
iterate. By efficiency we mean the objective function value achieved for a
specified number of function evaluations. This comparison does not count the
function evaluations needed to determine the initial iterate or the manual
effort required to do so.

4.2.2 Six-Well Design

We also considered the case in which the above noted proof of the optimal
condition was not relied upon. Specifically, we considered the case in which
the initial design consisted of six wells. A much richer feasible region exists
for this case, which also includes the optimal five well solution as a subset.
In order to find a solution that was competitive with the five-well design, it
would be necessary to focus in on this part of the feasible region and eliminate
one of the wells from the design, thus recovering the discrete capital cost. This
proved to be an extremely difficult problem. Rather than reporting the results
in detail for this work, we note some general findings.

The six-well formulation is particulary sensitive to the well locations in terms
of violating the drawdown constraint given by Eq. (11). To understand the
properties of a good initial iterate, we first considered the water supply CP
with the confined aquifer as described in [54]. In contrast, this hydrological
setting results in fewer constraint violations but maintains the challenge of
identifying the five-well solution in the course of the optimization [29]. We
generated a suite of other initial iterates using the DIRECT algorithm and
a cluster analysis. To generate that set of starting points, the problems were
reformulated so the objective was feasibility. Given a function evaluation bud-
get of 50,000, DIRECT found approximately 5,000 feasible points. This set of
data was then analyzed with the Agglomerative Nesting (AGNES) clustering
algorithm to determine a smaller set of representative feasible points [45]. All
methods that did not rely upon or were not supplied with an initial iterate
failed to find a five-well solution. For the methods that were provided with an
initial iterate, (APPS, IFFCO, and NOMAD) no method succeeded in find-

21

ing a five-well solution for most of the more than 100 initial iterates that we
investigated.

It was straightforward to include an integer variable in the GA formulation,
the value of which determined if five or six wells were active and which well
was excluded in the five well case. With this simple change, the GA was able
to obtain a good five-well solution when seeded with a good initial iterate.

The notion of a good initial iterate requires some discussion. Because of the
complexity of the landscape and the need to eliminate one well from the six-
well initial condition, naive attempts at initial iterates will fail in most cases;
we tried more than 100 such cases that failed in this work. If one considers the
nature of the landscape the failures are reasonable. If one starts with pumping
rates that meet the minimum quantity constraint, which seems sensible, then
in order to eliminate a well five of the rates must increase and the remaining
rate must approach zero. This will cause an increase in the objective function
that cannot be characterized as high frequency, low amplitude noise. Thus
sampling methods are not likely to find the solution region. Similarly the
fraction of the design space sought is such a small fraction of the total domain
that the chances of any sampling method approaching the optimal design by
chance is small.

Based on these observations, our approach to providing a good initial iterate
is to specify at least five of the wells with the maximum possible rate. Thus
to eliminate a well from the design only one of the wells needs to be reduced
in the rate of pumping. Put another way, such an iterate positions one on a
continuous portion of the feasible region with a downward path toward the
optimal region. We tried a small set of initial iterates that met this criterion
for the unconfined six-well formulation and in each case APPS and IFFCO
returned a good design while NOMAD succeeded in some of the cases. These
solutions were obtained typically within 200 function calls for APPS, IFFCO,
and NOMAD while the GA was usually higher.

4.3 Hydraulic Capture Problem

4.3.1 Baseline Iterate

For the hydraulic capture problem, we sought to minimize Eq. (9) over all the
possible decision variables, n, {Qi}

n
i=1, and {(xi, yi)}

n
i=1. We imposed M = 5

head difference constraints in Eq. (15) around the perimeter of the plume in
the fourth layer from the top of the domain and used a value of d = 10−4

m/s. The relative (x, y) locations of the constraints are found in Table 5 and
are shown in Figure 3. Previous work has also used a similar gradient-based
constraint approach [28, 35, 39, 53].

22

Table 5
Gradient constraint locations

x (m) y (m)

180 730

240 770

330 740

390 650

380 540

To generate the initial plume, as described in [55], we simulated plume de-
velopment from a finite source for t ∈ [−ts, 0], ts = 1.58 × 108 s, with a
source concentration of 1 kg/m3 located physically in the region bounded by
[(200, 225); (475, 525); (h, h−2)] m. To simulate contaminant transport we used
MT3DMS [62], a widely used contaminant transport package that is designed
to interface with MODFLOW flow.

The initial iterate for the hydraulic capture CP is shown along with the initial
plume location from the MT3D simulation in Figure 3. This iterate included
two injection and two extraction wells for Nw = 4 candidate wells. The in-
jection wells were initialized at Qimax = 0.0064 m3/s and the extraction wells
were initialized at Qemax = −0.0064 m3/s. We located the extraction wells
within the interior of the plume and the injection wells down gradient of the
plume as noted in the figure and listed in the first column of Table 6. The
initial iterate was verified to meet the constraints and the objective function
of the design was evaluated. The (x, y) coordinates of the initial well design
are found in Table 7.

Table 6 shows the function value obtained at the baseline iterate, the min-
imum function value and the number of function evaluations performed by
each optimizer before the termination criteria were met. Table 7 shows the
initial (x, y) coordinates and pumping rates for each well and the resultant
design returned by each method. Figure 4 shows the value of the objective
function as a function of the number of function evaluations for each of the
methods considered. We used the initial iterate for APPS and IFFCO, which
required such a point. We also used the initial iterate for the two versions of
NOMAD and the two versions of the GA, which was not strictly required. The
two versions of the GA correspond to formulations with and without integer
variables for disabling wells. The mixed-integer formulation was implemented
as described for the water supply CP. DIRECT-L and DE did not rely upon
the initial iterate.

Results summarized in Table 6 show that the lowest cost designs were found by
IFFCO, the mixed-integer GA, and APPS, respectively with all three designs
significantly better than the baseline initial iterate because they were able
to reduce the design to a single pumping well. The IFFCO design was the
lowest cost because it reduced the pumping rate significantly below the value

23

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

x (meters)

y
 (

m
e

te
rs

)

5
e
−
0
0
5

0.5

Gradient constraints
Injection wells
Extraction wells

Fig. 3. Initial plume, constraint locations, and iterate.

Table 6
Baseline solutions for the hydraulic capture CP

Method Minimum f Number of Function

Evaluations

Initial Condition $ 80,211 —

IFFCO $ 23,421 385

DIRECT-L $ 49,549 592

NOMAD(2N) $ 50,797 168

NOMAD(N+1) $ 50,574 94

GA (real) $ 54,973 930

GA (mixed-int) $ 24,870 930

DE $ 68,238 665

APPS $ 25,018 111

originally specified, where the GA and APPS did not accomplish this design
aspect. The location of the single well was, however, similar for all three of
these methods. The solutions with one extraction well are comparable to those
found in the literature for this problem [28, 35, 39, 53]. DIRECT-L, NOMAD,
the real GA, and DE all had solutions with much larger objective function
costs due to the inclusion of at least two wells in the final design. Figure 4
shows that IFFCO was the most efficient solution method followed by APPS
and the GA. All solution profiles show the discrete nature associated with the
reduction in capital cost associated with eliminating a well from the design.

24

Table 7
Baseline solution details for hydraulic capture CP

Method x (m) y (m) Q (m3/s)

Initial Iterate 150.0 750.0 0.0064

400.0 750.0 0.0064

250.0 650.0 -0.0064

250.0 450.0 -0.0064

IFFCO — — 0.0

— — 0.0

257.7 642.3 -0.0053

— — 0.0

DIRECT-L 173.3 173.3 -0.0043

— — 0.0

173.3 500.0 -0.0043

— — 0.0

NOMAD (2N) — — 0.0

— — 0.0

380.0 730.0 -0.0064

290.0 310.0 -0.0064

NOMAD (N+1) — — 0.0

— — 0.0

330.0 650.0 -0.0064

650.0 270.0 -0.0064

GA (real) — — 0.0

352.5 910.3 0.0057

975.1 738.8 0.0020

250.4 608.8 -0.0060

GA (mixed-int) — — 0.0

— — 0.0

— — 0.0

238.0 622.9 -0.0063

DE 226.3 668.4 -0.0048

302.9 768.0 0.0024

569.0 454.1 0.0020

655.1 368.0 0.0048

APPS — — 0.0

— — 0.0

250.0 650.0 -0.0064

— — 0.0

4.3.2 Robustness of Design

To evaluate the robustness of the design for the hydraulic capture CP, we
evaluated the sensitivity of the results to the initial iterate and other factors.

25

Fig. 4. Solution profiles for hydraulic capture CP.

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

x 10
4

Number of Function Evaluations

F
u

n
c
ti
o

n
 V

a
lu

e
 (

$
)

IFFCO
DIRECT−L
Nomad2N
NomadN+1
GA (real)
GA (mixed−int)
DE
APPS

We evaluated the sensitivity of the solution achieved by APPS and IFFCO
to the initial iterate. We excluded the GA from this analysis because the
mixed-integer formulation achieved an optimal design with or without an ini-
tial iterate for this case. Similarly as described in § 4.2.2 we generated a set of
65 initial iterates using the DIRECT algorithm and a cluster analysis. Neither
of these methods were able to make significant improvement on this set of
starting points for the hydraulic capture application and converged to local
minima with all four wells operating at relatively low pumping rates.

Following reasoning similar to that used for the six-well water supply CP
design, we generated two additional initial iterates. Table 8 gives the initial
locations and well rates. Initial Iterate A had one injection well outside the
plume, operating at Q = 0.0064 m/s3, two extraction wells in the interior of
the plume operating at Q = −0.0064 m/s3, and one extraction well behind the
plume where the head values are higher operating at Q = −0.0032 m/s3. Initial
Iterate B has a similar configuration as the one in Figure 3 (same pumping
rates) but the wells are spaced further apart. APPS was able to generate a
near-optimal one-well design for both of these cases, as was IFFCO with the
caveat that the IFFCO result required two restarts of the algorithm for initial
iterate A and a single restart of the algorithm for the initial iterate B. The
IFFCO restarts led to the lowest cost designs but required many more function
evaluations than APPS. For both APPS and IFFCO, the number of function
evaluations was still roughly half the number needed by the mixed-integer GA
for the baseline case.

To investigate the behavior of the GA in more detail, we examined the sensi-
tivity of the solution to a random seed and found that the results were sensitive
to this value. The GA failed to return the optimal design for nine out of 10

26

Table 8
Additional initial iterates for hydraulic capture CP

Parameter Iterate A Iterate B

x(1) (m) 250 400

y(1) (m) 800 750

Q(1) (m3/s) 0.0064 0.0064

x(2) (m) 250 650

y(2) (m) 300 650

Q(2) (m3/s) -0.0064 0.0064

x(3) (m) 250 650

y(3) (m) 650 250

Q(3) (m3/s) -0.0064 -0.0064

x(4) (m) 250 250

y(4) (m) 450 200

Q(4) (m3/s) -0.0064 -0.0064

different random variables chosen. This sensitivity was not necessarily surpris-
ing given that the population size and number of generations (both 30) were
at the low end of the range typically suggested for GA’s. Increasing both the
population size and the number of generations yielded near optimal designs
for 10 different random seeds with no initial iterate. Of course, running the full
number of generations with this population size required 104 function evalua-
tions, even though one-well designs were obtained after 30 generations (3000
function evaluations) for each seed.

5 Discussion

For the five well water supply problem, all the algorithms were able to find
solutions although APPS clearly does better than the rest, with the two ver-
sions of NOMAD close behind. IFFCO stagnated prematurely, exhausting its
set of stencil sizes. Further numerical experiments showed that a single restart
would remedy that stagnation. DIRECT and Design Explorer also terminate
prematurely but did result in solutions with the wells moved to the prescribed
head boundary conditions.

The six well water supply formulation is more challenging since minimization
relies on satisfying the inactive-well threshold and thereby removing a well
from the design space. This challenge is also addressed in [29] in which ini-
tial designs containing up to 16 candidate wells were considered for the water
supply CP. The GA is the only optimizer used in this study that has a direct
method for handling the integer variable in determining the appropriate num-
ber of wells. However, given an appropriate initial iterate as described above,
APPS and IFFCO are competitive.

27

The hydraulic capture problem has the additional difficulty of enforcing the
head gradient constraint to contain the plume while simultaneously removing
wells to decrease the installation cost. Only IFFCO, APPS, and the mixed-
integer GA were able to find the optimal design. For the GA, the budgetof 930
function calls was carried out although the optimal point was actually found
after 660 function calls. The sensitivity of the GA to the random seed is also
a problem. The GA using a strictly real-variable formulation was unable to
find the optimal design for the hydraulic capture problem even with a seeded
initial iterate.

Given the same initial iterate, APPS and IFFCO were able to choose the
appropriate number of wells and terminated based on a scaling budget, using
fewer function calls than the GA. NOMAD, however, turned off two wells,
and did not turn off the third well. The reason for this is that NOMAD
terminated prematurely based on a small stencil size. A larger initial stencil
or one centered at a point where all wells are pumping at their maximum rates
might correct this problem.

For the six well water supply CP and the hydraulic capture problem, Design
Explorer was unable to build a surrogate model within the given function
evaluation budget that captured the features of the objective function. This
particular difficulty was due to the narrow region of decrease defined by the
inactive-well threshold. However, surrogate model approaches are gaining pop-
ularity in this field, and should not be discarded as possibilities. See [39, 60]
for example.

DIRECT terminated with a suboptimal solution when its budget of function
evaluations had been exhausted. Since DIRECT will sample densely in de-
sign space if given an infinite budget, DIRECT would have found a one-well
solution if given a sufficient budget. The GA would likely have done so as well.

DIRECT and DE do not permit seeding the optimization with good points,
which put them at a disadvantage. DE could be modified to do so, however.

There are opportunities to adapt these methods to problems like the CPs,
and this work has motivated some efforts in that direction. The ability of a
search method to use the coordinate directions was an advantage, and could
be incorporated into NOMAD and DE, for example. The determination of
the optimal number of wells is an integer programming problem, and only
the GA was designed to handle integer variables. NOMAD accepts categorical
variables, but that feature was not used in this work. Extending these methods
to handle small numbers of integer variables would be a valuable contribution.

The next version of IFFCO will be in matlab. While the FORTRAN version
used in this paper will no longer be updated, it will still be available from
the author’s web page. The next release will have new ways to terminate the

28

iteration, exploit parallelism, allow for more complex surrogate models and
richer sets of directions, and deal with nonlinear least squares problems. Both
the new termination strategy and the enriched direction set could well have
improved the method’s performance in the computations we report in this
paper, and these improvements were partially motivated by the results in this
work. The new features for parallelism and more general surrogates were also
motivated by this work and inspired by features in APPS and NOMAD.

The developments planned for the next NOMAD version, which is about to
be released, would not have affected the results here because these problems
are so closely tied to the standard coordinate directions, and because feasible
starting points were used. The new NOMAD will have a new approach to
infeasible starting points, and it will be based on the MADS stencil method.
It will be supported by a more general convergence theory.

APPS has recently been extended to handle linear constraints by an appro-
priate choice of search directions [36] and nonlinear constraints using penalty
functions [37]. Future work will be on making APPS a global method through
the use of global search strategies, including global surrogates.

DIRECT’s performance on this test set highlighted several shortcomings of the
algorithm. DIRECT does not utilize a priori information about the problem
(e.g. good initial iterates). As a result, DIRECT performs poorly compared to
sampling algorithms that exploit a priori information. In addition, DIRECT
expends a lot of function evaluations to sample near boundary constraints, a
region where many optimal solutions exist. Also, DIRECT may benefit from
an asynchronous architecture similar to APPS. Although, there is no known
active research into these areas, algorithmic improvements to DIRECT in these
areas should lead to improved performance on this problem test suite.

In addition, with the exception of APPS, we have not considered parallelism
in this work. IFFCO, DIRECT, and DE are parallel codes, and the use of par-
allelism would affect performance, but not robustness. NOMAD and GA could
be parallelized, but the codes we used were not parallel codes. In these prob-
lems the coordinate directions had meaning, and using them enabled APPS
and IFFCO to solve the capture problem efficiently.

6 Conclusions

Deterministic sampling methods have not been widely used in the water re-
sources community to compute optimal solutions. Several methods from this
class were introduced and compared.

29

APPS, NOMAD, and IFFCO were found to provide good designs and efficient
solutions when supplied with an appropriate initial iterate. The mixed-integer
GA method was shown to be robust, but generally less computationally effi-
cient than the best sampling methods.

An appropriate initial iterate was found to be an important part of the problem
specification for certain methods. Guidance is provided to generate iterates
that performed well for the experiments that were performed in this study.

Algorithm maturation is expected for all methods and is already underway for
some of the methods. These algorithmic changes can reasonably be expected
to improve performance on this challenging set of test problems.

The work presented herein provides a baseline for the efforts of others to
develop and refine optimal design tools for the community problems and other
water resources problems.

Acknowledgements

The work at NCSU was partially supported by National Science Foundation
grants DMS-0404537, DMS-0070641, DMS-0209695, DMS-0112542, Army Re-
search Office grants DAAD19-02-1-0391, DAAD19-02-1-0111, and W911NF-
06-1-0412 and a US Department of Education GAANN fellowship. The work
at Clarkson University was partial supported by the NSF-AWM Mentor Travel
Grant. The UNC efforts were funded by grant P2 ES05948 from the National
Institute of Environmental Health Sciences. Sandia National Lab is a mul-
tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear
Security Administration under Contract DE-AC04-94AL85000.

References

[1] A. J. Booker. Well–conditioned kriging models for optimization of com-
puter models. Technical Report M&CT-TECH-002, Boeing Phantom
Works, Mathematics and Computing Technology, 2000.

[2] D. P. Ahfeld and A. E. Mulligan. Advective control of groundwater con-
taminant plumes: Model development and comparison to hydraulic con-
trol. Water Resources Research, 35:2285–2294, 1999.

[3] D. P. Ahfeld and A. E. Mulligan. Optimal Design of Flow in Groundwater
Systems. Academic Press, San Diego, 2000.

[4] D. P. Ahfeld, A. Zafirakou, and R. G. Riefler. Solution of the groundwater

30

transport management problem with sequential relaxation. Advances in
Water Resources, 21:591–604, 1998.

[5] C. Audet and J. E. Dennis, Jr. Analysis of generalized pattern searches.
SIAM Journal on Optimization, 13(3):889–903, 2003.

[6] C. Audet and J. E. Dennis, Jr. A pattern search filter method for non-
linear programming without derivatives. SIAM Journal on Optimization,
14(4):980–1010, 2004.

[7] C. Audet and J. E. Dennis, Jr. Mesh adaptive direct search algorithms for
constrained optimization. SIAM Journal on optimization, 17(1):188–217,
2006.

[8] C. Audet, A. J. Booker, Jr. J. E. Dennis, P. D. Frank, and D. Moore. A
surrogate-model-based method for constrained optimization, aiaa-2000-
4891. In Proceedings of the Symposium on Multidisciplinary Analysis and
Optimization, 2000.

[9] A. Battermann, J. M. Gablonsky, A. Patrick, C. T. Kelley, K. R. Ka-
vanagh, T. Coffey, and C. T. Miller. Solution of a groundwater flow
problem with implicit filtering. Optimization and Engineering, 3:189–
199, 2002.

[10] M. Björkman and K. H.öm. Global optimization with the DIRECT al-
gorithm in MATLAB. Advanced Modeling and Optimization, 2:17–37,
1999.

[11] A. J. Booker. DOE for computer output. Technical Report BCSTECH-
94-052, Boeing Computer Services, Seattle, WA, 1994.

[12] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon,
and M. W. Trosset. A rigorous framework for optimization of expensive
function by surrogates. Structural Optimization, 17:1–13, 1999.

[13] C. Audet, A. J. Booker, J.E. Dennis, P. D. Frank, and D. W. Moore. A
surrogate-model-based method for constrained optimization, aiaa-2000-
4891. In Eighth AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, 2000.

[14] R. Carter, J. M. Gablonsky, A. Patrick, C. T. Kelley, and O. J. Eslinger.
Algorithms for noisy problems in gas transmission pipeline optimization.
Optimization and Engineering, 2:139–157, 2001.

[15] T. D. Choi, O. J. Eslinger, P. Gilmore, A. Patrick, C. T. Kelley, and
J. M. Gablonsky. IFFCO: Implicit Filtering for Constrained Optimiza-
tion, Version 2. Technical Report CRSC-TR99-23, North Carolina State
University, Center for Research in Scientific Computation, July 1999.

[16] G. Couture, C. Audet, J. E. Dennis, Jr., and M. A. Abramson. The
NOMAD project. http://www.gerad.ca/NOMAD/, 2002.

[17] E.J. Cramer and J.M. Gablonsky. Effective parallel optimization of com-
plex computer simulations. In Proceedings of the 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, August, 2004.

[18] M. da Conceicao Cuncha. On solving aquifer management problems with
simulated annealing. Water Resources Management, 13:153–170, 1999.

[19] K. Deb. An efficient constraint handling method for genetic algorithms.

31

Computer Methods in Applied Mechanics and Engineering, 186(2–4):311–
338, 2000.

[20] K. Deb and T. Goel. Controlled elitist non-dominated sorting genetic
algorithms for better convergence. In E. Zitler, K. Deb, L. Thiele, C.A.
Coello-Coello, and D. Corne, editors, Proceedings of the First Interna-
tional Conference on Evolutionary Multi-Criterion Optimization EMO
2001, Lecture Notes on Computer Science, pages 67–81. , 2001.

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197, 2002.

[22] J. E. Dennis Jr. and R. B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Prentice–Hall, Inc., En-
glewood Cliffs, New Jersey, 1983.

[23] D. E. Dougherty and R. A. Marryott. Optimal groundwater management:
1. Simulated annealing. Water Resources Research, 27:2493–2508, 1991.

[24] M. Erickson, A. Mayer, and J. Horn. Multi-objective optimal design
of groundwater remediation systems: Application of the niched pareto
genetic algorithm. Advances in Water Resources, 25:51–65, 2002.

[25] D. E. Finkel. Global Optimization with the DIRECT Algorithm. PhD
thesis, North Carolina State University, Raleigh, North Carolina, 2005.

[26] D. E. Finkel and C. T. Kelley. Convergence analysis of the DIRECT
algorithm. Technical Report CRSC-TR04-28, North Carolina State Uni-
versity, Center for Research in Scientific Computation, July 2004.

[27] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty
function. Mathematical Programming, 91:239–269, 2002.

[28] K. R. Fowler, C. T. Kelley, C. E. Kees, and C. T. Miller. A hydraulic
capture application for optimal remediation design. In C. T. Miller, M. W.
Farthing, W. G. Gray, and G. F. Pinder, editors, Proceedings of the XV
International Conference on Computational Methods in Water Resources,
pages 1149–1156. , 2004. June 2004, Chapel Hill, NC.

[29] K. R. Fowler, C. T. Kelley, C. T. Miller, C. E. Kees, Robert W. Darwin,
J. P. Reese, M. W. Farthing, and Mark S. C. Reed. Solution of a well-field
design problem with implicit filtering. Optimization and Engineering, 5:
207–234, 2004.

[30] J. M. Gablonsky. DIRECT Version 2.0 User Guide. Technical Report
CRSC-TR01-08, Center for Research in Scientific Computation, North
Carolina State University, April 2001.

[31] J. M. Gablonsky. Modifications of the DIRECT Algorithm. PhD thesis,
North Carolina State University, Raleigh, North Carolina, 2001.

[32] J. M. Gablonsky and C. T. Kelley. A locally-biased form of the DIRECT
algorithm. Journal of Global Optimization, 21:27–37, 2001.

[33] P. Gilmore and C. T. Kelley. An implicit filtering algorithm for optimiza-
tion of functions with many local minima. SIAM J. Optim., 5:269–285,
1995.

[34] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-

32

chine Learning. Addison Wesley Pub. Company, 1989.
[35] G. A. Gray and K. R. Fowler. Approaching the groundwater remediation

problem using multifidelity optimization. In Proc. of the CMWR XVI -
Computational Methods in Water Resources, 19-22 June 2006.

[36] G. A. Gray and T. G. Kolda. Algorithm 856: APPSPACK 4.0: Asyn-
chronous parallel pattern search for derivative-free optimization. ACM
Transactions on Mathematical Software, 32(3):485–507, 2006.

[37] J. D. Griffin and T. G. Kolda. Nonlinearly-constrained optimization
using asynchronous parallel generating set search. Technical Report
SAND2007-3257, Sandia National Laboratories, Albuquerque, NM and
Livermore, CA, 2007.

[38] J. D. Griffin, T. G. Kolda, and R. M. Lewis. Asynchronous parallel gener-
ating set search for linearly-constrained optimization. Technical Report
SAND2006-4621, Sandia National Laboratories, Albuquerque, NM and
Livermore, CA, August 2006.

[39] T. Hemker, K. R. Fowler, and O. von Stryk. Derivative-free optimization
methods for handling fixed costs in optimal groundwater remediation
design. In Proc. of the CMWR XVI - Computational Methods in Water
Resources, 19-22 June 2006.

[40] T. Hemker, K. R. Fowler, M. W. Farthing, and O. von Stryk. A mixed-
integer simulation-based optimization approach with surrogate functions
in water resources management. Submitted to Optimization and Engi-
neering, 2007.

[41] J. H. Holland. Adaption in Natural and Artificial Systems. Univ. of Mich.
Press, Ann Arbor, Mich., 1975.

[42] J. H. Holland. Genetic algorithms and the optimal allocation of trials.
SIAM J. Comput., 2, 1973.

[43] P. D. Hough, T. G. Kolda, and V. J. Torczon. Asynchronous parallel
pattern search for nonlinear optimization. SIAM J. Sci. Comp., 23:134–
156, 2001.

[44] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian opti-
mization without the lipschitz constant. Journal of Optimization Theory
and Application, 79(1):157–181, October 1993.

[45] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley & Sons, New York, 1990.

[46] C. T. Kelley. Iterative Methods for Optimization. Number 18 in Frontiers
in Applied Mathematics. SIAM, Philadelphia, 1999.

[47] S. Kirkpatrick, C. D. Geddat, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220:671–680, 1983.

[48] T. G. Kolda. Revisiting asynchronous parallel pattern search for nonlinear
optimization. SIAM J. Optimiz., 16(2):563–586, December 2005.

[49] T. G. Kolda and V. Torczon. On the convergence of asynchronous parallel
pattern search. SIAM J. Optimiz., 14(4):939–964, 2004.

[50] T. G. Kolda and V. J. Torczon. Understanding asynchronous parallel pat-
tern search. In G. DiPillo and A. Murli, editors, High Performance Algo-

33

rithms and Software for Nonlinear Optimization, pages 316–335. Kluwer
Academic Publishers B.V., 2003.

[51] T. G. Kolda, R. M. Lewis, and V. Torczon. Stationarity results for gen-
erating set search for linearly constrained optimization. SIAM Journal
on Optimization, 17(4):943–968, 2006.

[52] R. M. Lewis and V. Torczon. Rank ordering and positive bases in pat-
tern search algorithms. Technical Report 96-71, Institute for Computer
Applications in Science and Engineering, December 1996.

[53] S. L. Mattot, A. J. Rabideau, and J. R. Craig. Optimization of pump
and treat systems using analytic element flow models. Advances in Water
Resources, 29:760–775, 2006.

[54] A. S. Mayer, C. T. Kelley, and C. T. Miller. Optimal design for problems
involving flow and transport phenomena in saturated subsurface systems.
Advances in Water Resources, 12:1233–1256, 2002.

[55] A. S. Mayer, C. T. Kelley, and C. T. Miller. Electronic supplement to
“Optimal design for problems involving flow and transport phenomena
in saturated subsurface systems”, 2003. ”http://www.elsevier.com/gej-
ng/10/8/34/58/59/41/63/show/index.htt”, 17 pages.

[56] M. G. McDonald and A. W. Harbaugh. A modular three dimensional
finite difference groundwater flow model. U.S. Geological Survey Tech-
niques of Water Resources Investigations, 1988.

[57] M. G. McDonald and A. W. Harbaugh. Programmer’s documentation for
MODFLOW-96, an update to the U.S. geological survey modular finite
difference groundwater flow model. U.S. Geological Survey Open-File
Report 96-486, 1996.

[58] D. C. McKinney and M. D. Lin. Genetic algorithm solution of ground-
water management models. Water Resources managment, 30:1897–1906,
1994.

[59] D. C. McKinney and M. D. Lin. Approximate mixed integer nonlinear
programming methods for optimal aquifer remdiation design. Water Re-
sources Research, 31:731–740, 1995.

[60] R. G. Regis and C. A. Shoemaker. Constrained Global Optimization of
Expensive Black Box Functions Using Radial Basis Functions. Journal
of Global Optimization, 31:153 – 171, 2005.

[61] D. E. Stoneking, G. L. Bilbro, R. J. Trew, P. Gilmore, and C. T. Kelley.
Yield optimization using a GaAs process simulator coupled to a physical
device model. IEEE Transactions on Microwave Theory and Techniques,
40:1353–1363, 1992.

[62] C. Zheng and P. Wang. MT3DMS: A Modular Three-Dimensional Mul-
tispecies Transport Model for Simulation of Advection, Dispersion, and
Chemical Reactions of Contaminants in Groundwater Systems; Documen-
tation and User’s Guide, December 1999.

[63] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolution-
ary algorithms: Empirical results. Evolutionary Computation Journal, 8
(2):173–195, 2000.

34

	Introduction
	Model Problems
	Overview
	Model Problems
	Hydrological Setting
	Objective Function
	Constraints
	Simulator
	Method Details and Links

	Optimization Methods
	Search-Poll Paradigm
	Unstructured Searches
	Constraints
	Surrogates
	Termination
	Scaling
	Software

	Results
	Overview
	Water Supply Problem
	Hydraulic Capture Problem

	Discussion
	Conclusions
	Acknowledgements

