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Abstract

BadRank is a method for detecting spam web sites, based on the premise that a page is spam if it
points to another spam page; i.e., the BadRank score of a page is the weighted sum of the BadRank
scores of the pages that it links to. BadRank is an important tool in spam detection. We consider
the mathematical structure of BadRank, showing how it can be modified to guarantee that the iter-
ates converge. Additionally, we consider methods for incorporating knowledge about trusted (known
non-spam) sites into the BadRank calculation by changing the underlying iteration matrix. The effec-
tiveness of BadRank in web spam detection is demonstrated in a statistically significant evaluation on
the WEBSPAM-UK2007 data set.
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1 Introduction

BadRank [22] is a method for detecting spam web sites, based on the premise that a page is spam if it
points to another spam page; i.e., the BadRank score of a page is the weighted sum of the BadRank scores
of the pages that it links to. BadRank can be considered a random walk that traverses links in reverse and
periodically jumps back to a starting seed set of known “bad” pages (similar to Personalized PageRank [20]).
This focuses BadRank on pages that are closely linked to a predefined set of known bad pages. Because of
this property, BadRank is an important tool in spam detection.

The identification of web spam has been identified as a major challenge for web search engines [13].
Spam web sites deliberately manipulate their placement (or that of paying customers) in search engine
rankings. Since web pages that rank highly attract significantly more attention from users, high placement
in search results is critical for online commerce sites. In addition to legitimate commerce sites (that may use
illegitimate means to be highly ranked), many spam web sites exist simply to serve online advertisements
that generate revenue whenever they are clicked. For a recent and detailed assessment of web spam, see [23].

One of the techniques used by spammers is so-called link spam, where farms of interlinked web sites are
used to give high PageRank to certain pages. These link farms tend not to have any legitimate content and
so do not have incoming links from sites outside the farm. Therefore, if one page within a link farm can be
identified, we can reasonably suspect that any pages that point to it are also spam pages. Likewise, pages
that point to those pages are likely to be spam, and so on.

In this paper, we generalize the formulation of BadRank and make the following contributions:

• We determine what modifications are required to ensure that the BadRank iteration matrix is stochas-
tic, aperiodic, and irreducible, guaranteeing that the iterates converge. This involves adjusting the
hyperlink matrix to account for leaf nodes (nodes with no inlinks) and adding a uniform random jump.

• We develop two novel methods for incorporating trust. The first declares a site as absolutely trusted
and removes all its outbound links so that it cannot receive any BadRank score. The second is more
flexible and defines a notion of graduated trust. In this case, nodes are weighted according to how
trustworthy they might be. This results in non-uniform transition probabilities in the random walk.

• We test 48 different variations of BadRank on the WEBSPAM-UK2007 dataset. By itself, BadRank is
not an effective classifier because it can only find spam pages that are connected to those pages in its
seed set. We show, however, that it can increase the performance of a classifier when combined with
other features.

The paper is organized as follows. Section 2 analyzes the BadRank method and presents novel variations
that ensure that the iterates converge and furthermore incorporate trust. Section 3 gives results of BadRank
on a real-world dataset that has over 6,000 hand-labeled spam and non-spam web sites. Section 4 surveys
related work. Finally, Section 5 discusses conclusions and future work.

Notation

Matrices are denoted by boldface capital letters (A,B,C, . . . ) and vectors by boldface lower case letters
(a,b, c, . . . ). Indices are denotes by lowercase letters (i, j, k, . . . ). The (i, j) element of a matrix A is
denoted by A(i, j), and the ith element of a vector a is denoted by a(i). Sets are denoted by calligraphic
fonts (A,B, C, . . . ). Sizes of sets or numbers of items are denotes by uppercase letters (N,M, . . . ). We let e
denote the vector of all ones and I denote the identity matrix. The one-norm of a vector is defined as

‖x ‖1 =
∑
i

|x(i)|.

7



We let R denote the set of all real numbers, R≥0 = [0,+∞) denote the set of all nonnegative numbers,
and R+ = (0,+∞) denote the set of strictly positive real numbers. A nonnegative square matrix is called
stochastic if its rows sum to one; i.e., A ∈ RN×N

≥0 is stochastic if∑
j

A(i, j) = 1 for i = 1, . . . , N.
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2 The BadRank Method

We consider links between web pages or web hosts. For ease of exposition, we discuss all methods in terms
of page-to-page links, but in practice we will consider a host-to-host graph. The mathematics is equivalent.

We assume that we have a collection of N web pages and a seed set of known “bad” pages denoted by
B ⊆ {1, . . . , N}. Let M = |B| denote the number of bad pages. A hyperlink in the web graph from page i to
page j is denoted by i→ j. We ignore self-links in the data and only count each hyperlink only once, even
if there are multiple links between two pages. The N ×N hyperlink matrix is given by

H(i, j) =

{
1 if i→ j

0 otherwise
for 1 ≤ i, j ≤ N. (1)

2.1 Basic BadRank

The BadRank method has not been formally published, but is discussed on a web page that speculates on
Google’s spam detection methods [22]. A closely related method is Anti-Trust Rank [15]. In BadRank, we
compute a sequence

sk(i) = α
∑
i→j

sk−1(j)

inlinks(j)
+ (1− α)b(i)

for 1 ≤ i ≤ N,

where sk ∈ RN
≥0, sk(i) is the BadRank score of page i at iteration k, inlinks(i) is the number of inlinks to

page i, and α is some parameter in the interval [0, 1] (typically α = 0.85). In [22], the vector b ∈ RN
≥0 is not

completely specified but instead described as a “special evaluation of certain web pages . . . [that] reflects if
a page was detected by a spam filter or not.”1 For our purposes, we assume

b(i) =

{
1/M if i ∈ B,
0 otherwise

for 1 ≤ i ≤ N. (2)

Typically, the iterates are initialized by s0 = b.

BadRank is identical to Personalized PageRank [20, Section 6] with the personalization vector set to b,
except that the links are reversed. In fact, BadRank can be considered a variant of Topic-Sensitive PageRank
[12] and TrustRank [11]. If α = 0.85, the random surfer will walk backwards over inbound links 85% of the
time and then jump to a random page in B the other 15% of the time. Another way to think of this is
that the random surfer will, on average, jump back to a random page in B approximately every six steps.
The main problem with personalization is that the resulting iteration matrix may not be aperiodic and
irreducible, which we discuss the implications of in §2.2.

BadRank can be formulated in matrix notation as

sTk = sTk−1B,

where B ∈ RN×N
≥0 is the BadRank matrix defined as

B = αDHT + (1− α)ebT (3)

1Reference [22] continues on to say that the sum of b should be equal to N , but a more accurate statement would be to say
that it should be equal to ‖ s0 ‖1. If the initial set of scores is all ones, then b should sum to N ; likewise, if the initial set of
scores sums to one, then b should also sum to one.
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and D ∈ RN×N
≥0 is a diagonal scaling matrix whose ith diagonal entry is given by

D(i, i) =

{
1/inlinks(i) if inlinks(i) > 0

0 otherwise

for 1 ≤ i ≤ N. (4)

If every page has at least one inlink, then B is stochastic; otherwise, it is substochastic. We discuss the
implications of this in §2.2.

Krishnan and Raj [15] show BadRank (which they refer to as Anti-Trust Rank) is effective in detecting
spam pages.

2.2 Generalized BadRank Formulation

In this subsection, we present a generalized formulation of the BadRank matrix and consider the BadRank
method of [22, 15] as a special case. Consider the Badrank iteration:

sTk = sTk−1B = sT0Bk for k = 1, 2, . . . . (5)

It is well known that if B is stochastic, irreducible, and aperiodic, then a unique stationary distribution of
the Markov Chain defined by B exists which satisfies

sT = sTB.

Moreover, the iteration defined in (5) is guaranteed to converge to the unique stationary distribution regard-
less of the choice for s0. If B is substochastic, then the iterates defined by (5) may converge to zero. If B
is not aperiodic and irreducible, then the iterates defined by (5) may cycle or converge to different solutions
depending on the starting guess. See, e.g., [16] for a discussion. Oftentimes these problems are not observed
in practice because the number of iterations is fixed to some low value such as 25 and different starting
points are not evaluated.

We define a generalized form of the BadRank matrix, B ∈ RN×N
≥0 , as

B = αW + βebT + γevT. (6)

We assume α+ β + γ = 1 as well as the following.

• The matrix W ∈ RN×N
≥0 , called the walk matrix, is assumed to be at least substochastic. It controls

the probability of walking backwards along existing links. A walk step is followed with the probability
specified by α.

• The vector b ∈ RN
≥0 is such that ‖b ‖1 = 1 and is called the known bad node jump vector. It is used

whenever we jump to a known bad node and determines the probability distribution among the nodes
in B. We assume throughout that b is as defined in (2) so that every bad node is equally probable.
Further, we assume that many entries in b are zero, corresponding to nodes outside of B. A known
bad node jump is taken with the probability specified by β.

• The vector v ∈ RN
+ is such that ‖v ‖1 = 1 and is called the random node jump vector. It controls the

probabilities of jumping to a completely random node. We assume throughout that v = e/N so that
every node is equally probable. It is possible to choose any probabilities so long as they are all strictly
positive and sum to one. A completely random jump is taken with the probability specified by γ.

Theorem 2.1 In (6), if W is stochastic, then B is stochastic. Further, if γ > 0, then B is aperiodic and
irreducible.
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The proof is straightforward and so is omitted; see [16].

The basic BadRank formulation in §2.1 has

β = 1− α and γ = 0.

Consequently, the third term in (6) is not present in this formulation. This is a potential pitfall since the
resulting stochastic matrix may be reducible or aperiodic, meaning that the iterations defined by (5) may not
converge, as mentioned above. A more serious problem has to do with the walk matrix. In basic BadRank,
we have

W = DHT

where D is as defined in (4) and H as in (1). We refer to pages without any inlinks as leaf nodes. If any leaf
nodes exist, then W is substochastic. This means that the scores defined in (5) may converge to zero.

Consider the example shown in Figure 1. We assume B = {1}. The BadRank scores calculated by the
basic BadRank formulation are given in Table 1. The values change depending on the number of iterations
and eventually converge to zero. We consider a straightforward method to correct for this problem in the
next subsection.

2.3 Ensuring Stochasticity of the BadRank Matrix

As mentioned in the previous subsection, the basic BadRank matrix may be substochastic due to the presence
of leaf nodes. We define the set of leaf nodes as

L = {i : inlinks(i) = 0}.

In the matrix H, leaf nodes correspond to zero columns. One possible fix is to remove any leaf nodes (the
original PageRank paper [20] proposes such an approach), but the removal of leaf nodes may produce yet
more leaf nodes, requiring an iterative removal process. Moreover, we will not have BadRank scores for the
leaf nodes (though these can be computed; see, e.g., [14]). Another more attractive possibility is to add
artificial links pointing to the leaf nodes. We propose three options for creating a modified hyperlink matrix
Ĥ ∈ RN×N

≥0 which has no zero columns. We can then define the stochastic matrix W in (6) as

W = D̂Ĥ
T

(7)

where D̂ ∈ RN×N
≥0 is a diagonal scaling matrix defined by

D̂(i, i) = 1/

N∑
j=1

Ĥ(i, j). (8)

Leaf Self Links

One idea is to add self links for all the leaf nodes. We define a modified hyperlink matrix as

Ĥ = H + L

where L ∈ RN×N is a diagonal matrix such that

L(i, i) =

{
1 if i ∈ L
0 otherwise

for i = 1, . . . , N.

11



Leaf Bad Links

Another idea is to jump back to the known bad nodes whenever we encounter a leaf node. This add links
from the bad nodes pointing to the leaf node. Therefore, we define

Ĥ = H + J

where J ∈ RN×N
≥0 is a matrix such that

J(i, j) =

{
1 if i ∈ B and j ∈ L
0 otherwise

for i = 1, . . . , N.

In other words, we fill in the empty columns of H with copies of the vector Mb.

Self Links

Another option is to just add self links for every node. In this case, we have no need to predetermine the
leaf nodes. This may be the most appropriate option in a streaming environment. In this case,

Ĥ = H + I

where I is the N ×N identity matrix.

Examples of fixing the leaf nodes

Consider again the hyperlink graph in Figure 1. We experiment with each of the three fixes listed above
by running BadRank until ‖sk − sk−1‖ ≤ ε, where ε = 10−10; this required feweer than 100 iterations in
all three examples. The results are given in Table 2. Here we can see that adding “leaf self links” or “self
links” results in a large score for the leaf node. This is because it becomes a sink node. We would expect
that Node 2 should have a high BadRank score because it points directly to the known bad node. Likewise,
nodes 3 and 4 are two hops from the known bad node, and Node 5 is three hops away, and we would expect
the scores to descend accordingly. We see the expected behavior for “leaf bad links.” Interestingly, “self
links” does best in our experiment results on real-world data shown in §3.

2.4 Incorporating Trust

In many cases, we may have a known set of trusted nodes, denoted by the set T .2 For example, we may
want to specify that search engines such as Google and Yahoo! are trusted sites even though they have links
to known spam sites. Additionally, we may want to trust sites that have already been manually inspected
and determined not to be spam.

Consider the example shown in Figure 2. Here, B = {1, 2} and T = {3}. BadRank scores are given
in the second column of Table 3. We see that Node 3 gets a high BadRank score; moreover, Node 6 also
has a high BadRank score even though it only has one link and that to a known trusted node. Even if we
were to postprocess the scores in order to set Node 3’s BadRank score to zero, this would not correct the
BadRank score of Node 6. Therefore, we propose to consider a method that incorporates trust directly into
the BadRank computation.

2We naturally require T ∩ B = ∅.
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Figure 1. Example hyperlink graph. Node 1 is drawn with a red
rectangle to indicate that it is a known bad node. Node 3 is a leaf node
because it has no inlinks.

Table 1. Basic BadRank (α = 0.85, β = 0.15, γ = 0) scores for Fig-
ure 1. The iterates converge to zero due to the presence of leaf nodes.

Iteration
Node 15 30 45 60
1 (bad) 0.0330 0.0032 0.0003 0.0000

2 0.0350 0.0034 0.0003 0.0000
3 0.0198 0.0019 0.0002 0.0000
4 0.0198 0.0019 0.0002 0.0000
5 0.0099 0.0010 0.0001 0.0000

Table 2. BadRank (α = 0.84, β = 0.15, γ = 0.01) scores for Figure 1
with different choices for W according to how the leaf nodes are fixed.

Fix
Node leaf self links leaf bad links self links
1 (bad) 0.1942 0.3457 0.3119

2 0.1728 0.3054 0.1919
3 (leaf) 0.5141 0.1433 0.3807

4 0.0823 0.1433 0.0846
5 0.0366 0.0622 0.0309
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Our goal is to remove all outbound hyperlinks from trusted nodes so that they cannot receive any
BadRank score. We define an anti-trust vector z ∈ RN

≥0 so that trusted sites has a value of zero, i.e.,

z(i) =

{
0 if i ∈ T
1 otherwise.

(9)

In the simplest case, we define
Ĥ = ZH

where Z = diag(z), which defines a modified hyperlink matrix with all links from trusted nodes removed.
The matrix W can then be defined as usual in (7) except that we have not corrected for leaf nodes. (Note
the equation for D̂ in (8) can be trivially modified to account for the possible zero columns in Ĥ.)

We reconsider the three methods for fixing leaf nodes in the presence of trusted nodes below. Before we
proceed with this discussion, we note that removing some links may create additional leaf nodes. Therefore,
we define an amended set of leaf nodes, L̄, to be the set of those nodes that have no inlinks once outbound
links from trusted nodes have been removed, i.e.,

L̄ = {j |
N∑
i=1

z(i)H(i, j) = 0}.

It must be the case that L ⊆ L̄. In Figure 2, we have L = {6, 10} and L̄ = {2, 4, 6, 10}.

Leaf Self Links with Trust

The only modifications in the case of adding links of leaf nodes is to use the amended set of leaf nodes to
form L. We define a modified hyperlink matrix as

Ĥ = ZH + L̄

where L̄ ∈ RN×N is a diagonal matrix such that

L̄(i, i) =

{
1 if i ∈ L̄
0 otherwise

for i = 1, . . . , N. (10)

Leaf Bad Links with Trust

In the case of adding leaps back to bad nodes, we weight the jump by the appropriate entry of z and once
again use the amended set of leaf nodes. Therefore, we define

Ĥ = ZH + J

where J ∈ RN×N
≥0 is a matrix such that

J(i, j) =

{
z(i) if i ∈ B and j ∈ L̄
0 otherwise

for i = 1, . . . , N.

Self Links with Trust

Another option is to just add self links for every node. This may be the most appropriate option in a
streaming environment. In this case,

Ĥ = Z(H + I) + L̃

14



where I is the N ×N identity matrix and L̃ is as

L̃(i, i) =

{
1 if i ∈ L̄ ∩ T
0 otherwise

for i = 1, . . . , N. (11)

Example

We experiment by adding trust into the computation of BadRank for Figure 2. We run BadRank until
‖sk − sk−1‖ ≤ ε, where ε = 10−10; this required fewer than 100 iterations in both experiments. The
BadRank scores with trust are shown in the third column of Table 3. In contrast to the results without trust
in column 2, the BadRank score of Node 3 is now very small (it is not exactly zero because of the random
jumps produced by positive values of γ). Further, the BadRank score of Node 6 is also very small because
there was no unwanted propagation of the BadRank score through Node 3.

2.5 Incorporating Graduated Trust

Lastly, we consider the case where some nodes have a degree of trustworthiness that is not absolute. We
define an anti-trust vector z more generally than in (9). For example, we may have TrustRank scores from
an alternate calculation. In this case, we allow for pages in which we have some trust, i.e.,

0 < z(i) < 1 if node i is somewhat trusted.

We still assume z(i) = 0 for all i ∈ T and z(i) = 1 for all i ∈ B. Lower scores indicate higher trust. The
formulas from §2.4 are unchanged with this more general definition of the anti-trust vector, z.

Consider Figure 1 and partially trusting one node. We set z(i) = 1 for all nodes except the partially
trusted node, for which z(i) = 0.10. Table 4 shows the results.

The effect of graduated trust is that it results in non-uniform transition probabilities in the random walk.
Consider the case where Node 4 is partially trusted so that

z =
[
1 1 1 0.1 1

]T
.

Then the walk matrix W is given by

W =


0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.91 0.09 0.00
1.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.50
0.32 0.32 0.32 0.03 0.00


In this case, even though Node 4 links to Nodes 2 and 5, the probability of making a transition from those
nodes to Node 4 in the random walk is greatly reduced. For example, Node 2 is 91% likely to step to Node 3
and only 9% likely to step to Node 4. Without the graduated trust, the probabilities would have been 50%
for each.

Observe the case where Node 2 is partially trusted—it has almost no effect on the final scores. This is
because Node 2 is the only node pointing to Node 1. Consequently, there is a 100% chance that the step
will lead to Node 2 is a the walker takes a step according to W. A topic of future research is considering
whether more extreme measures should be taken to deflect BadRank score from nodes with graduated trust.

2.6 Algorithm

The BadRank algorithm, incorporating fixes for leaf nodes and trust, is now given. We assume that the
hyperlink matrix H and the set of known bad nodes B, along with the sizes N and M , are given. We
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Figure 2. Another example hyperlink graph. Nodes 1 and 2 are drawn
with a red rectangle to they are known bad nodes. Node 3 is colored
green to indicate it is a known trusted node.

Table 3. BadRank scores (α = 0.84, β = 0.15, γ = 0.01, fix = ‘leaf bad
links’) for Figure 2 with and without trust.

Trust
Node none binary
1 (bad) 0.1949 0.2812
2 (bad) 0.1949 0.2812
3 (good) 0.1893 0.0010

4 0.0010 0.0010
5 0.0556 0.0797
6 0.1609 0.0027
7 0.0793 0.1475
8 0.0010 0.0010
9 0.0010 0.0010
10 0.1222 0.2037

Table 4. BadRank scores (α = 0.84, β = 0.15, γ = 0.01, fix = ‘leaf bad
links’) with graduated trust results for Figure 1.

Partially Trusted Node
Node 2 3 4 5

1 0.3507 0.3124 0.3803 0.3808
2 0.2983 0.2941 0.3251 0.3245
3 0.1442 0.0274 0.2539 0.1410
4 0.1442 0.2563 0.0272 0.1410
5 0.0626 0.1097 0.0134 0.0128
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further assume that the anti-trust vector z has been defined (if trust is not being used, set z(i) = 1 for all
i = 1, . . . , N), and that Z = diag(z). The parameters α, β, and γ are specified so that α + β + γ = 1. We
assume b is as in (2) and v = e/N . The algorithm proceeds as follows.

1: H← ZH
2: if fix = ‘self links’ then
3: H← H + Z
4: end if
5: L ← {j |

∑N
i=1 H(i, j) = 0}

6: if fix = ‘leaf self links’ or ‘self links’ then
7: for j ∈ L do
8: H(j, j)← 1
9: end for

10: else if fix = ‘leaf bad links’ then
11: for j ∈ L do
12: for i ∈ B do
13: H(i, j)← z(i)
14: end for
15: end for
16: end if
17: D← I
18: for j = 1, . . . , N do
19: if

∑N
i=1 H(i, j) > 0 then

20: D(j, j)← 1/
∑N

i=1 H(i, j)
21: end if
22: end for
23: W← DHT

24: s← b
25: repeat
26: sT ← αsTW + βbT + γvT

27: until convergence
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3 Numerical Results on WebSpam Data

The goal of this section is to show that the addition of BadRank as a feature is useful in spam classification. In
our experiments, regardless of the parameterization of BadRank selected, its inclusion increases classification
performance.

3.1 Data Description

We tested the variations of BadRank mentioned above on the WEBSPAM-UK2007 dataset [25] using the
277 precomputed features available on the web site (see Table 5) and as described in [3, 5]. The hostgraph
had a total of 114,529 nodes and 1,836,441 edges. The labeled data on the web site is broken into two sets
for training and testing in the original contest. There is a total of 5709 non-spam (negative) nodes and 344
spam (positive) nodes. Some nodes were also labeled as unsure, but those were treated as unlabeled for the
purposes of our experiments. We used 5x2 cross-validation [8] to divide the labeled data into ten equal-sized
testing and training folds; sampling was done in a class-stratified manner.

Table 5. WebSpam Features

Feature Type Number
Direct 2
Link-Based 41
Link-Based Transformed 138
Content-Based 96

3.2 Experimental Set-up

The BadRank features are dependent on the training and testing split and are computed as follows. For
each of the ten folds of the data, we computed BadRank scores according to the following procedure. We set
the vector b as specified in (2) with B equal to the set of all known spam nodes in the training set. In cases
where trust is incorporated, the vector z defined as in (9) with T equal to the set of known non-spam nodes
in the training set. We calculate BadRank scores with the parameters listed below for all 114,529 nodes in
the host graph and extract just those scores for the 6,053 nodes in our training and testing sets.

We ran BadRank until ‖sk − sk−1‖ ≤ ε for ε = 10−10, or 100 iterations (whichever came first), with all
combinations of the following parameterizations:

• β ∈ {0.10, 0.15, 0.20},
• γ ∈ {0, 0.01},
• fix ∈ {none, leaf self links, leaf bad links, self links},
• trust ∈ {none,binary}.

This results in a total of 48 different BadRank variations.

Each feature within the training and testing data is separately scaled to the range [0, 1] by an affine
linear transformation. For the classifier, we used LIBSVM Version 2.88-1 [6] for MATLAB with the Gaussian
(Radial Basis Function) kernel and the parameter gamma set to 0.05. This choice of gamma was determined
via preliminary experiments using only the precomputed features. Probabilistic output on [0, 1] was obtained
from the raw SVM decision values using Platt’s scaling method [21]. The cost parameter c was kept at the
default value of 1 throughout the experiments.
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Table 6. Mean AUC Scores with BadRank feature.

AUC w/o
BadRank =

0.7328

fix
none leaf self links leaf bad links self links
trust trust trust trust

β γ none binary none binary none binary none binary
0.10 0.00 0.7462 0.7429 0.7454 0.7432 0.7468 0.7431 0.7474 0.7444
0.10 0.01 0.7459 0.7426 0.7452 0.7429 0.7467 0.7432 0.7469 0.7442
0.15 0.00 0.7473 0.7439 0.7471 0.7443 0.7468 0.7438 0.7490 0.7458
0.15 0.01 0.7464 0.7432 0.7470 0.7443 0.7465 0.7432 0.7487 0.7455
0.20 0.00 0.7466 0.7450 0.7484 0.7454 0.7469 0.7456 0.7497 0.7467
0.20 0.01 0.7462 0.7450 0.7483 0.7452 0.7466 0.7453 0.7496 0.7462

3.3 Results

For each of the ten folds of the data, we trained and tested the SVM with the original 277 precomputed
features and then did 48 more tests with the 277 original features plus one parameterization of the BadRank
feature. We use Area Under the ROC Curve (AUC) as the performance metric because it is robust even
when the data are imbalanced (as they are in this case); moreover, AUC was the metric used in the “web
spam challange”3, which was based on the same data used in this study.

The results (averaged across all ten folds) are given in Table 6. Without any BadRank feature, i.e.,
our baseline approach, the mean AUC score across the 10 cross-validation folds was 0.7328 with a standard
deviation of 0.0196. Given that we are only adding one feature to 277 already existing features, we do not
expect a large change in the score. Using BadRank with all combinations of parameters mentioned above,
and adding only one at a time to the existing set of 277 features, the mean AUCs ranged from 0.7426 to
0.7497 with standard deviations between 0.0177 and 0.0220.

The best-performing BadRank parameterization in terms of the mean AUC scores across all ten folds
of data was β = 0.20, γ = 0, trust = “none,” and fix = “self links.” In a matched-pairs t-test, this
parameterization is statistically significantly better that the baseline at the 99% confidence level with a
p-value of 0.0001.

The worst-performing BadRank parameterization in terms of the mean AUC scores across all ten folds
of data was β = 0.05, γ = 0.01, trust = “binary,” and fix = “none.” In a matched-pairs t-test, this parame-
terization is still statistically significantly better that the baseline at the 99% confidence level with a p-value
of 0.001. We draw two key conclusions from the above results. First, for the Web Spam Challenge data set,
using BadRank scores as a feature contributes useful information that significantly improves performance in
the spam/non-spam binary classification problem. Such a significant performance benefit from the inclusion
of a single feature suggests that BadRank is providing useful information that is indpendent of other features,
including many link-based features that were computed from the web and/or host graph.

Second, although we have identified a number of parameters that influence the operation of BadRank,
even the worst-performing parameterization yielded statistically significantly improved performance versus
not using BadRank at all in the feature data. This suggests a potential benefit from using BadRank for web
spam detection with minimal tuning of parameters.

The differences between the different parameterizations of BadRank are relatively small, making it diffi-
cult to draw conclusions about which parameters are best. Based on these limited results and the underlying
theory, however, we recommend “self links” as the fix for potential substochastic W. It also seems that
β = 0.20 was the best of the choices considered; this corresponds to taking an average of five steps before
jumping back to a random node in B. It is interesting that incorporating trust seems to have decreased the

3http://webspam.lip6.fr/
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AUC in these experiments—we have no explanation for this behavior. Also, using γ = 0 gave a slight boost
as compared to γ = 0.01. It may only be worthwhile to use γ > 0 if convergence is a problem for the method.
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4 Related Work

As mentioned previously, Anti-Trust Rank [15] is closely related to BadRank. It uses exactly the formula
given in (3) with α = 0.85. There is also a similar method called R-SpamRank [17]. Both of these methods
were tested and able to show that pages with high BadRank scores were indeed highly likely to be web spam.
In those evaluations, however, BadRank was not combined with other features. In our experiments and as
mentioned in [9], even though pages with high BadRank scores are likely to be spam, relying on that metric
alone is insufficient. This was our motivation for combining BadRank with existing feature data.

The precomputed feature data provided with WEBSPAM-UK2007 is based on features described in
[3, 5]. These are a collection of both link- and content- based features. Many other researchers have looked
at classification algorithms for link spam using a variety of features; see, e.g., [9, 2, 4, 1, 26]. The general
consensus is that a combination of link- and content-based features is ideal.

An analogue of BadRank is TrustRank [11], which is defined as

sk(i) = α
∑
j→i

sk−1(j)

outlinks(j)
+ (1− α)t(i) for 1 ≤ i ≤ N,

where t is a vector of trusted site (analogous to b for “bad” sites). Many papers have considered combining
trust and distrust using various combinations of TrustRank and BadRank. In some cases, different methods
for splitting the scores are considered. Rather than dividing by the number of inlinks (for BadRank) or out-
links (for TrustRank), several papers [24, 18, 19] consider other splitting methods and various combinations
of trust and distrust for scoring web sites. The resulting iteration matrices are no longer stochastic, and these
methods might be better described as link propagation methods. We note, however, that the idea of biasing
the random walk so that a random surfer is more likely to pick a trustworthy page than a less-trustworthy
one is mentioned in [18]; this is akin to our idea of graduated trust.

There are many general methods for propagating trust and distrust; see, e.g., [10, 27, 28]. In these cases,
there is a more general notion of separate links that convey either trust or distrust. The PageTrust algorithm
[7] incorporates both trust and distrust into a single matrix and then proceeds to compute a PageRank-like
algorithm, but the iteration matrix is not stochastic and so there is no guarantee of convergence.
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5 Conclusions

In this paper we described the conditions under which BadRank is guaranteed to converge, including several
alternatives for modifying the hyperlink matrix to eliminate leaf nodes which would cause the resulting
iteration matrix to be substochastic.

We considered the novel idea of biasing the BadRank scores away from known trusted sites. The simpler
idea is to simply remove outbound links from trusted sites to prevent badness from propagating through
these nodes. We also consider graduated trust which produces non-uniform probabilities in the random walk
that favors nodes that are less trusted.

Computationally, we showed that BadRank can statistically significantly improve the performance of web
spam classification. In the best case, the inclusion of BadRank scores as a feature yielded an average 1.7%
increase in the classification performance, which is remarkable given that we are adding only one feature to
an existing set of 277 features that have been provided by experts in the field. Therefore, we conclude that
BadRank is a useful feature to employ in web spam classification.
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