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1. Introduction. In this paper, we consider the convergence properties of gen-
erating set search methods for linearly constrained optimization:

minimize f(x)
subject to Ax ≤ b.

(1.1)

Here A is an m× n matrix, and Ω denotes the feasible set: Ω = { x | Ax ≤ b }.
In this paper, we restrict attention to feasible iterates approaches. Thus, we

require the initial iterate x0 to be feasible and arrange for all subsequent iterates
xk to satisfy xk ∈ Ω. Derivative-free algorithms of the class we term generating set
search (GSS) [5] were introduced for bound constraints in [6, 9] and for general linear
constraints in [7, 10] ([10] also allows for nonlinear constraints whose derivatives are
known). It was shown that under appropriate hypotheses, the limit points of the
sequence of iterates produced by these algorithms are Karush–Kuhn–Tucker (KKT)
points of (1.1).

In this paper, we give a different approach to the convergence analysis of GSS
methods for linearly constrained optimization. The approach is based on new sta-
tionarity results for these algorithms. Specifically, we show that at an identifiable
subsequence of iterations, there is a linear relationship between a particular measure
of stationarity and a parameter ∆k that controls the length of the step admissible at
iteration k of a GSS algorithm. This relationship is useful since ∆k is known to the
user, while any direct measure of stationarity would involve ∇f(x), which is presumed
to be unavailable or unreliable in the derivative-free context. Such a relationship ex-
ists for the unconstrained case [3] and the bound constrained case [6, 8]; however, the
relationship for the linearly constrained case in [7], using a measure of stationarity
different from the one used here, is less satisfying. The results presented here rectify
this shortcoming.

Our results also help both unify the convergence analysis of several classes of direct
search algorithms and clarify the fundamental geometrical ideas that underlie them.
In addition, they validate a practical stopping criterion for GSS algorithms. Finally,
these stationarity results are needed to extend GSS methods [4] to the augmented
Lagrangian approach of Conn, Gould, Sartenaer, and Toint [1].

In §2 we introduce some notation and terminology. We outline the class of algo-
rithms under consideration in §3. The stationarity results and their significance are
discussed in §4; preliminary statements of these results appeared in [5]. The geomet-
rical facts that underlie the stationarity results follow in Appendix A. Variations of
the stationarity results in §4 are developed in Appendix B.

2. Notation and geometrical quantities of interest. For GSS methods,
the set of search directions Dk for linearly constrained optimization must reflect the
geometry of the boundary of the feasible region near xk. This requires that we be
able to identify the active, or nearly active, constraints so that we can specify an
appropriate set of generators to serve as search directions.

Let aT
i be the ith row of the constraint matrix A in (1.1). Let

Ci =
{

y | aT
i y = bi

}
denote the set where the ith constraint is binding. Given x ∈ Ω and ε ≥ 0, define the
index set I(x, ε) to be the indices i of those constraints for which x is within distance
ε of Ci:

i ∈ I(x, ε) if and only if dist(x, Ci) ≤ ε.(2.1)
5
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Fig. 2.1. The outward-pointing normals ai for the index set I(x1, ε) = {1, 2} and ai for the
index set I(x2, ε) = {2, 3}. Since the distance from x3 to ∂Ω is greater than ε, I(x3, ε) = ∅.
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Fig. 2.2. The cones N(x, ε) and T (x, ε) for the values ε1, ε2, and ε3. Note that for this example,
as ε varies from ε1 to 0, there are only the three distinct pairs of cones illustrated (N(x, ε3) = {0}).

The vectors ai for i ∈ I(x, ε) are the outward-pointing normals to the faces of the
boundary of Ω within distance ε of x. Examples are shown in Figure 2.1 for three
choices of x ∈ Ω.

Given x ∈ Ω, we denote by N(x, ε) the cone generated by {0} and the vectors ai

for i ∈ I(x, ε). Its polar cone is denoted by T (x, ε):

T (x, ε) =
{

v | wT v ≤ 0 for all w ∈ N(x, ε)
}

.

If N(x, ε) = {0}, which is the case when I(x, ε) = ∅, then T (x, ε) = Rn (in other
words, if the boundary is more than distance ε away, and one looks only within dis-
tance ε of x, then the problem looks unconstrained). Several examples are illustrated
in Figure 2.2. Observe that N(x, 0) is the tangent cone of Ω at x, while T (x, 0) is the
tangent cone of Ω at x,

The significance of N(x, ε) is that for suitable choices of ε, its polar T (x, ε) ap-
proximates the polyhedron Ω near x, where “near” is in terms of ε. (More precisely,
x + T (x, ε) approximates the feasible region near x.) The polar cone T (x, ε) is im-
portant because if T (x, ε) 6= {0}, then one can proceed from x along all directions
in T (x, ε) for a distance of at least ε, and still remain inside the feasible region (see
Proposition A.6). Again, Figure 2.2 illustrates this point. The same is not true for
directions in the tangent cone, since the tangent cone does not reflect the proximity
of the boundary for points close to, but not on, the boundary.

Finally, given a vector v, let vN(x,ε) and vT (x,ε) denote the projections (in the
6
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Fig. 2.3. How the w in (2.2) varies with −∇f(x) when x−∇f(x) 6∈ Ω .

Euclidean norm) of v onto N(x, ε) and its polar T (x, ε), respectively. We frequently
abbreviate this notation as vN and vT . The polar decomposition [12, 13, 14] says that
any vector v can be written as the sum of its projection onto a cone and its polar
and the projections are orthogonal. We make use of the fact that v = vN + vT , where
vT

NvT = 0.
We use the following quantity to measure progress toward a KKT point of (1.1).

For x ∈ Ω, let

χ(x) = max
x+w∈Ω
‖w ‖≤1

−∇f(x)T w.(2.2)

The function χ has the following properties [2]:
1. χ(x) is continuous.
2. χ(x) ≥ 0.
3. χ(x) = 0 if and only if x is a KKT point for (1.1).

Showing that χ(xk) → 0 as k → ∞ then constitutes a global first-order stationarity
result. The w’s that define χ(x) in (2.2) are illustrated in Figure 2.3 for three choices
of −∇f(x).

3. GSS algorithms for linearly constrained problems. The general form
of the algorithm for linearly-constrained generating set search is given in Figure 3.1.
There are four places where the description in Figure 3.1 is intentionally vague; all
are flagged by the word “admissible.” In the subsections that follow, we make clear
what is meant by “admissible.” We begin with some terminology.

At iteration k, xk is always the best feasible point discovered thus far; i.e., f(xk) ≤
f(x`) for all ` ≤ k. The scalar ∆k denotes the step-length control parameter ; i.e., it
controls the maximum length of the admissible step along any search direction d ∈ Dk.
The scalar function ρ(·) is called the forcing function. The requirements on ρ(·) are
given in §3.2.

An iteration is called successful if the decrease condition in Step 2 is satisfied;
i.e., there exists dk ∈ Dk and an admissible ∆̃k ∈ [0,∆k] such that

f(xk + ∆̃kdk) < f(xk)− ρ(∆k).(3.1)

The set of indices of all successful iterations is denoted by S: k ∈ S if and only if
iteration k is successful. Note that dk, ∆̃k, and φk are defined only if k ∈ S.

If the iteration is not successful, then we deem it unsuccessful. It must be the
case then that for each d ∈ Gk, either xk + ∆kd 6∈ Ω or

f(xk + ∆kd) ≥ f(xk)− ρ(∆k).
7



Algorithm 3.1 (Linearly constrained generating set search)

Initialization.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the tolerance used to test for convergence.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let ε? > 0 be the maximum distance used to identify nearby constraints.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Choose an admissible set of search directions Dk = Gk ∪Hk.

Step 2. If there exists dk ∈ Dk and a corresponding admissible
∆̃k ∈ [0,∆k] such that xk + ∆̃kdk ∈ Ω and

f(xk + ∆̃kdk) < f(xk)− ρ(∆k),

then:

– Set xk+1 = xk + ∆̃kdk.

– Set ∆k+1 = φk∆k for an admissible choice of φk ≥ 1.

Step 3. Otherwise, for every d ∈ Gk, either xk + ∆kd 6∈ Ω or

f(xk + ∆kd) ≥ f(xk)− ρ(∆k).

In this case:

– Set xk+1 = xk (no change).

– Set ∆k+1 = θk∆k for an admissible choice of θk ∈ (0, 1).

If ∆k+1 < ∆tol, then terminate.

Fig. 3.1. Linearly constrained GSS

The set of indices of all unsuccessful iterations is denoted by U : k ∈ U if and only if
iteration k is unsuccessful. Note that S ∩ U = ∅. Also, θk is defined only if k ∈ U .

The scalar constant ∆tol denotes the convergence tolerance on the step-length
control parameter. Once ∆k+1 < ∆tol, the algorithm terminates. However, ∆k

is only reduced for k ∈ U , so the algorithm can only terminate at the end of an
unsuccessful iteration. The stationarity results in §4 make clear that this stopping
criterion is appropriate.

3.1. Choosing an admissible set of search directions. The set of search
directions at iteration k is Dk = Gk ∪ Hk. For now, we assume the following two
conditions are satisfied by the Gk used at each iteration of the algorithm in Figure 3.1.
Conditions on Hk are discussed in §3.2. A variant of Condition 1 is discussed in
Appendix B.
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Condition 1. There exists a constant cmin > 0, independent of k, such
that for all k the following holds. For every ε ∈ [0, ε?], there exists G ⊆ Gk

such that G generates T (xk, ε) and, furthermore, cA.1(G) > cmin, where
cA.1(·) is the quantity from Proposition A.1.

Condition 1 says that to be admissible, Gk must contain generators for all T (xk, ε)
as ε varies from 0 to ε?. Observe, however, that as ε varies from 0 to ε? there is only
a finite number of distinct cones N(xk, ε) (and correspondingly T (xk, ε)) since there
is only a finite number of faces of Ω. For instance, in Figure 2.2, if ε? = ε1, then for
0 ≤ ε ≤ ε? there are only three distinct cones N(xk, ε) since there are only two faces
of Ω within distance ε? of xk. The notion of requiring some of the search directions
to generate T (xk, ε) for every ε ∈ [0, ε?] originally appeared in a slightly restricted
form in [11], and later in [7, 10].

Condition 1 also imposes a uniformity condition which ensures that if −∇f(x)
is not normal to Ω at x, then at least one search direction in Gk lies safely within
90◦ of −∇f(x). To understand the necessity of this condition, suppose the problem
were unconstrained. Then T (xk, ε) = Rn for all ε. If we apply Proposition A.1 with
K = Rn and v = −∇f(xk), then vK = −∇f(xk) and (A.1) reduces to

cA.1(G) ‖∇f(x) ‖ ‖ d ‖ ≤ −∇f(x)T d.

This we recognize as a condition which says that the angle made by at least one of
the search directions in Gk with the direction of steepest descent remains bounded
away from 90◦. This is a familiar condition in line search methods. See Section 3.4.1
of [5] for a further discussion of this point.

Condition 2 imposes bounds on the norm of all the search directions in Gk.

Condition 2. There exist βmin > 0 and βmax > 0, independent of k, such
that for all k the following holds.

βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk.

Since the lengths of the steps that can be taken depend both on ∆k (the step-length
control parameter) and on ‖ d ‖, for all d ∈ Gk we require bounds on the lengths of the
search directions in Gk so that the length of steps of the form ∆̃kd, for ∆̃k ∈ [0,∆k]
and d ∈ Gk, can be monitored using ∆k.

3.2. Globalization strategies. In Steps 2–3 of the linearly constrained GSS
algorithm given in Figure 3.1, the choice of an admissible step, as well as admissible
parameters φk and θk, depends on the type of globalization strategy that is in effect.

The globalization of GSS is discussed in depth in [5]. The basic idea is to enforce
conditions which ensure that at least

lim inf
k→∞

∆k = 0.

We consider two possibilities here. We first specify the requirements on the forcing
function ρ(·).

9



Condition 3. (Requirements on the forcing function)
1. The function ρ(·) is a nonnegative continuous function on [0,+∞).
2. The function ρ(·) is o(t) as t ↓ 0; i.e., lim

t↓0
ρ(t) / t = 0.

3. The function ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.

Note that ρ(∆) ≡ 0 satisfies these requirements, as does ρ(∆) = α∆p where α is some
positive scalar and p > 1.

3.2.1. Globalization via a sufficient decrease condition. One possibility is
to use a sufficient decrease condition to ensure global convergence. This globalization
strategy requires the following of the forcing function ρ(·) and the choice of θk.

Condition 4. (Sufficient decrease)
1. Condition 3 is satisfied.
2. The forcing function ρ(·) is such that ρ(t) > 0 for t > 0.
3. A constant θmax < 1 exists such that θk < θmax for all k.

Full details are discussed in Section 3.7.1 of [5]. The requirements of Condition 4 are
easily satisfied by choosing, say, ρ(∆) = 10−2∆2 and θk = 1

2 . Note that this condition
does not make any assumptions about the generating sets. The only other assumption
necessary to yield a globalization result is that f be bounded below, as follows.

Theorem 3.1 (Theorem 3.4 of [5]). Assume that the linearly constrained GSS
method in Figure 3.1 satisfies Condition 4. Furthermore, assume the function f is
bounded below. Then lim infk→∞ ∆k = 0.

3.2.2. Globalization via a rational lattice. Another possibility requires all
iterates to lie on a rational lattice. In this case, restrictions are required both on the
types of steps and on the types of search directions that are allowed.

Condition 5. (Rational lattice)
1. Condition 3 is satisfied.
2. The set G = {d(1), . . . , d(p)} is a finite set of search directions, and every
vector d ∈ G is of the form d = Bc where B ∈ Rn×n is a nonsingular matrix
and c ∈ Qn.
3. All generators are chosen from G; i.e., Gk ⊆ G for all k.
4. All extra directions are integer combinations of the elements of G;. i.e.,
Hk ⊂

{∑p
i=0 ξ(i)di | ξ(i) ∈ {0, 1, 2, . . .}

}
.

5. The scalar Λ is a fixed positive integer.
6. For all k ∈ S, φk is of the form φk = Λ`k where `k ∈ {0, 1, 2 . . .}.
7. For all k ∈ U , θk is of the form θk = Λmk where mk ∈ {−1,−2, . . .}.
8. All steps ∆̃k ∈ [0,∆k] satisfy either ∆̃k = 0 or ∆̃k = Λm∆k > ∆tol, where
m ∈ Z, m ≤ 0.

While the list of requirements in Condition 5 looks onerous, in fact most can be satis-
fied in a straightforward fashion. A full discussion of the reasons for these requirements
can be found in Section 3.7.2 of [5]; here we limit ourselves to a few observations.

First, the choice ρ(∆) ≡ 0 is standard for the rational lattice globalization strategy
and means that Condition 3 is satisfied automatically.

10



Note also that the set G is a conceptual construct that describes the set of all
possible search directions, rather than necessarily being a set of directions that are ac-
tually formed and used in the search. For instance, G may be viewed as containing all
the generators for all possible cones T (x, ε), for all x ∈ Ω and ε ∈ [0, ε?]. Furthermore,
since the number of faces in the polyhedron Ω is finite, the set G may be chosen to be
finite. In this way the third requirement in Condition 5, necessary for globalization,
is satisfied. In fact, it is not necessary to construct the set G of all potential search
directions. At any iteration, a smaller set of search directions particular to xk is all
that is needed.

A standard assumption [7] is that the linear constraints are rational, i.e., A ∈
Qm×n. Then, if the generators are constructed with care (see Section 8 in [7]), every
generator will be rational. Choosing B to be a diagonal matrix with nonzero entries
along the diagonal then ensures that the vectors d in G are of the form d = Bc where
B ∈ Rn×n is nonsingular and c ∈ Qn, while remaining generators for all possible cones
T (x, ε). Note that Condition 2 is satisfied automatically because G is finite.

Finally, consider the requirements on the scaling of the step. The usual choice of
Λ is 2. In the unconstrained case, φk typically is chosen from the set {1, 2} so that
`k ∈ {0, 1} for all k while θk usually is chosen to be 1

2 so that mk = −1 for all k. In
the case of linear constraints, it is convenient to make use of the added flexibility in
choosing mk so that it is possible to take feasible steps that move the iterate close to
or onto a face of Ω, as we discuss next. That is the import of the final requirement in
Condition 5.

As before, note that Condition 5 does not make any assumption about the gener-
ating sets. The only other assumption necessary to yield a globalization result is that
the set F = Ω ∩ Lf (x0) is bounded, where Lf (x0) = { x | f(x) ≤ f(x0) } denotes
the level set of f at x0, as follows.

Theorem 3.2 (Theorem 3.8 of [5]). Assume that the linearly constrained GSS
method in Figure 3.1 satisfies Condition 5, and also that the set F = Ω ∩ Lf (x0) is
bounded. Then lim infk→∞ ∆k = 0.

3.2.3. Choosing an admissible step. In this section, it is helpful to enumerate
the search directions in Dk. At iteration k, suppose

Dk =
{

d
(1)
k , d

(2)
k , . . . , d

(pk)
k

}
.

In the unconstrained case, the trial points at iteration k are specified by{
xk + ∆kd

(i)
k | i = 1, . . . , pk

}
.

In the linearly constrained case, however, we may choose to take shorter steps, de-
pending on whether or not the full step (∆k) yields a feasible trial point.

Since we are restricting our attention to feasible iterates methods for solving (1.1),
we need to choose a scaling factor, which we denote ∆̃(i)

k , to handle those situations
where xk +∆kd

(i)
k 6∈ Ω. Thus, the set of trial points in the constrained case is defined

by {
xk + ∆̃(i)

k d
(i)
k | i = 1, . . . , pk

}
.

The choice of ∆̃(i)
k must be done in a way that ensures feasible iterates and yet ensures

global convergence. If the ith trial point yields success, we use the notation ∆̃k = ∆̃(i)
k

and dk = d
(i)
k ; i.e., we drop the superscript.

11



To ensure convergence to KKT points, we want to take a full step if it yields a
feasible trial point. This leads to the following condition.

Condition 6. If xk + ∆kd
(i)
k ∈ Ω, then ∆̃(i)

k = ∆k.

On the other hand, if xk +∆kd
(i)
k 6∈ Ω, then there are at least two ways to choose

∆̃(i)
k in Step 2. The first approach is straightforward. For a given d

(i)
k ∈ Dk,

∆̃(i)
k =

{
∆k if xk + ∆kd

(i)
k ∈ Ω

0 otherwise.
(3.2)

This corresponds to exact penalization (see the discussion in Section 8.1 of [5]) since
the effect of (3.2) is to reject any step ∆kd

(i)
k (by setting ∆̃(i)

k = 0) that would take
the search outside the feasible region Ω.

The second possibility is to take the longest possible step along d
(i)
k that keeps the

trial point feasible while satisfying the requirements of a given globalization strategy.
If a sufficient decrease condition is being employed (Condition 4), then an admissible
choice of ∆̃(i)

k is the solution to

maximize ∆
subject to 0 ≤ ∆ ≤ ∆k,

xk + ∆ d
(i)
k ∈ Ω.

(3.3)

If the rational lattice strategy is being used (Condition 5), then an admissible choice
of ∆̃(i)

k is the solution to

maximize ∆
subject to ∆ = 0 or ∆ = Λm∆k, with ∆tol < Λm∆k, m ∈ {−1,−2, . . .},

xk + ∆ d
(i)
k ∈ Ω.

In other words, the goal is to take the longest possible step that keeps the trial
point feasible while remaining on the rational lattice that underlies the search. The
condition ∆tol < Λm∆k, m ∈ {−1,−2, . . .}, serves to ensure that m is bounded below,
independent of k.

4. Stationarity results. At unsuccessful iterations of the GSS method outlined
in Figure 3.1, we can bound the measure of stationarity χ(xk) in terms of ∆k. To do
so, we make the following assumption. Let F = { x ∈ Ω | f(x) ≤ f(x0) }.

Assumption 4.1. The set F is bounded.

Assumption 4.2. The gradient of f is Lipschitz continuous with constant
M on F .

If both Assumption 4.1 and Assumption 4.2 hold, then there exists γ > 0 such that
for all x ∈ F ,

‖ − ∇f(x) ‖ < γ.(4.1)
12



The Lipschitz assumption is purely for convenience; a version of our results can
be proved assuming only continuity of ∇f(x). We then have the following results
regarding GSS methods for linearly constrained problems.

Theorem 4.3. Assume that the linearly constrained GSS method in Figure 3.1
satisfies Conditions 1, 2, and 6. Let ε? > 0 be given. Suppose also that Assumption 4.2
holds. If k is an unsuccessful iteration and ∆kβmax ≤ ε?, then

‖ [−∇f(xk)]T (xk,ε) ‖ ≤
1

cmin

(
M∆kβmax +

ρ(∆k)
∆kβmin

)
(4.2)

for any ε satisfying ∆kβmax ≤ ε ≤ ε?.
Proof. Consider any ε for which ∆kβmax ≤ ε ≤ ε?. Clearly, we need only consider

the case when [−∇f(xk)]T (xk,ε) 6= 0.
Condition 1 guarantees a set G ⊆ Gk that generates T (xk, ε). Then we can apply

Proposition A.1 with K = T (xk, ε) and v = −∇f(xk) to conclude that there exists
some d̂ ∈ G such that

cA.1(G) ‖ [−∇f(xk)]T (xk,ε) ‖ ‖ d̂ ‖ ≤ −∇f(xk)T d̂.(4.3)

Condition 6 and the fact that iteration k is unsuccessful tell us that

f(xk + ∆kd) ≥ f(xk)− ρ(∆k) for all d ∈ Gk for which xk + ∆kd ∈ Ω.

Condition 2 ensures that for all d ∈ G, ‖∆kd ‖ ≤ ∆kβmax and, by assumption,
∆kβmax ≤ ε, so we have ‖∆kd ‖ ≤ ε for all d ∈ G. Proposition A.6 assures us that
xk + ∆kd ∈ Ω for all d ∈ G. Thus,

f(xk + ∆kd)− f(xk) + ρ(∆k) ≥ 0 for all d ∈ G.(4.4)

Meanwhile, since the gradient of f is assumed to be continuous (Assumption 4.2),
we can apply the mean value theorem to obtain, for some αk ∈ (0, 1),

f(xk + ∆kd)− f(xk) = ∆k∇f(xk + αk∆kd)T d for all d ∈ G.

Putting this together with (4.4), we obtain

0 ≤ ∆k∇f(xk + αk∆kd)T d + ρ(∆k) for all d ∈ G.

Dividing through by ∆k and subtracting ∇f(xk)T d from both sides yields

−∇f(xk)T d ≤ (∇f(xk + αk∆kd)−∇f(xk))T
d + ρ(∆k)/∆k for all d ∈ G.

Since ∇f(x) is Lipschitz continuous (Assumption 4.2) and 0 < αk < 1, we obtain

−∇f(xk)T d ≤ M∆k‖ d ‖2 + ρ(∆k)/∆k for all d ∈ G.(4.5)

Since (4.5) holds for all d ∈ G, (4.3) tells us that for some d̂ ∈ G

cA.1(G) ‖ [−∇f(xk)]T (xk,ε) ‖ ≤ M∆k‖ d̂ ‖+
ρ(∆k)

∆k ‖ d̂ ‖
.

Using the bounds on ‖ d̂ ‖ in Condition 2,

‖ [−∇f(xk)]T (xk,ε) ‖ ≤
1

cA.1(G)

(
M∆kβmax +

ρ(∆k)
∆kβmin

)
.
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The theorem then follows from the fact that cA.1(G) > cmin (Condition 1).
Theorem 4.3 makes it possible to use linearly constrained GSS methods in con-

nection with the augmented Lagrangian framework presented in [1]. The approach in
[1] proceeds by successive approximate minimization of the augmented Lagrangian.
The stopping criterion in the subproblems involves the norm of the projection onto
T (xk, ωk) of the negative gradient of the augmented Lagrangian, for a parameter
ωk ↓ 0. In the derivative-free setting the gradient is unavailable; however, Theorem 4.3
enables us to use ∆k as an alternative measure of stationarity in the subproblems.
Details will appear in [4].

Theorem 4.4. Assume that the linearly constrained GSS method in Figure 3.1
satisfies Conditions 1, 2, and 6. Let ε? > 0 be given. Suppose also that Assump-
tions 4.1–4.2 hold. Then there exists c4.4 > 0, independent of k, but depending on
A, cmin, the γ from (4.1), and M , such that if k is an unsuccessful iteration and
∆kβmax ≤ ε?, then

χ(xk) ≤ c4.4

(
M ∆k βmax +

ρ(∆k)
∆kβmin

)
.

Proof. Clearly, we need only consider the case when χ(xk) 6= 0.
Case I. First, suppose

∆kβmax ≤ rA.4(γ, A) χ(xk),

where rA.4(γ, A) is from Proposition A.4 and βmax is the upper bound from Condi-
tion 2 on the norms of the search directions. Let

ε = min{rA.4(γ, A)χ(xk), ε?}.

Then ∆kβmax ≤ ε ≤ ε?, so we can apply Theorem 4.3 to obtain

‖ [−∇f(xk)]T (xk,ε) ‖ ≤
1

cmin

(
M∆kβmax +

ρ(∆k)
∆kβmin

)
.

Moreover, ε ≤ rA.4(γ, A)χ(xk), so we can apply Proposition A.4 with v = −∇f(xk)
to obtain

‖ [−∇f(xk)]T (xk,ε) ‖ ≥
1
2
χ(xk).

The two preceding relations yield

χ(xk) ≤ 2
cmin

(
M ∆k βmax +

ρ(∆k)
∆kβmin

)
.(4.6)

Case II. The second case to consider is

∆kβmax > rA.4(γ, A) χ(xk).

This can be rewritten as

χ(xk) <
1

rA.4(γ, A)M
M ∆k βmax.(4.7)

From (4.6) and (4.7), choosing

c4.4 = min
{

2
cmin

,
1

rA.4(γ, A) M

}
14



yields the desired result.
Theorem 4.4 suggests that at unsuccessful iterations, the continuous measure of

stationarity χ(·) tends to decrease as ∆k is decreased. Since ∆k is reduced only at
unsuccessful iterations, where the result of Theorem 4.4 holds, it is reasonable to
terminate the algorithm when ∆k is reduced to below some tolerance.

As an immediate corollary of Theorem 4.4, we obtain a first-order convergence
result for the GSS algorithm in Figure 3.1.

Theorem 4.5. Assume that the linearly constrained GSS method in Figure 3.1
satisfies Conditions 1, 2, 6, and either Condition 4 or 5. Let ε? > 0 be given. Suppose
also that Assumptions 4.1–4.2 hold. Then

lim inf
k→0

χ(xk) = 0.

In Appendix B we prove results similar to Theorems 4.3–4.4 when the set of search
directions at iteration k is allowed to be smaller than that considered here.

5. Conclusions. In [7], stationarity was measured using the quantity

q(x) = PΩ(x−∇f(x)),

where PΩ is the projection onto Ω. In this case, q(x) is continuous and ‖ q(x) ‖ = 0 if
and only if x is a KKT point of (1.1). In [7], the authors showed that the bound

‖ q(x) ‖ = O
(
∆

1
2
k

)
held at unsuccessful iterations. They conjectured that this could be sharpened to
O(∆k), but encountered obstacles to proving such a result.

On the other hand, Theorem 4.4 shows that at unsuccessful iterations, χ(x) is
O(∆k). The results we have proved have at least two benefits. The first is that
Theorem 4.4 provides a justification for the stopping criterion prescribed for linearly
constrained GSS in Figure 3.1. The situation is much the same as that discussed
for unconstrained and bound constrained problems in [3, 8]. The step-length control
parameter ∆k, which appears in the definition of GSS methods, provides a reliable
asymptotic measure of first-order stationarity. A second consequence, which results
from Theorem 4.3, is that it now will be possible to extend the results in [1] to direct
search methods [4]. The situation is much the same as that discussed in [8]. The
stopping criterion proposed by Conn, Gould, Sartenaer, and Toint for the solution
of the subproblem requires explicit knowledge of derivatives. Such information is
presumed absent in direct search methods, but we can replace this with a stopping
criterion based on the size of ∆k in a way that preserves the convergence properties
of the algorithm in [1].

Theorem 4.3 and Theorem 4.4 also bring out some of the elements common to the
approaches described in [6, 7] and [9, 10]. In particular, we see how the convergence
analysis may be viewed as comprising two parts: showing that at least a subsequence
of {∆k} converges to 0 and showing that a stationarity bound like that in Theorem 4.4
holds at the unsuccessful iterations. For the first part, the algorithms in [6, 7] rely
on simple decrease in the objective and the fact that the iterates lie on a successively
refined lattice, while in [9, 10] the derivative-free sufficient decrease condition is used.
On the other hand, for both classes of algorithms the situation at unsuccessful it-
erations is the same, as described in Theorem 4.3 and Theorem 4.4. These bounds
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are consequences of the choice of search directions. The stationarity results in §4 do
not hold for all the algorithmic possibilities discussed in [10], so in Appendix B we
investigate what can be said using a variant of Condition 1 that allows Gk to contain
generators for a single cone T (xk, εk), where εk is updated at each iteration.

Since the choice of search directions for a linearly constrained GSS method de-
pends on Ω, we have attempted to clarify some of the fundamental geometrical ideas,
pertaining to the fact that Ω is a polyhedron, that are necessary for the stationarity
results in §4 and Appendix B to hold. These geometrical results, which do not depend
on any assumptions regarding f and its derivatives, are developed in the appendix
that follows.

Appendix A. Geometric results on cones and polyhedra. Here we present
geometrical results having to do with our use of χ(·) as a measure of stationarity. Since
these are largely technical in nature, we have relegated them to an appendix.

The first result says that if a vector v is not in the polar K◦ of a finitely generated
cone K and vK 6= 0, then v must be within 90◦ of at least one of the generators of
K. The proof follows that of Corollary 10.4 in [7].

Proposition A.1. Let K be a convex cone in Rn generated by the finite set G.
Then there exists cA.1(G) > 0, depending only on G, for which the following holds.
For any v for which vK 6= 0,

max
d∈G

vT d

‖ d ‖
≥ cA.1(G) ‖ vK ‖.(A.1)

The next proposition says that if one can move from x to x+v and remain feasible,
then v cannot be too outward-pointing with respect to the constraints near x.

Proposition A.2. There exists cA.2(A) > 0, depending only on A, for which the
following holds. If x ∈ Ω and x + v ∈ Ω, then for any ε ≥ 0, ‖ vN(x,ε) ‖ ≤ cA.2(A) ε.

Proof. Let N = N(x, ε). The result is immediate if vN = 0, so we need
only consider the case when vN 6= 0. Recall that N is generated by the outward-
pointing normals to the binding constraints within distance ε of x; thus, the set
G = { ai | i ∈ I(x, ε) } generates N . A simple calculation shows that the distance
from x to

{
y | aT

i y = bi

}
is (bi − aT

i x)/‖ ai ‖, so it follows that

bi − aT
i x

‖ ai ‖
≤ ε for all i ∈ I(x, ε).

Meanwhile, since x + v ∈ Ω, we have

aT
i x + aT

i v ≤ bi for all i.

The preceding two relations then lead to

aT
i v ≤ bi − aT

i x ≤ ε ‖ ai ‖ for all i ∈ I(x, ε).(A.2)

Since N is generated by G = { ai | i ∈ I(x, ε) }, and vN 6= 0, we may apply
Proposition A.1 and (A.2) to obtain

cA.1(G) ‖ vN ‖ ≤ max
i∈I(x,ε)

vT ai

‖ ai ‖
≤ max

i∈I(x,ε)

ε ‖ ai ‖
‖ ai ‖

= ε.
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Any G used here consists of combinations of columns of A, and the number of such
combinations is finite. Thus there is a lower bound c∗ > 0 for cA.1(G) that depends
only on A. The result follows with cA.2(A) = 1/c∗.

For x ∈ Ω and v ∈ Rn, define

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v.(A.3)

Note from (2.2) that χ(x) = χ̂(x;−∇f(x)). We use v in (A.3) to emphasize that the
following results are purely geometric facts about cones and polyhedra.

The following proposition relates χ̂(x; v) to the cones T (x, ε) and N(x, ε).
Proposition A.3. There exists cA.3(A) > 0, depending only on A, such that if

x ∈ Ω, then for all ε ≥ 0,

χ̂(x; v) ≤ ‖ vT (x,ε) ‖+ cA.3(A) ‖ vN(x,ε) ‖ ε.

Proof. Let N = N(x, ε) and T = T (x, ε). Writing v in terms of its polar decom-
position, v = vN + vT , we obtain

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v ≤ max
x+w∈Ω
‖w ‖≤1

wT vT + max
x+w∈Ω
‖w ‖≤1

wT vN .

For the first term on the right-hand side we have

max
x+w∈Ω
‖w ‖≤1

wT vT ≤ ‖ vT ‖.

Meanwhile, for any w we have

wT vN = (wT + wN )T vN ≤ wT
NvN

since wT
T vN ≤ 0. Thus,

max
x+w∈Ω
‖w ‖≤1

wT vN ≤ max
x+w∈Ω
‖w ‖≤1

‖wN ‖ ‖ vN ‖.

However, since x + w ∈ Ω, Proposition A.2 tells us that

‖wN ‖ ≤ cA.2(A) ε.

Therefore,

χ̂(x; v) ≤ ‖ vT ‖+ cA.2(A) ‖ vN ‖ ε.

Setting cA.3(A) = cA.2(A) completes the proof.
The following corollary says that if χ̂(x; v) 6= 0 and ε is sufficiently small (relative

to χ̂(x; v)), then χ̂(x; v) cannot be very large unless vT (x,ε), the tangential part of v,
is also at least of the same order of magnitude.

Proposition A.4. Let γ > 0 be given, and let v ∈ Rn satisfy ‖ v ‖ ≤ γ. Suppose
x ∈ Ω is such that χ̂(x; v) > 0. Then there exists rA.4(γ, A) > 0, depending only on γ
and A, such that if ε ≤ rA.4(γ, A)χ̂(x; v), then

‖ vT (x,ε) ‖ ≥
1
2

χ̂(x; v).(A.4)
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Fig. A.1. The cones N(x, ε) and T (x, ε) for the values ε1, ε2, and ε3, and three examples (from
Figure 2.3) showing the projection of the negative gradient onto a generator of each of the cones
T (x, ε1), T (x, ε2), and T (x, ε3).

Proof. Let N = N(x, ε) and T = T (x, ε). By Proposition A.3, for any ε ≥ 0,

χ̂(x; v) ≤ ‖ vT ‖+ cA.3(A) ‖ vN ‖ ε.

Since ‖ vN ‖ ≤ ‖ v ‖ (because the projection onto convex sets is contractive), we have

χ̂(x; v) ≤ ‖ vT ‖+ cA.3(A)γε.

Set

rA.4(γ, A) =
1

2cA.3(A)γ
;

then, if ε ≤ rA.4(γ, A)χ̂(x; v), we have

1
2

χ̂(x; v) ≤ ‖ vT ‖.

The following proposition ensures that at least one of the directions in Dk, a
valid set of directions for linearly constrained GSS methods (see Figure 3.1), is a
descent direction. Illustrations can be seen in Figure A.1 for the three examples from
Figure 2.3 as ε is reduced to satisfy Condition 1.

Proposition A.5. Let γ > 0 be given, and let v ∈ Rn satisfy ‖ v ‖ ≤ γ. Suppose
x ∈ Ω is such that χ̂(x; v) > 0. Given ε ≥ 0, let G generate T (x, ε). Then there exists
cA.5(G) > 0, depending only on G, such that if ε ≤ rA.4(γ, A) χ̂(x; v), then there exists
d ∈ G such that

cA.5(G) χ̂(x; v) ‖ d ‖ ≤ vT d.(A.5)

Proof. Let ε ≤ rA.4(γ, A) χ̂(x; v). Proposition A.4 tells us that

‖ vT (x,ε) ‖ ≥
1
2

χ̂(x; v).

Since, by hypothesis, χ̂(x; v) > 0, it follows that vT (x,ε) 6= 0. Proposition A.1 then
says that there exists d ∈ G such that

vT d ≥ cA.1(G) ‖ vT (x,ε) ‖ ‖ d ‖.
18



Combining the two previous inequalities yields

vT d ≥ 1
2

cA.1(G) χ̂(x; v) ‖ d ‖.

Let cA.5(G) = 1
2 cA.1(G).

Another point needed for the stationarity analysis is that it is possible to take
a suitably long step along the descent direction in G promised by Proposition A.5.
The following result ensures that it is possible to take steps of at least length ε along
directions in T (x, ε) and remain feasible, as in the examples in Figure A.1.

Proposition A.6. If x ∈ Ω, and v ∈ T (x, ε) satisfies ‖ v ‖ ≤ ε, then x + v ∈ Ω.
Proof. Suppose not; i.e., v ∈ T (x, ε) and ‖ v ‖ ≤ ε, but x + v 6∈ Ω. Then there

exists i such that aT
i (x + v) > bi. Using the fact that x ∈ Ω, so aT

i x ≤ bi, we have

aT
i v > bi − aT

i x ≥ 0.(A.6)

Define

t =
bi − aT

i x

aT
i v

.

Note that t < 1 by (A.6). Let y = x + tv. Then aT
i y = bi and ‖x− y ‖ = ‖ tv ‖ < ε.

Thus, i ∈ I(x, ε) and ai ∈ N(x, ε). Since, by hypothesis, v ∈ T (x, ε), we must have
aT

i v ≤ 0. However, this contradicts (A.6).

Appendix B. Results for a more limited set of search directions. Results
similar to Theorems 4.3–4.4 can be proved when, rather than requiring Gk to contain
generators for T (xk, ε) for all ε ∈ [0, ε?] as in Condition 1, Gk need only contain
generators for a single cone T (xk, εk), where εk is updated at each iteration. Algorithm
1 in [10] is based on such a set of search directions. This leads to the following
relaxation of Condition 1.

Condition 7. There exists a constant cmin > 0, independent of k, such
that for all k the following holds. There exists G ⊆ Gk such that G generates
T (xk, εk) and, furthermore, cA.1(G) > cmin, where cA.1(·) is the quantity
from Proposition A.1.

Note, however, that the uniformity condition is unchanged.
To ensure global convergence, at each iteration the parameter εk must be updated

in such a way that limk∈U εk = 0 (or at least lim infk∈U εk = 0). In Algorithm 1 in
[10], this is done by setting εk+1 = εk for k ∈ S and εk+1 = ηεk for k ∈ U where η is
some fixed constant with η ∈ (0, 1). Unlike in [10], we require the following relation
between εk and ∆k which restricts εk from becoming too small relative to ∆k.

Condition 8. There exists a constant cε > 0, independent of k, such that
cε∆k ≤ εk for all k.

This condition can be ensured if εk is reduced by the same factor θk as ∆k at unsuc-
cessful iterations; i.e., εk+1 = θkεk for all k ∈ U .

The resulting algorithm is similar to Algorithm 1 in [10], though our approach
differs in several ways. The most material difference is that we impose a more stringent
step acceptance criterion, requiring the improvement in f to be ρ(∆k), rather than
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ρ(∆̃k). Another difference, as noted previously, is that we require a relationship
between εk and ∆k. We then have the following analog of Theorem 4.3.

Theorem B.1. Assume that the linearly constrained GSS method in Figure 3.1
satisfies Conditions 2, 6, 7, and 8 and that ∆̃(i)

k is chosen according to (3.3). Suppose
also that Assumption 4.2 holds. If k is an unsuccessful iteration, then

‖ [−∇f(xk)]T (xk,εk) ‖ ≤
1

cmin

(
M∆kβmax +

ρ(∆k)
µ∆kβmin

)
,(B.1)

where µ > 0 is independent of k and depends only on cε and βmax.
Proof. The proof closely resembles that of Theorem 4.3. By Condition 7, there is a

subset G ⊆ Gk that generates T (xk, εk). Applying Proposition A.1 with K = T (xk, εk)
and v = −∇f(xk), we are assured that there exists some d

(i)
k ∈ G for which

cA.1(G) ‖ [−∇f(xk)]T (xk,εk) ‖ ‖ d
(i)
k ‖ ≤ −∇f(xk)T d

(i)
k .(B.2)

Now, the algorithm always tries a step ∆̃(i)
k d

(i)
k along each generator d

(i)
k . Since

∆̃(i)
k is chosen as the solution to (3.3), either ∆̃(i)

k = ∆k or ∆̃(i)
k is as long as possible

while still having x + ∆̃(i)
k d

(i)
k ∈ Ω. In the latter case, Proposition A.6 says we can

move a distance of at least εk along the generators of T (xk, εk) and remain feasible.
Therefore, if ∆̃(i)

k < ∆k, we still have at least ∆̃(i)
k ‖ d

(i)
k ‖ ≥ εk. From Condition 8 it

then follows that

∆̃(i)
k ≥ εk

‖ d
(i)
k ‖

≥ cε∆k

βmax
.

Thus, in either case we have

∆̃(i)
k ≥ min

(
1,

cε

βmax

)
∆k.(B.3)

Let

µ = min
(

1,
cε

βmax

)
.

If iteration k is unsuccessful, then

f(xk + ∆̃(i)
k d

(i)
k )− f(xk) + ρ(∆k) ≥ 0 for all d

(i)
k ∈ Gk.(B.4)

Then, as in the proof of Theorem 4.3, using the mean-value theorem and the Lipschitz
continuity of ∇f(x), we find that

−∇f(xk)T d
(i)
k ≤ M∆̃(i)

k ‖ d
(i)
k ‖2 + ρ(∆k)/∆̃(i)

k for all d
(i)
k ∈ Gk.

From (B.3) we then have

−∇f(xk)T d
(i)
k ≤ M∆k ‖ d

(i)
k ‖2 + ρ(∆k)/(µ∆k) for all d

(i)
k ∈ Gk.(B.5)

Since (B.5) holds for all d
(i)
k ∈ Gk, (B.2) tells us that

cA.1(G) ‖ [−∇f(xk)]T (xk,εk) ‖ ≤ M∆k‖ d̂
(i)
k ‖+

ρ(∆k)

µ∆k ‖ d̂
(i)
k ‖

.
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Because Condition 2 is satisfied, and

‖ [−∇f(xk)]T (xk,εk) ‖ ≤
1

cA.1(G)

(
M∆kβmax +

ρ(∆k)
µ∆kβmin

)
Appealing to Condition 7 and choosing c4.3 = 1/cmin yields the result.

Note that this theorem differs from Theorem 4.3 because it has the factor µ in
the denominator of the second term of the right hand side. Since µ ≤ 1, this means
that the bound in (B.1) may not be as tight as the bound (4.2) obtained when Gk

contains generators for multiple cones (as in Condition 1).
We also have the following analog of Theorem 4.4.
Theorem B.2. Assume that the linearly constrained GSS method in Figure 3.1

satisfies Conditions 2, 6, 7, and 8 and that ∆̃(i)
k is chosen according to (3.3). Suppose

also that Assumptions 4.1–4.2 hold. If k is an unsuccessful iteration, then

χ(xk) ≤ 1
cmin

(
M ∆k βmax +

ρ(∆k)
µ∆kβmin

)
+ cA.3(A) γ εk,

where γ is from (4.1) and µ is as in Theorem B.1.
Proof. From Proposition A.3 we have

χ(x) ≤ ‖ [−∇f(xk)]T (x,εk) ‖+ cA.3(A) ‖ [−∇f(xk)]N(x,εk) ‖ εk.

The fact that ‖ [−∇f(xk)]N(x,εk) ‖ ≤ γ and the bound on ‖ [−∇f(xk)]T (x,εk) ‖ from
Theorem B.1 then yield the theorem.

Finally, we have a first-order convergence result analogous to Theorem 4.5.
Theorem B.3. Assume that the linearly constrained GSS method in Figure 3.1

satisfies Conditions 2, 6, 7, and 8. In addition, assume that either Condition 4 or 5
holds. Further, assume lim infk∈U εk = 0. If Assumptions 4.1–4.2 also hold, then

lim inf
k→0

χ(xk) = 0.
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