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Abstract. Recent work on eigenvalues and eigenvectors for tensors of order m ≥ 3 has been
motivated by applications in blind source separation, magnetic resonance imaging, molecular confor-
mation, and more. In this paper, we consider methods for computing real symmetric-tensor eigenpairs
of the form Axm−1 = λx subject to ‖x‖ = 1, which is closely related to optimal rank-1 approx-
imation of a symmetric tensor. Our contribution is a novel shifted symmetric higher-order power
method (SS-HOPM), which we show is guaranteed to converge to a tensor eigenpair. SS-HOPM can
be viewed as a generalization of the power iteration method for matrices or of the symmetric higher-
order power method. Additionally, using fixed point analysis, we can characterize exactly which
eigenpairs can and cannot be found by the method. Numerical examples are presented, including
examples from an extension of the method to finding complex eigenpairs.
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1. Introduction. Tensor eigenvalues and eigenvectors have received much at-
tention lately in the literature [11, 14, 16, 15, 3, 12, 22]. The tensor eigenproblem
is important because it has applications in blind source separation [9], magnetic res-
onance imaging [20, 18], molecular conformation [6], etc. There is more than one
possible definition for a tensor eigenpair [14]. In this paper, we specifically use the
following definition.

Definition 1.1. Assume that A is a symmetric mth-order n-dimensional real-
valued tensor. For any x ∈ Cn, define

(
Axm−1

)
i1
≡

n∑
i2=1

· · ·
n∑

im=1

ai1i2···imxi2 · · ·xim for i1 = 1, . . . , n. (1.1)

Then λ ∈ C is an eigenvalue of A if there exists x ∈ Cn such that

Axm−1 = λx and x†x = 1. (1.2)

The vector x is a corresponding eigenvector, and (λ,x) is called an eigenpair.

Definition 1.1 is closely related to the E-eigenpairs defined by Qi [14, 15] but
differs in the constraint on x.1 In the case that x is real (which implies that λ is also
real), Definition 1.1 is equivalent to the Z-eigenpairs defined by Qi [14, 15] and the l2-
eigenpairs defined by Lim [11]. In particular, Lim [11] observes that any real eigenpair
(λ,x) is a Karush-Kuhn-Tucker (KKT) point [13] (i.e., a constrained stationary point)

∗This work was funded by the applied mathematics program at the U.S. Department of Energy and
by an Excellence Award from the Laboratory Directed Research & Development (LDRD) program at
Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.
†Sandia National Laboratories, Livermore, CA. Email: {tgkolda,jmayo}@sandia.gov.
1Qi [14, 15] requires xTx = 1 rather than x†x = 1.
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of the nonlinear optimization problem

max
x∈Rn

Axm subject to xTx = 1, where Axm ≡
n∑

i1=1

· · ·
n∑

im=1

ai1···imxi1 · · ·xim .

(1.3)
This is equivalent to the problem of finding the best symmetric rank-1 approximation
of a symmetric tensor [5].

In this paper, we build upon foundational work by Kofidis and Regalia [9] for solv-
ing (1.3). Their paper is extremely important for computing tensor eigenvalues even
though it predates the definition of the eigenvalue problem by three years. Kofidis and
Regalia consider the higher-order power method (HOPM) [5], a well-known technique
for approximation of higher-order tensors, and show that its symmetric generalization
(S-HOPM) is not guaranteed to converge. They go on, however, to use convexity the-
ory to provide theoretical results (as well as practical examples) explaining conditions
under which the method is convergent for even-order tensors (i.e., m even). Further,
these conditions are shown to hold for many problems of practical interest.

We present a new method for finding real-valued tensor eigenpairs, called the
shifted symmetric higher-order power method (SS-HOPM), along with theory showing
that it is guaranteed to converge to a constrained stationary point of (1.3). The proof
is general and works for both odd- and even-order tensors (i.e., all m ≥ 3). The
effectiveness of SS-HOPM is demonstrated on several examples, including a problem
noted previously [9] for which S-HOPM does not converge. We also present a version
of SS-HOPM for finding complex-valued tensor eigenpairs and provide examples of
its effectiveness.

We mention some additional related work on finding tensor eigenvalues. Qi, Wang,
and Wang [17] propose some methods specific to third-order tensors (m = 3). Ng, Qi,
and Zhou [12] propose a method for finding the largest eigenvalue of a nonnegative
tensor that is also a power method; however, it is aimed at a different definition of
eigenvalue.

2. Preliminaries. Throughout, let Γ and Σ denote the unit ball and sphere on
Rn, i.e.,

Γ = {x ∈ Rn : ‖x‖ ≤ 1} and Σ = {x ∈ Rn : ‖x‖ = 1}.

Additionally, define

Πm ≡ the set of all permutations of (1, . . . ,m).

Let x⊥y denote xTy = 0, and define x⊥ ≡ {y ∈ Rn : x⊥y}. Let ρ(A) denote the
spectral radius, i.e., the magnitude of the largest eigenvalue, of a square matrix A.

2.1. Tensors. A tensor is an m-way array. We let R[m,n] denote the space of
mth-order real-valued tensors with dimension n, e.g., R[3,2] = R2×2×2. We adopt the
convention that R[0,n] = R.

We formally introduce the notion of a symmetric tensor, sometimes also called
supersymmetric, which is invariant under any permutation of its indices. Further, we
define a generalization of the tensor-vector multiplication in equations (1.1) and (1.3).

Definition 2.1 (Symmetric tensor [4]). A tensor A ∈ R[m,n] is symmetric if

aip(1)···ip(m)
= ai1···im for all i1, . . . , im ∈ {1, . . . , n} and p ∈ Πm.
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Definition 2.2 (Symmetric tensor-vector multiply). Let A ∈ R[m,n] be symmet-
ric and x ∈ Rn. Then for 0 ≤ r ≤ m− 1, the (m− r)-times product of the tensor A

with the vector x is denoted by Axm−r ∈ R[r,n] and defined by

(Axm−r)i1···ir ≡
∑

ir+1,...,im

ai1···imxir+1
· · ·xim for all i1, . . . , ir ∈ {1, . . . , n}.

Example 2.3. The identity matrix plays an important role in matrix analysis.
This notion can be extended in a sense to the domain of tensors. We may define an
identity tensor as a symmetric tensor E ∈ R[m,n] such that

Exm−1 = x for all x ∈ Σ.

We restrict x ∈ Σ since it is not possible to have a tensor with m > 2 such that the
above equation holds for all x ∈ Rn. For any x /∈ Σ, the above equation implies

Exm−1 = ‖x‖m−1E(x/‖x‖)m−1 = ‖x‖m−1(x/‖x‖) = ‖x‖m−2x.

Consider the case of m = 4 and n = 2. The system of equations that must be satisfied
for all x ∈ Σ is

e1111x
3
1 + 3e1112x

2
1x2 + 3e1122x1x

2
2 + e1222x

3
2 = x1,

e1112x
3
1 + 3e1122x

2
1x2 + 3e1222x1x

2
2 + e2222x

3
2 = x2.

Consider x =
[
0 1

]T
. This yields e1111 = 1 and e1112 = 0. Similarly, x =

[
1 0

]T
yields e2222 = 1 and e1222 = 0. The only remaining unknown is e1122, and choosing,

e.g., x =
[√

2/2
√

2/2
]T

yields e1122 = 1/3. In summary, the identity tensor for
m = 4 and n = 2 is

eijkl =



1 if i = j = k = l,

1/3 if i = j 6= k = l,

1/3 if i = k 6= j = l,

1/3 if i = l 6= j = k,

0 otherwise.

We generalize this idea in the next property. �
Property 2.4. For m even, the identity tensor E ∈ R[m,n] satisfying Exm−1 = x

for all x ∈ Σ is given by

ei1···im =
1

m!

∑
p∈Πm

δip(1)ip(2)δip(3)ip(4) · · · δip(m−1)ip(m)
(2.1)

for i1, . . . , im ∈ {1, . . . , n}, where δ is the standard Kronecker delta, i.e.,

δij ≡

{
1 if i = j,

0 if i 6= j.

This identity tensor appears in a previous work [14], where it is denoted by IE
and used to define a generalization of the characteristic polynomial for symmetric
even-order tensors.

Example 2.5. There is no identity tensor for m odd. This is seen because
if Exm−1 = x for some odd m and some x ∈ Σ, then we would have −x ∈ Σ but
E(−x)m−1 = x 6= −x. �
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It has been observed [15, 2] that the complex eigenpairs of a tensor form equiva-
lence classes under a multiplicative transformation. Specifically, if (λ,x) is an eigen-
pair of A ∈ R[m,n] and y = eiϕx with ϕ ∈ R, then y†y = x†x = 1 and

Aym−1 = ei(m−1)ϕAxm−1 = ei(m−1)ϕλx = ei(m−2)ϕλy.

Therefore (ei(m−2)ϕλ, eiϕx) is also an eigenpair of A for any ϕ ∈ R. Consequently, if
λ is an eigenvalue, then any other λ′ ∈ C with |λ′| = |λ| is also an eigenvalue. This
leads to the notion of an eigenring.

Definition 2.6 (Eigenring). For any (λ,x) ∈ C × Cn that is an eigenpair
of A ∈ R[m,n], we define a corresponding equivalence class of (vector-normalized)
eigenpairs

P(λ,x) = {(λ′,x′) : λ′ = ei(m−2)ϕλ,x′ = eiϕx, ϕ ∈ R},

as well as a corresponding eigenring

R(λ) = {λ′ ∈ C : |λ′| = |λ|}.

For any even-order tensor (i.e., m even), observe that choosing ϕ = π yields x′ =
−x and λ′ = λ. Thus, even though it seems that λ has 2 distinct real eigenvectors,
they are both members of the same equivalence class. Likewise, for any odd-order
tensor (i.e., m odd), choosing ϕ = π yields x′ = −x and λ′ = −λ, so both (λ,x) and
(−λ,−x) are members of the same equivalence class.

Since we assume that A is real-valued, any nonreal eigenpairs must come in sets
of 2 related by complex conjugation, because taking the conjugate of the eigenvalue
equation does not change it. Such conjugate eigenpairs are not members of the same
equivalence class unless they are equivalent to a real eigenpair.

An elegant result has recently been derived for the number of distinct (non-
equivalent) eigenvalues of a symmetric tensor, and we state it here for later reference.2

Theorem 2.7 (Cartwright and Sturmfels [2, Theorem 5.5]). A generic symmetric
tensor A ∈ R[m,n] has ((m− 1)n − 1)/(m− 2) distinct complex eigenvalues.

Because the tensor eigenvalue equation for m > 2 amounts to a system of non-
linear equations in the components of x, a direct solution is challenging. A further
complication is that the normalization condition x†x = 1 is nonpolynomial due to the
complex conjugation. The system, however, becomes polynomial if the normalization
condition xTx = 1 is temporarily adopted. Any such x can be rescaled to satisfy
x†x = 1. On the other hand, any complex eigenvector with xTx = 0 will not be
found, but these do not occur generically.

Numerical algorithms exist for finding all solutions of a system of polynomial
equations, but become computationally expensive for systems with many variables
(here, large n) and with high-order polynomials (here, large m). A polynomial system
solver (NSolve) using a Gröbner basis method is available in Mathematica [23] and
has been employed to generate a complete list of eigenpairs for some of the examples
in this paper.

The solver is instructed to find all complex solutions (λ,x) of the system

Axm−1 = λx and xTx = 1.

2Cartwright and Sturmfels [2] use the condition xTx = 1 to normalize eigenpairs, but in the
generic case the result is the same for our condition x†x = 1. The case of m = 2 requires application
of l’Hôpital’s rule to see that there are n eigenvalues.
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Redundant solutions with the opposite sign of x (for even m) or the opposite signs
of x and λ (for odd m) are then eliminated. The remaining solutions are rescaled to
satisfy x†x = 1. For real solutions, this condition is already satisfied; other complex
solutions are transformed to a representative of the eigenring with positive real λ by
setting

(λ,x)←

(
|λ|

(x†x)m/2−1
,

(
|λ|
λ

)1/(m−2)
x

(x†x)1/2

)
.

2.2. Convex functions. Convexity theory plays an important role in our anal-
ysis. Here we recall two important properties of convex functions [1].

Property 2.8 (Gradient of convex function). A differentiable function f : Ω ⊆
Rn → R is convex if and only if Ω is a convex set and f(y) ≥ f(x) +∇f(x)T (y− x)
for all x,y ∈ Ω.

Property 2.9 (Hessian of convex function). A twice differentiable function
f : Ω ⊆ Rn → R is convex if and only if Ω is a convex set and the Hessian3 of f is
positive semidefinite on Ω, i.e., ∇2f(x) � 0 for all x ∈ Ω.

We prove an interesting fact about convex functions on vectors of unit norm that
will prove useful in our later analysis. This fact is implicit in a proof given previously
[9, Theorem 4], but we state it here explicitly.

Theorem 2.10 (Kofidis and Regalia [9]). Let f be a function that is convex and
continuously differentiable on Γ. If v,w ∈ Σ with v = ∇f(w)/‖∇f(w)‖ 6= w, then
f(v)− f(w) > 0.

Proof. For arbitrary nonzero z ∈ Rn, zTx is strictly maximized for x ∈ Σ by
x = z/‖z‖. Substituting z = ∇f(w), it follows that ∇f(w)Tv > ∇f(w)Tw, since
v = ∇f(w)/‖∇f(w)‖ 6= w and w ∈ Σ. By the convexity of f on Γ and Property 2.8,
we have f(v) ≥ f(w)+∇f(w)T (v−w) for all v,w ∈ Γ. Consequently, f(v)−f(w) ≥
∇f(w)T (v −w) > 0.

2.3. Constrained optimization. Here we extract relevant theory from con-
strained optimization [13].

Theorem 2.11. Let f : Rn → R be continuously differentiable. A point x∗ ∈ Σ
is a (constrained) stationary point of

max f(x) subject to x ∈ Σ

if there exists µ∗ ∈ R such that ∇f(x∗) + µ∗x∗ = 0. The point x∗ is a (constrained)
isolated local maximum if, additionally,

wT (∇2f(x∗) + µ∗I)w < 0 for all w ∈ Σ ∩ x⊥.

Proof. The constraint x ∈ Σ can be expressed as c(x) = 1
2 (xTx − 1) = 0. The

Lagrangian for the constrained problem is then given by

L(x, µ) = f(x) + µc(x).

Its first and second derivatives with respect to x are

∇L(x, µ) = ∇f(x) + µx and ∇2L(x, µ) = ∇2f(x) + µI.

By assumption, ∇L(x∗, µ∗) = 0 and c(x∗) = 0. Therefore, the pair (x∗, µ∗) satisfies
the Karush-Kuhn-Tucker (KKT) conditions [13, Theorem 12.1] and so is a constrained
stationary point. It is additionally a constrained isolated local maximum if it meets
the second-order sufficient condition [13, Theorem 12.6].

3By ∇2 we denote the Hessian matrix and not its trace, the Laplacian.
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2.4. Fixed point theory. We consider the properties of iterations of the form

xk+1 = φ(xk).

Under certain conditions, the iterates are guaranteed to converge to a fixed point. In
particular, we are interested in “attracting” fixed points.

Definition 2.12 (Fixed point). A point x∗ ∈ Rn is a fixed point of φ : Rn → Rn
if φ(x∗) = x∗. Further, x∗ is an attracting fixed point if there exists δ > 0 such that
the sequence {xk} defined by xk+1 = φ(xk) converges to x∗ for any x0 such that
‖x0 − x∗‖ ≤ δ.

Theorem 2.13 ([19, Theorem 2.8]). Let x∗ ∈ Rn be a fixed point of φ : Rn → Rn,
and let J : Rn → Rn×n be the Jacobian of φ. Then x∗ is an attracting fixed point if
σ ≡ ρ(J(x∗)) < 1; further, if σ > 0, then the convergence of xk+1 = φ(xk) to x∗ is
linear with rate σ.

This condition on the Jacobian for an attracting fixed point is sufficient but not
necessary. In particular, if σ ≡ ρ(J(x∗)) = 1, then x∗ may or may not be attracting,
but there is no neighborhood of linear convergence to it. For σ < 1, the rate of linear
convergence depends on σ and is slower for σ values closer to 1. On the other hand,
for σ > 1, an attractor is ruled out by the following.

Theorem 2.14 ([21, Theorem 1.3.7]). Let x∗ ∈ Rn be a fixed point of φ : Rn →
Rn, and let J : Rn → Rn×n be the Jacobian of φ. Then x∗ is an unstable fixed point
if σ ≡ ρ(J(x∗)) > 1.

3. Symmetric higher-order power method (S-HOPM). We review the
symmetric higher-order power method (S-HOPM), introduced by De Lathauwer et
al. [5] and analyzed further by Kofidis and Regalia [9]. The purpose of S-HOPM is to
solve the optimization problem

max
x∈Rn

|Axm| subject to x ∈ Σ. (3.1)

The solution of this problem will be a solution of either the following maximization
problem (lacking the absolute value) or its opposite minimization problem:

max
x∈Rn

f(x) subject to x ∈ Σ, where f(x) = Axm. (3.2)

Setting λ = f(x), these problems are equivalent to finding the best symmetric rank-1
approximation of a symmetric tensor A ∈ R[m,n], i.e.,

min
λ,x
‖A−B‖ subject to bi1...im = λxi1 · · ·xim and x ∈ Σ. (3.3)

Details of the connection between (3.2) and (3.3) are available elsewhere [5]. The S-
HOPM algorithm is shown in Algorithm 1. We discuss its connection to the eigenvalue
problem in §3.1 and its convergence properties in §3.2.

3.1. Properties of f(x) = Axm. The function f(x) = Axm plays an important
role in the analysis of eigenpairs of A because all eigenpairs are constrained stationary
points of f , as we show below.

We first need to derive the gradient of f . This result is perhaps generally well
known [11, Equation 4], but here we provide a proof.

Lemma 3.1. Let A ∈ R[m,n] be symmetric. The gradient of f(x) = Axm is

g(x) ≡ ∇f(x) = mAxm−1 ∈ Rn. (3.4)
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Algorithm 1 Symmetric higher-order power method (S-HOPM) [5, 9]

Given a symmetric tensor A ∈ R[m,n].

Require: x0 ∈ Rn with ‖x0‖ = 1. Let λ0 = Axm0 .
1: for k = 0, 1, . . . do
2: x̂k+1 ← Axm−1

k

3: xk+1 ← x̂k+1/‖x̂k+1‖
4: λk+1 ← Axmk+1

5: end for

Proof. We use the basic relation ∇kxj = δjk. Applying the product rule to (3.2),
we find

∇kf(x) =
∑

i1,...,im

m∑
q=1

ai1i2···imxi1xi2 · · ·xiq−1δiqkxiq+1 · · ·xim .

Upon bringing the sum over q to the outside, we observe that for each q the dummy
indices i1 and iq can be interchanged (without affecting the symmetric tensor A), and
the result is independent of q:

∇kf(x) =

m∑
q=1

∑
i1,...,im

ai1i2···imδi1kxi2 · · ·xiq−1
xiqxiq+1

· · ·xim

=

m∑
q=1

∑
i2,...,im

aki2···imxi2 · · ·xim

= m(Axm−1)k.

Hence, ∇f(x) = mAxm−1.
Theorem 3.2. Let A ∈ R[m,n] be symmetric. Then (λ,x) is an eigenpair of A

if and only if x is a constrained stationary point of (3.2).
Proof. By Theorem 2.11, any constrained stationary point x∗ of (3.2) must satisfy

mAxm−1
∗ + µ∗x∗ = 0 for some µ∗ ∈ R. Thus, λ∗ = −µ∗/m is the eigenvalue corre-

sponding to x∗. Conversely, any eigenpair meets the condition for being a constrained
stationary point with µ∗ = −mλ∗.

This is is the connection between (3.2) and the eigenvalue problem. It will also
be useful to consider the Hessian of f , which we present here.

Lemma 3.3. Let A ∈ R[m,n] be symmetric. The Hessian of f(x) = Axm is

H(x) ≡ ∇2f(x) = m(m− 1)Axm−2 ∈ Rn×n. (3.5)

Proof. The (j, k) entry of H(x) is given by the kth entry of ∇gj(x). The function
gj(x) can be rewritten as

gj(x) = m
∑

i2,...,im

aji2···imxi2 · · ·xim = mB(j)xm−1

where B(j) is the order-(m − 1) symmetric tensor that is the jth subtensor of A,

defined by b
(j)
i1···im−1

= aji1···im−1
. From Lemma 3.1, we have

∇gj(x) = m(m− 1)B(j)xm−2.
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Consequently,

(H(x))jk = m(m− 1)
∑

i3,...,im

ajki3···imxi3 · · ·xim ,

that is, H(x) = m(m− 1)Axm−2.
From Theorem 2.11, we know that the projected Hessian of the Lagrangian plays

a role in determining whether or not a fixed point is a local maximum or minimum.
In our case, since µ∗ = −mλ∗, for any eigenpair (λ∗,x∗) (which must correspond to
a constrained stationary point by Theorem 3.2) we have

∇2L(x∗, λ∗) = m(m− 1)Axm−2
∗ −mλ∗I.

Specifically, Theorem 2.11 is concerned with the behavior of the Hessian of the La-
grangian in the subspace orthogonal to x∗. Thus, we define the projected Hessian of
the Lagrangian as

C(λ∗,x∗) ≡ UT
∗
(
(m− 1)Axm−2

∗ − λ∗I
)
U∗ ∈ R(n−1)×(n−1), (3.6)

where the columns of U∗ ∈ Rn×(n−1) form an orthonormal basis for x⊥∗ . Note that
we have removed a factor of m for convenience. We now classify eigenpairs according
to the spectrum of C(λ∗,x∗). The import of this classification will be made clear in
§4.2.

Definition 3.4. Let A ∈ R[m,n] be a symmetric tensor. We say an eigenpair
(λ,x) of A ∈ R[m,n] is positive stable if C(λ,x) is positive definite, negative stable if
C(λ,x) is negative definite, and unstable if C(λ,x) is indefinite.

These labels are not exhaustive because we do not name the cases where C(λ,x) is
only semidefinite, with a zero eigenvalue. Such cases do not occur for generic tensors.

If m is odd, then (λ,x) is positive stable if and only if (−λ,−x) is negative stable,
even though these eigenpairs are in the same equivalence class. On the other hand,
in m is even, then (λ,x) is a positive (negative) stable eigenpair if and only if (λ,−x)
is also positive (negative) stable.

3.2. S-HOPM convergence analysis. S-HOPM has been deemed unreliable
[5] because convergence is not guaranteed. Kofidis and Regalia [9] provide an analysis
explaining that S-HOPM will converge if certain conditions are met, as well as an
example where the method does not converge, which we reproduce here.

Example 3.5 (Kofidis and Regalia [9, Example 1]). Let A ∈ R[4,3] be the
symmetric tensor defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,

a1123 = −0.2939, a1133 = 0.3847, a1222 = 0.2972, a1223 = 0.1862,

a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,

a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

Kofidis and Regalia [9] observed that Algorithm 1 does not converge for this tensor.
Because this problem is small, all eigenpairs can be calculated by Mathematica as
described in §2.1. From Theorem 2.7, this problem has exactly 13 distinct complex
eigenpairs, and these are listed in Table 3.1. We ran 100 trials of S-HOPM using
different random starting points x0 chosen from a uniform distribution on [−1, 1]n.
For all experiments in this paper, we allow up to 1000 iterations and say that the
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algorithm has converged if |λk+1 − λk| < 10−16. In every single trial for this tensor,
the algorithm failed to converge. In Figure 3.1, we show an example {λk} sequence

with x0 =
[
−0.2695 0.1972 0.3370

]T
. This coincides with the results reported

previously [9]. �

Table 3.1: Eigenpairs for A ∈ R[4,3] from Example 3.5.

(a) Real.

λ xT Eigenvalues of C(λ,x) Type
0.8893 [ 0.6672 0.2471 −0.7027 ] { −0.8857, −1.8459 } Neg. stable
0.8169 [ 0.8412 −0.2635 0.4722 ] { −0.9024, −2.2580 } Neg. stable
0.5105 [ 0.3598 −0.7780 0.5150 ] { 0.5940, −2.3398 } Unstable
0.3633 [ 0.2676 0.6447 0.7160 ] { −1.1765, −0.5713 } Neg. stable
0.2682 [ 0.6099 0.4362 0.6616 ] { 0.7852, −1.1793 } Unstable
0.2628 [ 0.1318 −0.4425 −0.8870 ] { 0.6181, −2.1744 } Unstable
0.2433 [ 0.9895 0.0947 −0.1088 ] { −1.1942, 1.4627 } Unstable
0.1735 [ 0.3357 0.9073 0.2531 ] { −1.0966, 0.8629 } Unstable
−0.0451 [ 0.7797 0.6135 0.1250 ] { 0.8209, 1.2456 } Pos. stable
−0.5629 [ 0.1762 −0.1796 0.9678 ] { 1.6287, 2.3822 } Pos. stable
−1.0954 [ 0.5915 −0.7467 −0.3043 ] { 1.8628, 2.7469 } Pos. stable

(b) Nonreal.

λ xT

0.6694 [ 0.2930 + 0.0571i 0.8171− 0.0365i −0.4912− 0.0245i ]
0.6694 [ 0.2930− 0.0571i 0.8171 + 0.0365i −0.4912 + 0.0245i ]

Fig. 3.1: Example λk values for S-HOPM on A ∈ R[4,3] from Example 3.5.
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Example 3.6. As a second illustrative example, we consider an odd-order tensor
A ∈ R[3,3] defined by

a111 = −0.1281, a112 = 0.0516, a113 = −0.0954, a122 = −0.1958,

a123 = −0.1790, a133 = −0.2676, a222 = 0.3251, a223 = 0.2513,

a233 = 0.1773, a333 = 0.0338.

From Theorem 2.7, A has exactly 7 eigenpairs, which are listed in Table 3.2. We
ran 100 trials of S-HOPM as described for Example 3.5. In this case, every trial
converged to either λ = 0.8730 or λ = 0.4306, as summarized in Table 3.3. In this
case, therefore, S-HOPM finds 2 of the 7 possible eigenvalues. �

Table 3.2: Eigenpairs for A ∈ R[3,3] from Example 3.6.

λ xT Eigenvalues of C(λ,x) Type
0.8730 [ −0.3922 0.7249 0.5664 ] { −1.1293, −0.8807 } Neg. stable
0.4306 [ −0.7187 −0.1245 −0.6840 ] { −0.4420, −0.8275 } Neg. stable
0.2294 [ −0.8446 0.4386 −0.3070 ] { −0.2641, 0.7151 } Unstable
0.0180 [ 0.7132 0.5093 −0.4817 ] { −0.4021, −0.1320 } Neg. stable
0.0033 [ 0.4477 0.7740 −0.4478 ] { −0.1011, 0.2461 } Unstable
0.0018 [ 0.3305 0.6314 −0.7015 ] { 0.1592, −0.1241 } Unstable
0.0006 [ 0.2907 0.7359 −0.6115 ] { 0.1405, 0.0968 } Pos. stable

Table 3.3: Eigenpairs for A ∈ R[3,3] from Example 3.6 computed by S-HOPM with
100 random starts.

# Occurrences λ xT

62 0.8730 [ −0.3922 0.7249 0.5664 ]
38 0.4306 [ −0.7187 −0.1245 −0.6840 ]

In their analysis, Kofidis and Regalia [9] proved that the sequence {λk} in Al-
gorithm 1 converges if A ∈ R[m,n] is even-order and the function f(x) is convex or
concave on Rn. Since m = 2` (because m is even), f can be expressed as

f(x) = ( x⊗ · · · ⊗ x︸ ︷︷ ︸
` times

)TA ( x⊗ · · · ⊗ x︸ ︷︷ ︸
` times

),

where A ∈ Rn`×n`

is an unfolded version of the tensor A.4 Since A is symmetric, it
follows that A is symmetric. The condition that f is convex (concave) is satisfied if
the Hessian

∇2f(x) = ( I⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
`− 1 times

)TA ( I⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
`− 1 times

)

is positive (negative) semidefinite for all x ∈ Rn.
We make a few notes regarding these results. First, even though f is convex, its

restriction to the nonconvex set Σ is not. Second, {λk} is increasing if f is convex
and decreasing if f is concave. Third, only {λk} is proved to converge for S-HOPM
[9, Theorem 4]; the iterates {xk} may not. In particular, it is easy to observe that
the sign of xk may flip back and forth if the concave case is not handled correctly.

4Specifically, A ≡ A(R×C) with R = {1, . . . , `} and C = {`+ 1, . . . ,m} in matricization notation
[10].
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4. Shifted symmetric higher-order power method (SS-HOPM). In this
section, we show that S-HOPM can be modified by adding a “shift” that guarantees
that the method will always converge to an eigenpair. We make no assumptions that
the tensor order is even; therefore, our results generalize those of Kofidis and Regalia
[9] even in the case that there is no shift. Based on the observation that S-HOPM
is guaranteed to converge if the underlying function is convex or concave on Rn, our
new method works with a suitably modified function

f̂(x) ≡ f(x) + α(xTx)m/2. (4.1)

Maximizing f̂ on Σ is the same as maximizing f plus a constant, yet the properties
of the modified function force convexity or concavity and consequently guarantee
convergence.

For even m, the function f̂ in (4.1) can be interpreted as

f̂(x) = Âxm ≡ (A + αE)xm,

where E is the identity tensor as defined in (2.1). Thus, for even m, our proposed
method can be interpreted as S-HOPM applied to a modified tensor that directly
satisfies the convexity properties to guarantee convergence [9]. Because Exm−1 = x

for x ∈ Σ, the eigenvectors of Â are the same as those of A and the eigenvalues are
shifted by α. Our results, however, are for both odd- and even-order tensors.

Algorithm 2 presents the new shifted symmetric higher-order power method (SS-
HOPM). Without loss of generality, we assume that a positive shift (α ≥ 0) is used
to make the modified function in (4.1) convex and a negative shift (α < 0) to make
it concave. We have two key results. Theorem 4.4 shows that for any starting point
x0 ∈ Σ, the sequence {λk} produced by Algorithm 2 is guaranteed to converge to an
eigenvalue in the convex case if

α > β(A) ≡ (m− 1) ·max
x∈Σ

ρ(Axm−2). (4.2)

Corollary 4.6 handles the concave case where we require α < −β(A). Theorem 4.8
further shows that Algorithm 2 in the convex case will generically converge to a an
eigenpair (λ,x) that is negative stable. Corollary 4.9 proves that Algorithm 2 in the
concave case will generically converge to an eigenpair that is positive stable. Generally,
neither version will converge to an eigenpair that is unstable.

4.1. SS-HOPM convergence analysis. We first establish a few key lemmas
that guide the choice of the shift α > β(A) in SS-HOPM.

Lemma 4.1. Let A ∈ R[m,n] be symmetric and let β(A) be as defined in (4.2).
Then β(A) ≤ (m− 1)

∑
i1,...,im

|ai1...im |.
Proof. For all x,y ∈ Σ, we obtain |yT (Axm−2)y| ≤

∑
i1,...,im

|ai1...im | by applying

the triangle inequality to the sum of nm terms. Thus ρ(Axm−2) ≤
∑
i1,...,im

|ai1...im |
for all x ∈ Σ, and the result follows.

Lemma 4.2. Let A ∈ R[m,n] be symmetric, let f(x) = Axm, and let β(A) be as
defined in (4.2). Then |f(x)| ≤ β(A)/(m− 1) for all x ∈ Σ.

Proof. We have |Axm| = |xT (Axm−2)x| ≤ ρ(Axm−2) ≤ β(A)/(m− 1).
The preceding lemma upper bounds the magnitude of any eigenvalue of A by

β(A)/(m− 1) since any eigenpair (λ,x) satisfies λ = f(x). Thus, choosing α > β(A)
implies that α is greater than the magnitude of any eigenvalue of A.

Lemma 4.3. Let A ∈ R[m,n] be symmetric and let H(x) and β(A) be as defined
in (3.5) and (4.2). Then ρ(H(x)) ≤ mβ(A) for all x ∈ Σ.
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Algorithm 2 Shifted Symmetric Higher-Order Power Method (SS-HOPM)

Given a tensor A ∈ R[m,n].

Require: x0 ∈ Rn with ‖x0‖ = 1. Let λ0 = Axm0 .
Require: α ∈ R

1: for k = 0, 1, . . . do
2: if α ≥ 0 then
3: x̂k+1 ← Axm−1

k + αxk . Assumed Convex
4: else
5: x̂k+1 ← −(Axm−1

k + αxk) . Assumed Concave
6: end if
7: xk+1 ← x̂k+1/‖x̂k+1‖
8: λk+1 ← Axmk+1

9: end for

Proof. This follows directly from (3.5) and (4.2).
The following theorem proves that Algorithm 2 will always converge. Choosing

α > (m− 1)
∑
i1,...,im

|ai1...im | is a conservative choice that is guaranteed to work by
Lemma 4.1, but this is often an overly conservative choice, as we show in subsequent
examples.

Theorem 4.4. Let A ∈ R[m,n] be symmetric. For α > β(A), where β(A) is
defined in (4.2), the iterates {λk,xk} produced by Algorithm 2 satisfy the following
properties. (a) The sequence {λk} is nondecreasing, and there exists λ∗ such that
λk → λ∗. (b) The sequence {xk} has an accumulation point. (c) For every such
accumulation point x∗, the pair (λ∗,x∗) is an eigenpair of A. (d) If A has finitely
many real eigenvectors, then there exists x∗ such that xk → x∗.

Proof. Our analysis depends on the modified function f̂ defined in (4.1). Its
gradient and Hessian are

ĝ(x) ≡ ∇f̂(x) = g(x) +mα(xTx)m/2−1x, (4.3)

Ĥ(x) ≡ ∇2f̂(x) = H(x) +mα(xTx)m/2−1I +m(m− 2)α(xTx)m/2−2xxT , (4.4)

where g and H are the gradient and Hessian of f from Lemma 3.1 and Lemma 3.3,
respectively.

Because it is important for the entire proof, we first show that f̂ is convex on Rn
for α > β(A). If x = 0, we have Ĥ(x) = 0 for m ≥ 3. Consider nonzero x ∈ Rn and
define x̄ = x/‖x‖ ∈ Σ; then Ĥ(x) is positive semidefinite (in fact, positive definite)
by Lemma 4.3 since

yT Ĥ(x)y = ‖x‖m−2
(
yTH(x̄)y +mα+m(m− 1)α(x̄Ty)2

)
≥ ‖x‖m−2 (−mβ(A) +mα+ 0) > 0 for all y ∈ Σ.

By Property 2.9, f̂ is convex on Rn because its Hessian is positive semidefinite.
We also note that −α must be an eigenvalue of A if ĝ(x) = 0 for some x ∈ Σ,

since

ĝ(x) = 0 implies Axm−1 + αx = 0.

By Lemma 4.2, choosing α > β(A) ensures that α is greater than the magnitude
of any eigenvalue, and so ĝ(x) 6= 0 for all x ∈ Σ. This ensures that the update in
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Algorithm 2, which reduces to

xk+1 =
ĝ(xk)

‖ĝ(xk)‖
(4.5)

in the convex case, is always well defined.
(a) Since f̂ is convex on Γ and xk+1,xk ∈ Σ and xk+1 = ∇f̂(xk)/‖∇f̂(xk)‖,

Theorem 2.10 yields

λk+1 − λk = f̂(xk+1)− f̂(xk) ≥ 0,

where the nonstrict inequality covers the possibility that xk+1 = xk. Thus, {λk} is
a nondecreasing sequence. By Lemma 4.2, λk = f(xk) is bounded, so the sequence
must converge to a limit point λ∗.

(b) Since {xk} is an infinite sequence on a compact set Σ, it must have an accu-
mulation point x∗ ∈ Σ by the Bolzano-Weierstrass theorem. Note also that continuity
of f implies that λ∗ = Axm∗ .

(c) By part (a) of the proof, convexity of f̂ , and Property 2.8, we have

f̂(xk+1)− f̂(xk)→ 0

and thus

ĝ(xk)T (xk+1 − xk)→ 0.

Using (4.5), we can rewrite the above formula as

‖ĝ(xk)‖ − ĝ(xk)Txk → 0. (4.6)

By continuity of ĝ, an accumulation point x∗ must satisfy

‖ĝ(x∗)‖ − ĝ(x∗)
Tx∗ = 0, (4.7)

which implies

‖ĝ(x∗)‖ = ĝ(x∗)
Tx∗ = (mAxm−1

∗ +mαx∗)
Tx∗ = m(λ∗ + α).

Because x∗ ∈ Σ, (4.7) can hold only if

x∗ =
ĝ(x∗)

‖ĝ(x∗)‖
=
mAxm−1

∗ +mαx∗
m(λ∗ + α)

,

that is,

Axm−1
∗ = λ∗x∗.

Hence (λ∗,x∗) is an eigenpair of A.
(d) Equation (4.6) gives

‖ĝ(xk)‖(1− xTk+1xk)→ 0.

Because ‖ĝ(xk)‖ is bounded away from 0 and because xk,xk+1 ∈ Σ, this requires that

‖xk − xk+1‖ → 0. (4.8)
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Recall that every accumulation point of {xk} must be a (real) eigenvector of A. If
these eigenvectors are finite in number and thus isolated, consider removing an arbi-
trarily small open neighborhood of each from Σ, leaving a closed and thus compact
space Y ⊂ Σ containing no accumulation points of {xk}. If {xk} had infinitely many
iterates in Y , it would have an accumulation point in Y by the Bolzano-Weierstrass
theorem, creating a contradiction. Therefore at most finitely many iterates are in Y ,
and {xk} is ultimately confined to arbitrarily small neighborhoods of the eigenvec-
tors. By (4.8), however, ‖xk − xk+1‖ eventually remains smaller than the minimum
distance between any two of these neighborhoods. Consequently, the iteration ulti-
mately cannot jump from one neighborhood to another, and so in the limit {xk} is
confined to an arbitrarily small neighborhood of a single eigenvector x∗, to which it
therefore converges.

Hence, the proof is complete.

Note that the condition of finitely many real eigenvectors in part (d) holds for
generic tensors. We conjecture that the convergence of {xk} is guaranteed even with-
out this condition.

Example 4.5. Again consider A ∈ R[4,3] from Example 3.5. We show results us-
ing a shift of α = 2. We ran 100 trials of SS-HOPM using the experimental conditions
described in Example 3.5. We found 3 real eigenpairs; the results are summarized in
Table 4.1a. Three example runs (one for each eigenvalue) are shown in Figure 4.1a.

Analogous results are shown for A ∈ R[3,3] from Example 3.6 with a shift of α = 1
in Table 4.1b and Figure 4.1b. Here SS-HOPM finds 2 additional eigenpairs compared
to S-HOPM.

These values of α were not chosen to ensure applicability of Theorem 4.4, but
they are sufficient to achieve convergence for these examples. For both tensors, {λk}
is always a nondecreasing sequence. Observe further that SS-HOPM converges only
to eigenpairs that are negative stable. �

# Occurrences λ xT

46 0.8893 [ 0.6672 0.2471 −0.7027 ]
24 0.8169 [ 0.8412 −0.2635 0.4722 ]
30 0.3633 [ 0.2676 0.6447 0.7160 ]

(a) A ∈ R[4,3] from Example 3.5 with α = 2.

# Occurrences λ xT

40 0.8730 [ −0.3922 0.7249 0.5664 ]
29 0.4306 [ −0.7187 −0.1245 −0.6840 ]
18 0.0180 [ 0.7132 0.5093 −0.4817 ]
13 −0.0006 [ −0.2907 −0.7359 0.6115 ]

(b) A ∈ R[3,3] from Example 3.6 with α = 1.

Table 4.1: Eigenpairs computed by SS-HOPM (convex) with 100 random starts.

Using a large enough negative value of α makes f̂ concave. It was observed [9] that
f(x) = f(−x) for even-order tensors and so the sequence {λk} converges regardless
of correctly handling the minus sign. The only minor problem in the concave case is
that the sequence of iterates {xk} does not converge. This is easily fixed, however, by
correctly handling the sign as we do in Algorithm 2. The corresponding theory for the
concave case is presented in Corollary 4.6. In this case we choose α to be negative,
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(a) A ∈ R[4,3] from Example 3.5 with α = 2. (b) A ∈ R[3,3] from Example 3.6 with α = 1.

Fig. 4.1: Example λk values for SS-HOPM (convex). One sequence is shown for each
distinct eigenvalue.

i.e., the theory suggests α < −β(A).
Corollary 4.6. Let A ∈ R[m,n] be symmetric. For α < −β(A), where β(A)

is defined in (4.2), the iterates {λk,xk} produced by Algorithm 2 satisfy the following
properties. (a) The sequence {λk} is nonincreasing, and there exists λ∗ such that
λk → λ∗. (b) The sequence {xk} has an accumulation point. (c) For any such
accumulation point x∗, the pair (λ∗,x∗) is an eigenpair of A. (d) If the eigenvalues
of A are isolated, then xk → x∗.

Proof. Apply the proof of Theorem 4.4 with f(x) = −Axm.
Example 4.7. Revisiting A ∈ R[4,3] in Example 3.5 again, we run another 100

trials using α = −2. We find 3 (new) real eigenpairs; the results are summarized in
Table 4.2a. Three example runs (one for each eigenvalue) are shown in Figure 4.2a.

We also revisit A ∈ R[3,3] from Example 3.6 and use α = −1. In this case, we
find the opposites, i.e., (−λ,−x), of the eigenpairs found with α = 1, as shown in
Table 4.2b. This is to be expected for odd-order tensors since there is symmetry, i.e.,
f(x) = −f(−x), C(λ,x) = −C(−λ,−x), etc. Four example runs (one per eigenvalue)
are shown in Figure 4.2b.

The sequence {λk} is nonincreasing in every case. Each of the eigenpairs found
in the concave case is positive stable. �

4.2. SS-HOPM fixed point analysis. In this section, we show that fixed
point analysis allows us to easily characterize convergence to eigenpairs according to
whether they are positive stable, negative stable, or unstable. The convex version of
SS-HOPM will generically converge to eigenpairs that are negative stable; the concave
version will generically converge to eigenpairs that are positive stable.

To justify these conclusions, we consider Algorithm 2 in the convex case as a fixed
point iteration xk+1 = φ(xk), where φ is defined as

φ(x) = φ1(φ2(x)) with φ1(x) =
x

(xTx)
1
2

and φ2(x) = Axm−1 + αx. (4.9)

Note that an eigenpair (λ,x) is a fixed point if and only if λ+α > 0, which is always
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# Occurrences λ xT

15 −0.0451 [ −0.7797 −0.6135 −0.1250 ]
40 −0.5629 [ −0.1762 0.1796 −0.9678 ]
45 −1.0954 [ −0.5915 0.7467 0.3043 ]

(a) A ∈ R[4,3] from Example 3.5 with α = −2.

# Occurrences λ xT

19 0.0006 [ 0.2907 0.7359 −0.6115 ]
18 −0.0180 [ −0.7132 −0.5093 0.4817 ]
29 −0.4306 [ 0.7187 0.1245 0.6840 ]
34 −0.8730 [ 0.3922 −0.7249 −0.5664 ]

(b) A ∈ R[3,3] from Example 3.6 with α = −1.

Table 4.2: Eigenpairs computed by SS-HOPM (concave) with 100 random starts.

(a) A ∈ R[4,3] from Example 3.5 with α = 2. (b) A ∈ R[3,3] from Example 3.6 with α = 1.

Fig. 4.2: Example λk values for SS-HOPM (concave). One sequence is shown for each
distinct eigenvalue.

true for α > β(A).

From [7], the Jacobian of the operator φ is

J(x) = φ′1(φ2(x))φ′2(x),

where

φ′1(x) =
(xTx)I− xxT

(xTx)
3
2

and φ′2(x) = (m− 1)Axm−2 + αI.

At any eigenpair (λ,x), we have

φ2(x) = (λ+ α)x, φ′1(φ2(x)) =
(I− xxT )

λ+ α
,

and φ′2(x) = (m− 1)Axm−2 + αI.
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Thus, the Jacobian at x is

J(x) =
(m− 1)(Axm−2 − λxxT ) + α(I− xxT )

λ+ α
. (4.10)

Observe that the Jacobian is symmetric.
Theorem 4.8. Let (λ,x) be an eigenpair of a symmetric tensor A ∈ R[m,n].

Assume α ∈ R such that α > β(A), where β(A) is as defined in (4.2). Let φ(x) be
given by (4.9). Then (λ,x) is negative stable if and only if x is a linearly attracting
fixed point of φ.

Proof. Assume that (λ,x) is negative stable. The Jacobian J(x) is given by
(4.10). By Theorem 2.13, we need to show that ρ(J(x)) < 1 or, equivalently since
J(x) is symmetric, |yTJ(x)y| < 1 for all y ∈ Σ. We restrict our attention to y⊥x
since J(x)x = 0.

Let y ∈ Σ with y⊥x. Then

|yTJ(x)y| =

∣∣∣∣∣yT
(
(m− 1)Axm−2

)
y + α

λ+ α

∣∣∣∣∣
The assumption that (λ,x) is negative stable means that C(λ,x) is negative definite;
therefore, yT

(
(m− 1)Axm−2

)
y < λ. On the other hand, by the definition of β,

ρ
(
(m− 1)Axm−2

)
≤ β(A).

Thus, using the fact that λ+ α is positive, we have

0 <
−β(A) + α

λ+ α
≤

yT
(
(m− 1)Axm−2

)
y + α

λ+ α
<
λ+ α

λ+ α
= 1

Hence, ρ(J(x)) < 1, and x is a linearly attracting fixed point.
On the other hand, if (λ,x) is not negative stable, then there exists w ∈ Σ such

that w⊥x and wT
(
(m− 1)Axm−2

)
w ≥ λ. Thus,

wTJ(x)w =
wT

(
(m− 1)Axm−2

)
w + α

λ+ α
≥ λ+ α

λ+ α
= 1.

Consequently, ρ(J(x)) ≥ 1, and x is not a linearly attracting fixed point by Theo-
rem 2.13 and Theorem 2.14.

In fact, we can see from the proof of Theorem 4.8 that if the eigenpair (λ,x) is
not negative stable, there is no choice of α ∈ R that will make ρ(J(x)) < 1. For x
to be a fixed point at all, we must have λ + α > 0, and this is sufficient to obtain
ρ(J(x)) ≥ 1 if (λ,x) is not negative stable. In other words, smaller values of α do not
induce “accidental” convergence to any additional eigenpairs.

An alternative argument establishes, for α > β(A), the slightly broader result
that any attracting fixed point, regardless of order of convergence, must be a strict
constrained local maximum of f(x) = Axm on Σ. That is, the marginally attract-
ing case corresponds to a stationary point that has degenerate C(λ,x) but is still
a maximum. This follows from Theorem 2.10, where the needed convexity holds
for α > β(A), so that any vector x′ ∈ Σ in the neighborhood of convergence of x
must satisfy f(x′) < f(x). One can convince oneself that the converse also holds for
α > β(A), i.e., any strict local maximum corresponds to an attracting fixed point.
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This is because the strict monotonicity of f under iteration (other than at a fixed
point) implies that the iteration acts as a contraction on the region of closed contours
of f around the maximum.

The counterpart of Theorem 4.8 for the concave case is as follows.
Corollary 4.9. Let (λ,x) be an eigenpair of a symmetric tensor A ∈ R[m,n].

Assume α ∈ R such that α < −β(A), where β(A) is as defined in (4.2). Let φ(x) be
given by (4.9). Then (λ,x) is positive stable if and only if x is a linearly attracting
fixed point of −φ.

Example 4.10. We return again to A ∈ R[4,3] as defined in Example 3.5.
Figure 4.3a shows the spectral radius of the Jacobian of the fixed point iteration for
varying values of α for all eigenpairs that are positive or negative stable. At α = 0,
the spectral radius is greater than 1 for every eigenvalue, and this is why S-HOPM
never converges. At α = 2, on the other hand, we see that the spectral radius is less
than 1 for all of the negative stable eigenpairs. Furthermore, the spectral radius stays
less than 1 as α increases. Conversely, at α = −2, the spectral radius is less than 1
for all the eigenpairs that are positive stable.

Figure 4.4a plots f(x) on the unit sphere using color to indicate function value.
We show the front and back of the sphere. Notice that the horizontal axis is from 1 to
−1 in the left plot and from −1 to 1 in the right plot, as if walking around the sphere.
In this image, the horizontal axis corresponds to x2 and the vertical axis to x3; the
left image is centered at x1 = 1 and the right image at x1 = −1. Since m is even,
the function is symmetric, i.e., f(x) = f(−x). The eigenvectors are shown as white,
gray, and black circles corresponding to their classification as negative stable, positive
stable, and unstable, respectively; in turn, these correspond to maxima, minima, and
saddle points of f(x).

Figure 4.4b shows the basins of attraction for SS-HOPM with α = 2. Every grid
point on the sphere was used as a starting point for SS-HOPM, and it is colored5

according to which eigenvalue it converged to. In this case, every run converges
to a negative stable eigenpair (labeled with a white circle). Recall that SS-HOPM
must converge to some eigenpair per Theorem 4.4, and Theorem 4.8 says that it is
generically a negative stable eigenpair. Thus, the non-attracting points lie on the
boundaries of the domains of attraction.

Figure 4.4c shows the basins of attraction for SS-HOPM with α = −2. In this
case, every starting point converges to an eigenpair that is positive stable (shown as
gray circles). �

Example 4.11. We return again to A ∈ R[3,3] from Example 3.6, which is
interesting because S-HOPM was able to find 2 of its eigenpairs without any shift. In
Figure 4.5a, f(x) is plotted on the unit sphere, along with each eigenvector, colored
white, gray, or black based on whether it is negative stable, positive stable, or unsta-
ble, respectively. Observe that the function is antisymmetric, i.e., f(x) = −f(−x).
Figure 4.5b shows the basins of attraction for S-HOPM (i.e., SS-HOPM with α = 0).
Every starting point converges to one of the 2 labeled eigenpairs. This is not sur-
prising because Figure 4.3b shows that there are 2 eigenvalues for which the spectral
radius of the Jacobian is less than 1 (λ = 0.8730 and 0.4306). The other 2 eigenvalues
are non-attracting for α = 0.

Figure 4.5c shows the basins of attraction for SS-HOPM with α = 1; each negative
stable eigenpair (shown as a white circle) is an attracting eigenpair. From Figure 4.3b,

5Specifically, each block on the sphere is colored according to the convergence of its lower left
point.
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(a) A ∈ R[4,3] from Example 3.5. (b) A ∈ R[3,3] from Example 3.6.

Fig. 4.3: Spectral radii of the Jacobian J(λ,x) for different eigenpairs as α varies.

it may be surprising that we find 4 rather than 3 eigenvalues because it appears that
there are only 3 eigenvalues with a spectral radius less then 1. However, since m is
odd, we must also consider that we will pick up the opposite of any eigenvalues for
which the spectral radius is less than 1 for −α. In this case, it means that we find
λ = −0.0006. The concave case is just a mirror image and is not shown. �

As the previous example reminds us, for odd order, there is no need to try both
positive and negative α because the definiteness of C flips for eigenvectors of opposite
sign.

4.3. Relationship to power method for matrix eigenpairs. The power
method for matrix eigenpairs is a technique for finding the largest-magnitude eigen-
value (and corresponding eigenvector) of a diagonalizable symmetric matrix [8]. Let
A be a symmetric real-valued n×n matrix. Then the matrix power method is defined
by

xk+1 =
Axk
‖Axk‖

.

Assume that VΛVT is the Schur decomposition of A with eigenvalues satisfying
|λ1| > |λ2| ≥ · · · ≥ |λn| (note the strict difference in the first 2 eigenvalues). The
sequence {xk} produced by the matrix power method always converges (up to sign)
to the eigenvector associated with λ1. Shifting the matrix by A ← A + αI shifts
the eigenvalues by λj ← λj + α, potentially altering which eigenvalue has the largest
magnitude.

In the matrix case, the eigenvalues of the Jacobian defined by (4.10) for an eigen-
pair (λj ,xj) are given by

{0} ∪
{
λi + α

λj + α
: 1 ≤ i ≤ n with i 6= j

}
.

Thus, the Jacobian at x1 is the only one such that ρ(J(x)) < 1; no other eigen-
vectors are stable fixed points of the iteration. This corresponds to Theorem 4.8 (or
Corollary 4.9), since the most positive eigenvalue is negative stable, the most negative
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(a) Function values for f(x) = Axm.

(b) SS-HOPM basins of attraction using α = 2.

(c) SS-HOPM basins of attraction using α = −2.

Fig. 4.4: Illustrations for A ∈ R[4,3] from Example 3.5. The horizontal axis corre-
sponds to x2 and the vertical axis to x3; the left image is centered at x1 = 1 and the
right at x1 = −1. White, gray, and black dots indicate eigenvectors that are negative
stable, positive stable, and unstable, respectively.
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(a) Function values for f(x) = Axm.

(b) SS-HOPM basins of attraction using α = 0.

(c) SS-HOPM basins of attraction using α = 1.

Fig. 4.5: Illustrations for A ∈ R[3,3] from Example 3.6. The horizontal axis corre-
sponds to x2 and the vertical axis to x3; the left image is centered at x1 = 1 and the
right at x1 = −1. White, gray, and black dots indicate eigenvectors that are negative
stable, positive stable, and unstable, respectively.
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eigenvalue is positive stable, and every other eigenvalue is unstable. The eigenpair
(λ1,x1) is an attractor for ordinary (convex) power iteration if λ1 > 0 or for flipped
(concave) power iteration if λ1 < 0.

In contrast to the matrix power method, SS-HOPM can find multiple eigenpairs
since there may be multiple positive and negative stable eigenpairs. But, as for
matrices, since the most positive and most negative eigenvalues correspond to the
global maximum and minimum of f(x), they must be negative stable and positive
stable respectively. Thus, choosing α positive is necessary for finding the most positive
tensor eigenvalue; conversely, α negative is necessary for finding the most negative
tensor eigenvalue. Unfortunately, the ability to find multiple eigenpairs means that
there is no guarantee that the iterates will converge to an extremal eigenpair from
every starting point. In fact, multiple starting points may be needed.

4.4. Comparison to other methods. SS-HOPM is useful for its guaranteed
convergence properties and its simple implementation based on tensor-vector multi-
plication. For fixed m and large n, the computational complexity of each iteration
of SS-HOPM is O(nm), which is the number of individual terms to be computed in
Axm−1. This is analogous to the O(n2) complexity of matrix-vector multiplication as
used in the matrix power method. We do not yet know how the number of iterations
needed for numerical convergence of SS-HOPM depends on m and n.

The convergence of SS-HOPM to only a subset of eigenvalues, which tend to be
among the largest in magnitude, is beneficial when the large eigenvalues are of primary
interest, as in the rank-1 approximation problem [9]. In particular, the most positive
eigenvalue and most negative eigenvalue always have a region of stable convergence
for a suitable choice of shift. However, the lack of stable convergence to certain other
eigenvalues is a disadvantage if those eigenvalues are of interest.

One evident computational approach for finding tensor eigenpairs should be com-
pared with SS-HOPM. This is to apply a numerical solver for nonlinear equation
systems, such as Newton’s method, directly to the eigenvalue equations (1.2). The
computational complexity of each iteration of Newton’s method for this system is that
of SS-HOPM plus the construction and inversion of the (n + 1) × (n + 1) Jacobian
for (λ,x). The Jacobian construction is effectively included in SS-HOPM, since it is
dominated by computing Axm−2, which is a precursor of Axm−1. The additional
work for inversion is O(n3), and for m ≥ 3 it does not affect the complexity scaling,
which remains O(nm).

Two advantages of an approach such as Newton’s method are generic locally
stable convergence, which enables finding eigenpairs not found by SS-HOPM, and the
quadratic order of convergence, which can be expected to require fewer iterations than
the linearly convergent SS-HOPM. On the other hand, there is no known guarantee
of global convergence as there is for SS-HOPM, and it is possible that many starting
points fail to converge. Even those that do converge may lead to eigenpairs of less
interest for a particular application. Furthermore, certain tensor structures can be
more efficiently handled with SS-HOPM than with Newton’s method. For example,
consider a higher-order symmetric tensor expressed as a sum of terms, each of which is
an outer product of matrices. The computation of Axm−1 then reduces to a series of
matrix-vector multiplications, which are O(n2). This compares favorably to the O(n3)
of Newton’s method for the same tensor. Further investigation of general nonlinear
solver approaches to the tensor eigenvalue problem will be beneficial.

Finally, we consider a polynomial solver approach, such as we implemented in
Mathematica. This can find all eigenpairs (subject to numerical conditioning issues)
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but becomes computationally expensive for large m and n. In part this is simply
because, from Theorem 2.7, the number of eigenpairs grows exponentially with n.
The solver in Mathematica is designed to find all solutions; it is not clear whether a
substantial improvement in efficiency would be possible if only one or a few solutions
were required.

Nevertheless, for comparison with the iterative approaches discussed above, we
have measured the computational time per eigenpair on a desktop computer for var-
ious values of m and n, as shown in Figure 4.6. The complexity of the polynomial
solution, even measured per eigenpair, is seen to increase extremely rapidly (faster
than exponentially) with n. Thus the polynomial solver approach is not expected to
be practical for large n.

Fig. 4.6: Average time (over 10 trials) required to compute all eigenpairs, divided by
the number of eigenpairs, for random symmetric tensors in R[m,n]. Note logarithmic
vertical scale. Measured using NSolve in Mathematica on a 4 GHz Intel Core i7.

5. Complex case. We propose an extension of the SS-HOPM algorithm to the
case of complex vectors in Algorithm 3. Observe that the division by λk + α keeps
the phase of xk from changing unintentionally. It is akin to taking the negative in the
concave case in Algorithm 2. It is important to note that even if an eigenpair is real,
there is no guarantee that the complex SS-HOPM will converge to the real eigenpair;
instead, it will converge to some random rotation in the complex plane. We have no
convergence theory in the convex case, but we present several promising numerical
examples.

Algorithm 3 Complex SS-HOPM

Given a tensor A ∈ R[m,n].

Require: x0 ∈ Cn with ‖x0‖ = 1. Let λ0 = Axm0 .
Require: α ∈ C

1: for k = 0, 1, . . . do
2: x̂k+1 ← (Axm−1

k + αxk)/(λk + α)
3: xk+1 ← x̂k+1/‖x̂k+1‖
4: λk+1 ← x†k+1Axm−1

k+1

5: end for
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Example 5.1. We once again revisit A ∈ R[4,3] from Example 3.5 and test the
complex version of SS-HOPM in Algorithm 3. Table 5.1a shows the results of 100
runs using the same experimental conditions as in Example 3.5 except with complex
random starting vectors. We find 7 distinct eigenrings — the 6 stable real eigenpairs
as well as a ring corresponding to the 2 complex eigenpairs. Figure 5.1a shows the
individual λ∗ values plotted on the complex plane. As mentioned above, it may
converge anywhere on the eigenring, though there is clear bias toward the value of α.

To investigate this phenomenon further, we do another experiment with α =
−(1 + i)/

√
2. It finds the same eigenrings as before as shown in Table 5.1b, but this

time the λ∗ values are distributed mostly in the lower left quadrant of the complex
plane as shown in Figure 5.1b, again close to the value of α. In the case of the 2
complex eigenpairs with the same eigenring, the method finds the 2 distinct eigenvec-
tors (i.e., defining 2 different equivalence classes) in the 4 different times it converges
to that eigenvalue; this is not surprising since the complex eigenvalue has 2 different
eigenvectors as shown in Table 3.1.

We also ran an experiment with α = 0. In this case, 95 trials converged, but to
non-eigenpairs (all with |λ| = 0.3656). �

Table 5.1: Eigenrings computed for A ∈ R[4,3] from Example 3.5 by complex SS-
HOPM with 100 random starts.

(a) α = 2.

# Occurrences |λ|
18 1.0954
18 0.8893
21 0.8169
1 0.6694
22 0.5629
8 0.3633
12 0.0451

(b) α =
√

2(1+ i) (2 failures).

# Occurrences |λ|
22 1.0954
15 0.8893
12 0.8169
4 0.6694
16 0.5629
9 0.3633
20 0.0451

(a) α = 2. (b) α = −
√

2(1 + i) (2 failures).

Fig. 5.1: For A ∈ R[4,3] from Example 3.5, final λ values (indicated by red asterisks)
for 100 runs of complex SS-HOPM. The green lines denote the eigenrings.
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6. Conclusions. We have developed a new method, SS-HOPM, for finding ten-
sor eigenvalues. The method can be considered as a higher-order analogue to the
power method for matrices. Just as in the matrix case, it cannot find all possible
eigenvalues, but it is guaranteed to be able to find the largest-magnitude eigenvalue.
Unlike the matrix case, it can find multiple eigenvalues; multiple starting points are
typically needed to find the largest eigenvalue.

We extend the analysis of Kofidis and Regalia [9] to show that SS-HOPM will
always converge to a real eigenpair for appropriate choice of α. Moreover, using
fixed point analysis, we characterize exactly which real eigenpairs can be found by
the method, i.e., those that are positive or negative stable. Alternative methods will
need to be developed for finding the unstable real eigenpairs, i.e., eigenpairs for which
C(λ,x) is indefinite. A topic for future investigation is that the boundaries of the
basins of attraction seem to be defined by the non-attracting eigenvectors.

We present a complex version of SS-HOPM and limited experimental results that
indicate it finds eigenpairs, including complex eigenpairs. Analysis of the complex
version is a topic for future study.

Much is still unknown about tensor eigenpairs. For example, how do the eigen-
pairs change with small perturbations of the tensor entries? Is there an eigendecom-
position of a tensor? Can the convergence rate of the current method be accelerated?
How does one numerically compute unstable eigenpairs? For computing efficiency,
what is the optimal storage for symmetric tensors? These are all potential topics of
future research.
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