
ON TENSORS, SPARSITY, AND NONNEGATIVE
FACTORIZATIONS∗

ERIC C. CHI† AND TAMARA G. KOLDA‡

Abstract. Tensors have found application in a variety of fields, ranging from chemometrics
to signal processing and beyond. In this paper, we consider the problem of multilinear modeling
of sparse count data. Our goal is to develop a descriptive tensor factorization model of such data,
along with appropriate algorithms and theory. To do so, we propose that the random variation is
best described via a Poisson distribution, which better describes the zeros observed in the data as
compared to the typical assumption of a Gaussian distribution. Under a Poisson assumption, we
fit a model to observed data using the negative log-likelihood score. We present a new algorithm
for Poisson tensor factorization called CANDECOMP–PARAFAC Alternating Poisson Regression
(CP-APR) that is based on a majorization-minimization approach. It can be shown that CP-APR
is a generalization of the Lee-Seung multiplicative updates. We show how to prevent the algorithm
from converging to non-KKT points and prove convergence of CP-APR under mild conditions. We
also explain how to implement CP-APR for large-scale sparse tensors and present results on several
data sets, both real and simulated.

Key words. Nonnegative tensor factorization, Nonnegative CANDECOMP-PARAFAC, Pois-
son tensor factorization, Lee-Seung multiplicative updates, majorization-minimization algorithms

1. Introduction. Tensors have found application in a variety of fields, ranging
from chemometrics to signal processing and beyond. In this paper, we consider the
problem of multilinear modeling of sparse count data. For instance, we may consider
the number of papers published by a specific author at a specific conference [9], the
number of packets sent from one IP address to another using a specific port [32], or
to/from and term counts on emails [1]. Our goal is to develop a descriptive model of
such data, along with appropriate algorithms and theory.

Let X represent an N -way data tensor of size I1×I2×· · ·×IN . We are interested
in R-component nonnegative CANDECOMP/PARAFAC factor model M of the form

M =

R∑
r=1

λr a(1)
r ◦ · · · ◦ a(N)

r , (1.1)

where a
(n)
r represents the rth column of the nonnegative factor matrix A(n) of size

In×R. We refer to each summand as a component. Assuming each factor matrix has
been column-normalized to sum to one, we refer to the nonnegative λr’s as weights.

In many applications such as chemometrics [31], we fit the model to the data
using a least squares criteria, implicitly assuming that the random variation in the
tensor data follows a Gaussian distribution. In the case of sparse count data, however,
the random variation is better described via a Poisson distribution [23, 30], i.e.,

xi ∼ Poisson(mi)

∗The work of the first author was fully supported by the U.S. Department of Energy Compu-
tational Science Graduate Fellowship under grant number DE-FG02-97ER25308. The work of the
second author was funded by the applied mathematics program at the U.S. Department of Energy
and Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
†Dept. Human Genetics, University of California, Los Angeles, CA. Email: eric.c.chi@gmail.com
‡Sandia National Laboratories, Livermore, CA. Email: tgkolda@sandia.gov

1

ar
X

iv
:1

11
2.

24
14

v1
 [

m
at

h.
N

A
]

 1
1

D
ec

 2
01

1

2 E. C. Chi and T. G. Kolda

rather than xi ∼ N(mi, σ
2
i), where the subscript i is shorthand for the multi-index

(i1, i2, . . . , iN). In fact, a Poisson model is a much better explanation for the zero
observations that we encounter in sparse data — these zeros just correspond to events
that were very unlikely to be observed. Thus, we propose that rather than using the
least squares error function given by

∑
i |xi −mi|2, for count data we should instead

minimize

f(M) =
∑
i

mi − xi logmi, (1.2)

which equals the negative log-likelihood of the observations up to an additive constant.
The difficulty of this approach as compared to using a least squares error function is
fitting this more complex objective function.

1.1. Contributions. Although other authors have considered fitting tensor data
using a Poisson likelihood criteria (i.e., KL divergence) [34, 6], we offer the following
contributions:
• We develop alternating Poisson regression fitting algorithm for the nonnega-

tive CP model, called CP-APR. The subproblems are solved using a majorization-
minimization (MM) approach. If the algorithm is restricted to a single inner iter-
ation per subproblem, it reduces to the standard Lee-Seung multiplicative updates
[19, 20, 34]; however, using multiple inner iterations is shown to accelerate the method.
• It is known that the Lee-Seung multiplicative updates may converge to a non-

stationary point [13]. We introduce a novel technique for avoiding inadmissible zeros
(i.e., zeros that violate stationarity conditions) that is only a trivial change to the basic
algorithm and prevents convergence to non-stationary points, even in the matrix case.
• Assuming the subproblems can be solved exactly, we prove convergence of the

CP-APR algorithm. In particular, we can show convergence even for sparse input
data and solutions on the boundary of the nonnegative orthant.
• We explain how to efficiently implement CP-APR for large-scale sparse data.

Although it is well-known how to do large-scale sparse calculations for the least squares
fitting function [2], the Poisson likelihood fitting algorithm requires new kernels.
• We present experimental results showing the effectiveness of the method on

both real and simulated data. In fact, the Poisson assumption leads quite naturally
to a generative model for sparse data.

1.2. Related Work. Much of the past work in nonnegative matrix and ten-
sor analysis has focused on the least squares error [28, 27, 4, 13, 17, 15, 12], which
corresponds to an assumption of normal independently identically distributed (i.i.d.)
noise. The focus of this paper is Kullback-Leibler (KL) divergence, which corresponds
to maximum likelihood estimation under a independent Poisson assumption; see §2.3.
The seminal work in this domain are the papers of Lee and Seung [19, 20], which
propose very simple multiplicative update formulas for both least squares and KL di-
vergence, resulting in a very low cost-per-iteration. Welling and Weber [34] were the
first to generalize the Lee and Seung algorithms to nonnegative tensor factorization
(NTF). Applications of NTF based on KL-divergence include EEG analysis [24] and
sound source separation [11]. We note that generalizations of KL divergence have
have also been proposed in the literature, including Bregman divergence [7] and beta
divergence [6].

Compared with algorithm development, markedly less attention has been given
to the global convergence properties of nonnegative factorization algorithms. Lee and

Tensors, Sparsity, and Nonnegative Factorizations 3

Seung’s algorithm is guaranteed to decrease the loss function at every step, but this
is not a guarantee that the iterates converge to a local minimum or even a stationary
point of the loss function. To the contrary, Gonzalez and Zhang [13] empirically
showed that, in the case of least squares loss, the Lee and Seung method can converge
to non-KKT points; in §6.3, we show a similar example for KL divergence.

This failure to converge to a KKT point is due to finite precision in the calcu-
lations. If the solution is strictly positive (on the interior), Finesso and Spreij [10]
develop a variant of the Lee-Seung algorithm for KL-divergence and prove that iterates
from their modified updates will converge to an interior stationary point, provided
the initial iterate has strictly positive entries; Zafeiriou and Petrou [35] develop tensor
extensions of [10] using the same proof strategy. A key assumption in the convergence
proofs of these variants of Lee-Seung is that iterates initialized in the interior remain
in the interior throughout the procedure, but this is generally not the case in finite
precision. Our example in §6.3 shows that initializing the iterate sequence to the
interior is not sufficient to guarantee convergence to KKT points in finite precision,
even for dense data. This should especially be concerning for fitting models to sparse
count data where intermediate iterates and limit points are more likely to visit and
subsequently get “stuck” at the boundary.

In contrast our convergence proof does not assume that iterates will never visit the
boundary of the parameter space on their way to a limit, but instead relies on our fix
for avoiding inadmissible zeros to ensure convergence to a KKT point. Additionally,
we prove convergence for our generalization of the Lee-Seung algorithm using standard
tools from constrained optimization theory, in contrast to employing lifting as in
[10, 35].

1.3. Outline. The remainder of this paper is organized as follows. In §2, we
describe the notation, common multilinear operations used in this paper, the Poisson
model for count data, and review key optimization results we use to prove convergence
of CP-APR. We develop CP-APR in stages over the next two sections. In §3, we de-
scribe the sequence of alternating minimization problems that comprise the outer loop
of CP-APR, as well as the KKT conditions for the global optimization problem. We
conclude the section with a convergence proof for the outer iterates. In §4, we describe
and prove the convergence of our MM subproblem solver. Important implementation
issues, foremost of which are inadmissible zero avoidance and computations for sparse
data tensors, are covered in §5. In §6, we present results of numerical experiments
for simulated and real data sets. We conclude in §7 with a summary of our work and
discussion of future work.

2. Notation and Preliminaries.

2.1. Notation. Throughout, scalars are denoted by lowercase letters (a), vectors
are denoted by boldface lowercase letters (v), matrices are denoted by boldface capital
letters (A), and higher-order tensors are denoted by boldface Euler script letters (X).
We use the following special notation: e denotes a vector of all ones and E denotes
the matrix of all ones. The ith entry of a vector v is denoted vi. The (i, j) entry of a
matrix A is denoted aij and the jth column of a matrix A is denoted by aj . We use
multi-index notation so that a boldface i represents the index (i1, . . . , iN), thus the
(i1, . . . , iN) of a tensor X can be written as xi.

We also use subscripts to denote iteration index for infinite sequences, and the
difference between its use for an entry and its use as an iteration index should be clear
by context. When there is a conflict, the iteration index is the innermost index. Thus,

4 E. C. Chi and T. G. Kolda

the kth vector in a sequence would be denoted vk, the ith entry would be denoted vi,
and the ith entry of the kth vector in a sequence would be denoted (xk)i.

The notation ‖ · ‖ refers to the two-norm or Frobenious norm for matrices, i.e.,
the sum of the squares of the entries.. The notation ‖ · ‖1 refers to the one-norm, i.e.,
the sum of the absolute values of the entries.

The outer product is denoted by ◦. The symbol ∗ represents elementwise mul-
tiplication of two same-sized objects; likewise, the symbol � represents elementwise
division. The symbol � denotes Khatri-Rao matrix multiplication, i.e., the colum-
nwise Kronecker product. The mode-n matricization or unfolding of a tensor X is
denoted by X(n) and is of size In × Jn where Jn ≡

∏
m 6=n In. See Appendix A for

further details on these operations.

2.2. Kruskal Tensors. The model in (1.1) is a Kruskal tensor [2] and is gen-
erally used to represent CANDECOMP/PARAFAC factorization [5, 14]. We can
express (1.1) using the shorthand notation:

M =
r
λ; A(1), . . . ,A(N)

z
. (2.1)

Elementwise, the model entries are

mi =

R∑
r=1

λr a
(1)
i1r

a
(2)
i2r
· · · a(N)

iNr
for all 1 ≤ in ≤ In, n = 1, . . . , N, (2.2)

Depending on context, M either represents the tensor produced by (1.1) or, if we refer
to M as a member of a set, to the constituent parameters appropriately scaled (e.g.,
so that all the factor matrices are column stochastic). We note that there is scaling
ambiguity that allows us to express the same M in different ways, i.e.,

M =
r
A(1), . . . ,A(n−1),B(n),A(n+1), . . . ,A(N)

z
(2.3)

where

B(n) = A(n)Λ and Λ = diag(λ). (2.4)

Note that the weights in (2.3) are omitted in the shorthand notation because they
are all ones. We will frequently switch between representation (2.1) and (2.3). It is
known that the matricization of Kruskal tensors have a special form [2], i.e.,

M(n) = B(n)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
.

2.3. The Poisson Distribution and KL Divergence. In statistics, count
data is often best described as following a Poisson distribution. For a general discus-
sion of the Poisson distribution, see, e.g., [30]. We summarize key facts here.

A random variable X is said to have a Poisson distribution with parameter µ > 0
if it takes integer values x = 0, 1, 2, . . . with probability

P (X = x) =
e−µµx

x!
. (2.5)

The mean and variance of X are both µ; therefore, the variance increases along with
the mean, which seems like a reasonable assumption for count data. It is also useful

Tensors, Sparsity, and Nonnegative Factorizations 5

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
mean=9.5

x

P
D

F

Gaussian
Poisson

−2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

mean=0.1

x

P
D

F

Gaussian
Poisson

Fig. 2.1: Illustration of Gaussian and Poisson distributions for two parameters. For
both examples, we assume that the variance of the Gaussian is equal to the mean m.

to note that the sum of independent Poisson random variables is also Poisson. This
is important in our case since each Poisson parameter is a multilinear combination of
the model parameters. We contrast Poisson and Gaussian distributions in Figure 2.1.
Observe that there is a close match between the Gaussian and Poisson for larger values
of the mean, µ. For small values of µ, however, the match is not as strong and the
Gaussian random variable can take on negative values.

We can determine the optimal Poisson parameters by maximizing the likelihood
of the observed data. Let xi be a vector of observations and let µi be the vector
of Poisson parameters. (We assume that µi’s are not independent, else the function
would entirely decouple in the parameters to be estimated.) Then the negative of the
log of the likelihood function for (2.5) is∑

i

µi − xi logµi, (2.6)

excepting the addition of the constant term
∑
i log(xi!), which is omitted. This func-

tion is sometimes referred to as the generalized Kullback-Leibler (KL) divergence.
Because we are working with sparse data, there are many instances for which

we expect xi = 0, which leads to some ambiguity in (2.6) if µi = 0. We assume
throughout that

0 · log(µ) = 0 for all µ ≥ 0. (2.7)

This is for notation convenience; otherwise, we would need to rewrite (2.6) as∑
i

µi −
∑
i:xi 6=0

xi logµi.

2.4. KKT Conditions for Constrained Stationarity. We briefly review the
first-order conditions for constrained stationary points; see [26] for further details.
Consider the following nonlinear program:

min f(x) s.t. ci(x) = 0 for i ∈ E and ci(x) ≥ 0 for i ∈ I. (2.8)

6 E. C. Chi and T. G. Kolda

Definition 2.1 (LICQ [26]). Given the point x and the active set A(x) =
E ∪{ i ∈ I | ci(x) = 0 } for (2.8), we say that the linear independence constraint qual-
ification (LICQ) holds if the set of active constraint gradients { ∇ci(x) | i ∈ A(x) } is
linearly independent.

Theorem 2.2 (First-order necessary conditions [26]). Suppose that x is a local
solution to (2.8) and that LICQ holds at x. Then there exists a Lagrange multiplier
η such that the following conditions are satisfied at (x,η):

∇f(x)−
∑
i ηi∇ci(x) = 0,

ci(x) = 0, for all i ∈ E ,
ci(x) ≥ 0, for all i ∈ I,

ηi ≥ 0, for all i ∈ I,
ηici(x) = 0, for all i ∈ I.

(2.9)

Points that satisfy these conditions (2.9) are constrained stationary points, better
known as Karush-Kuhn-Tucker (KKT) points. When (2.8) is a convex program, the
first-order necessary conditions in (2.9) are sufficient conditions for global optimality.

Theorem 2.3 (Proposition 5.4.3 in [18]). Let the functions f and ci be defined
as in (2.8) and assume that f and ci for i ∈ I are convex and ci for i ∈ E are affine.
If a point x satisfies (2.9), then x is the global minimizer of (2.8).

2.5. Majorization-Minimization Algorithms for Optimization. The ba-
sic idea of a majorization-minimization (MM) algorithm is to convert a hard opti-
mization problem (e.g., non-convex and/or non-differentiable) into a series of simpler
ones (e.g., smooth convex) that are easy to minimize and that majorize the original
function, as follows.

Definition 2.4. Let f and g be real-valued functions on Rn and Rn × Rn,
respectively. We say that g majorizes f at x ∈ Rn if g(y,x) ≥ f(y) for all y ∈ Rn
and g(x,x) = f(x).

Lemma 2.5. Let x ≥ 0 be a scalar and π ≥ 0, π 6= 0, be a vector of length R.
For a vector c ≥ 0, c 6= 0, of length R, let the function f be defined by

f(c) = cTπ − x log
(
cTπ

)
.

Then f is majorized at c̄ ≥ 0 by

g(c, c̄) = cTπ − x
R∑
r=1

αr log

(
crπr
αr

)
where αr =

c̄rπr

c̄Tπ
.

Proof. If x = 0, then g(c, c̄) = f(c) for all c, and g trivially majorizes f at c̄.
Consider the case when x > 0. It is immediate that g(c̄, c̄) = f(c̄). The majorization
follows from the fact that log is strictly concave and that we can write cTπ as a convex
combination of the elements crπr/αr. Note that if any elements c̄rπr are zero, they
do not contribute to the sum since we assume (2.7) and αr = 0.

If f(x) is the function to be optimized and g(·,x) majorizes f at x, the basic MM
iteration is

xk+1 = arg min
y
g(y,xk). (2.10)

Tensors, Sparsity, and Nonnegative Factorizations 7

It is easy to see that (2.10) always takes non-increasing steps with respect to f since
f(xk+1) ≤ g(xk+1,xk) ≤ g(xk,xk) = f(xk), where xk is the current iterate and xk+1

is the optimum computed at that iterate.
The convergence theory of MM algorithms relies on characterizing the properties

of the map ψ(x) ≡ arg miny g(y,x). The following general result for algorithm maps
will be used to prove the convergence of the MM algorithm for solving the subproblem,
although we do not assume that the map ψ is associated with an MM algorithm.

Theorem 2.6. Let f be a continuous function on a domain D, and let ψ be a
continuous iterative map from D into D such that f(ψ(x)) < f(x) for all x ∈ D with
ψ(x) 6= x. Suppose there is an x0 such that the set Lf (x0) ≡ { x ∈ D | f(x) ≤ f(x0) }
is compact. Define xk+1 = ψ(xk) for k = 0, 1, Then (a) the sequence of iterates
{xk} has at least one limit point and all its limit points are fixed points of ψ, and
(b) the distance between successive iterates converges to 0, i.e. ‖xk+1 − xk‖ → 0.

Proof. The proof of (a) follows that of Proposition 10.3.2 of [18]. First note that
the sequence of iterates must be in Lf (x0) because f(xk) ≤ f(x0) for all k. Since
Lf (x0) is compact, {xk} has a convergent subsequence whose limit is in Lf (x0); denote
this as xk` → x∗ as `→∞. Since f is assumed to be continuous, lim f(xk`) = f(x∗).
Moreover, clearly f(x∗) ≤ f(xk`) for all k`.

Note that f(ψ(xk`)) ≤ f(xk`). Taking the limit of both sides and applying the
continuity of ψ and f , we must have that f(ψ(x∗)) ≤ f(x∗). But we also have that

f(x∗) ≤ f(xk`+1
) ≤ f(xk`+1) = f(ψ(xk`)).

Again taking limits we obtain f(x∗) ≤ f(ψ(x∗)). Therefore f(x∗) = f(ψ(x∗)). But
by assumption, this equality implies that x∗ is a fixed point of ψ, and thus (a) is
proven.

We now turn to the proof of (b), which follows the proof of Proposition 10.3.3
in [18]. Recall {xk} denotes the iterate sequence. Since f(xk) is decreasing and f is
bounded below on Lf (x0), we can assert that f(xk) is a convergent sequence with a
limit f∗. Assume the contrary of (b), i.e., that there exists an ε > 0 and a subsequence
{k`} of the indices such that

‖xk`+1 − xk`‖ > ε for all k`. (2.11)

Note that this subsequence is different from the one discussed in proving part (a).
Since xk` ∈ Lf (x0), by possibly restricting {k`} to a further subsequence, we may
assume that xk` converges to a limit u. By possibly restricting {k`} to yet a further
subsequence, we may additionally assume that xk`+1 converges to a limit v. By
(2.11), we can conclude ‖v − u‖ ≥ ε. Note that xk`+1 = ψ(xk`). Taking the limit of
both sides and using the continuity of ψ we obtain ψ(u) = v. Additionally, using the
continuity of f ,

f(u) = lim
`→∞

f(xk`) = f∗ = lim
`→∞

f(xk`+1) = f(v).

Since v = ψ(u), we have that f(u) = f(ψ(u)) which by assumption occurs if and
only if u = ψ(u). This implies that u = v, and we have arrived at a contradiction.

3. CP-APR: Alternating Poisson Regression. In this section we introduce
the CP-APR algorithm for fitting a nonnegative Poisson tensor decomposition (PTF)
to count data. The algorithm employs an alternating optimization scheme that se-
quentially optimizes one factor matrix while holding the others fixed; this is also
known as nonlinear Gauss-Seidel. The subproblems are solved via a majorization-
minimization (MM) algorithm.

8 E. C. Chi and T. G. Kolda

3.1. The Optimization Problem. Our optimization problem is defined as

min f(M) ≡
∑
i

mi − xi logmi s.t. M =
r
λ; A(1), . . . ,A(N)

z
∈ Ω, (3.1)

where

Ω = Ωλ × Ω1 × · · · × Ωn with

Ωλ = [0,+∞)R and Ωn =
{

A ∈ [0, 1]In×R
∣∣ ‖ar‖1 = 1 for r = 1, . . . , R

}
.

(3.2)

In other words, we assume that the factor matrices have stochasticity constraints on
the columns, thereby avoiding possible scale ambiguities.

The function f is not finite on all of Ω. For example, if there exists i such that
mi = 0 and xi > 0, then f(M) = +∞. If mi > 0 for all i such that xi > 0, however,
then we are guaranteed that f(M) is finite. Consequently, we will generally wish to
restrict ourselves to a domain for which f(M) is finite. We define

Ω(ζ) ≡ conv({M ∈ Ω | f(M) ≤ ζ }), (3.3)

where conv(·) denotes the convex hull. We observe that Ω(ζ) ⊂ Ω (strict subset)
since, for example, the all-zero model is not in Ω(ζ). In the following lemma, we show
that Ω(ζ) is compact for any ζ > 0. The proof is given in Appendix B.

Lemma 3.1. Let f be as defined in (3.1) and Ω(ζ) be as defined in (3.3). For any
ζ > 0, Ω(ζ) is compact.

3.2. CP-APR Main Loop: Nonlinear Gauss-Seidel. We solve problem
(3.1) via an alternating approach, holding all factor matrices constant except one.
Consider the problem for the nth factor matrix. Recall that we can express M as

M(n) = B(n)Π(n),

where B(n) is defined in (2.4) and

Π(n) ≡
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
. (3.4)

Thus, we can rewrite the objective function in (3.1) as

f(M) = eT
[
B(n)Π(n) −X(n) ∗ log

(
B(n)Π(n)

)]
e,

where e is the vector of all ones, ∗ denotes the elementwise product, and the log
function is applied elementwise. We note that it is convenient to update A(n) and λ
simultaneously since the resulting constraint on B(n) is simply B(n) ≥ 0.

Thus, at each inner iteration of the Gauss-Seidel algorithm, we optimize f(M)
restricted to the nth block, i.e.,

B(n) = arg min
B≥0

fn(B) ≡ eT
[
BΠ(n) −X(n) ∗ log

(
BΠ(n)

)]
e. (3.5)

The updates for λ and A(n) come directly from B(n). Note that some care must
be taken if an entire column of B(n) is zero; if the rth column is zero, then we can
set λr = 0 and b(n)

r to an arbitrary nonnegative vector that sums to one. The full

Tensors, Sparsity, and Nonnegative Factorizations 9

Algorithm 1 CP-APR Algorithm (Ideal Version)

Let X be a tensor of size I1 × · · · × IN . Let M = Jλ; A(1), · · · ,A(N)K be an initial
guess for an R-component model such that M ∈ Ω(ζ) for some ζ > 0.

1: repeat
2: for n = 1, . . . , N do

3: Π←
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
4: B← arg min

B≥0
eT
[
BΠ−X(n) ∗ log (BΠ)

]
e . subproblem

5: λ← eTB
6: A(n) ← BΛ−1

7: end for
8: until convergence

procedure is given in Algorithm 1; this is a variant (because of the handling of λ) of
nonlinear Gauss-Seidel.

We defer the proof of convergence until §3.3, but we discuss how to check for
convergence here. First, we mention an assumption that is important to the theory
and also arguably practical. Let

S(n)i =
{
j
∣∣ (X(n))ij > 0

}
(3.6)

denote the set of indices of columns for which the ith row of X(n) is non-zero. If
N = 3, then X(1)(i, :) corresponds to a vectorization of the ith horizontal slice of X,
X(2)(i, :) to a vectorization of the ith lateral slice, and X(3)(i, :) to a vectorization of
the ith frontal slice. More generally, we can think of vectorizing “hyperslices” with
respect to each mode.

Assumption 3.2. The rows of the submatrix Π(n)(:,S(n)i) (i.e., only the columns
corresponding to nonzero rows in X(n) are considered) are linearly independent for all
i = 1, . . . , In and n = 1, . . . , N .

Assumption 3.2 implies that |S(n)i | ≥ R for all i. Thus, we need to observe at
least R ·maxn In counts in the data tensor X, and the counts need to be sufficiently
distributed across X. Consequently, the conditions appeal to our intuition that there
are concrete limits on how sparse the data tensor can be with respect to how many
parameters we wish to fit. If, for example, we had X(1)(i, :) = 0, it is clear that we
can remove element i from the first dimension entirely since it contributes nothing.
We are making a stronger requirement: each element in each dimension must have at
least R nonzeros in its corresponding hyperslice.

A potential problem is that Assumption 3.2 depends on the current iterate, which
we cannot predict in advance. However, we observe that if λ > 0 and the factor
matrices have random uniform [0,1] positive entries and R ≤ minn

∏
m 6=n Im, then

this condition is satisfied with probability one1. This condition can be checked as the
iterates progress.

The matrix

Φ(n) ≡
[
X(n) �

(
B(n)Π(n)

)]
Π(n)T, (3.7)

1We can actually appeal to a weaker assumption; if the entries are drawn from any distribution
that is absolutely continuous with respect to the Lebesgue measure on [0,1] then the condition is
satisfied with probability one.

10 E. C. Chi and T. G. Kolda

with � denoting elementwise division, will come up repeatedly in the remainder of
the paper. For instance, we observe that the partial derivative of f with respect to
A(n) is

∂f

∂A(n)
=
(
E−Φ(n)

)
Λ,

where E is the matrix of all ones. Consequently, the matrix Φ(n) plays a role in
checking convergence as follows.

Theorem 3.3. If λ > 0 and M = Jλ; A(1), . . . ,A(N)K ∈ Ω(ζ) for some ζ > 0,
then M is a KKT point of (3.1) if and only if

min
(
A(n),E−Φ(n)

)
= 0 for n = 1, . . . , N. (3.8)

Proof. Since λ > 0, we can assume that λ has been absorbed into A(m) for some
m. Thus, we can replace the constraints λ ∈ Ωλ and A(m) ∈ Ωn with B(m) ≥ 0. In
this case, the partial derivatives are

∂f

∂B(m)
= E−Φ(m) and

∂f

∂A(n)
=
(
E−Φ(n)

)
Λ for n 6= m. (3.9)

Since M ∈ Ω(ζ) for some ζ > 0, we know that not all elements of M are zero; thus,
LICQ holds. From Theorem 2.2, the following conditions define a KKT point:

E−Φ(m) −Υ(m) = 0,(
E−Φ(n)

)
Λ−Υ(n) − e(η(n))T = 0, for n 6= m,

eTA(n) = 1, for n 6= m,

A(n) ≥ 0, for n 6= m,

B(m) ≥ 0,

Υ(n) ≥ 0, for all n,

Υ(n) ∗A(n) = 0, for all n 6= m,

Υ(m) ∗B(m) = 0.

(3.10)

Here Υ(n) are the Lagrange multipliers for the nonnegativity constraints and η(n) are
the Lagrange multipliers for the stochasticity constraints.

If M = 〈λ; A(1), . . . ,A(N)〉 is a KKT point, then from (3.10), we have that Υ(m) =

E −Φ(m) ≥ 0, B(m) ≥ 0, and Υ(m) ∗B(m) = 0. Thus, min(A(m)Λ,E −Φ(m)) = 0.
Since λ > 0 and m is arbitrary, (3.8) follows immediately.

If, on the other hand, (3.8) is satisfied, choosing Υ(m) = E −Φ(m), and Υ(n) =(
E−Φ(n)

)
Λ and η(n) = 0 for n 6= m satisfies the KKT conditions in (3.10). Hence,

M must be a KKT point.
Observe that the condition λ > 0 makes λ moot in the KKT conditions — this

reflects the scaling ambiguity that is inherent in the model.
From Theorem 3.3, we can check for convergence by verifying∣∣∣min

(
A(n),E−Φ(n)

)∣∣∣ ≤ τ for n = 1, . . . , N,

where τ > 0 is some specified convergence tolerance.

Tensors, Sparsity, and Nonnegative Factorizations 11

3.3. Convergence Theory for CP-APR. We require the strict convexity of
f in each of the block coordinates. This is ensured under Assumption 3.2.

Lemma 3.4 (Strict convexity of subproblem). Let fn(·) be the function f re-
stricted to the nth block as defined in (3.5). If Assumption 3.2 is satisfied, then fn(B)

is strictly convex over Bn = {B ∈ [0,+∞)In×R : BΠ(n) 6= 0}.
Proof. In the proof, we drop the n’s for convenience. First note that B is convex.

Let C = BT. Recall that we can rewrite (3.5) as shown in (4.1). Hence, it is sufficient
to show that the function

f̂(C) = −
∑
ij

xij log(cTi πj)

is strictly convex over the convex set C = {C ∈ [0,+∞)R×In : CTΠ 6= 0}. Fix
α ∈ (0, 1) and C̄, Ĉ ∈ C such that C̄ 6= Ĉ. Since the inner product is affine and log is
a strictly concave function, we need only show that there exists some i and j such that
xij 6= 0 and ĉTi πj 6= c̄Ti πj . We know at least one column must differ since C̄ 6= Ĉ;
let i correspond to that column and define d = ĉi − c̄i 6= 0. By Assumption 3.2, we
know that Π(:, Si) has full row rank. Thus, there exists a column j of Π such that
xij 6= 0 and dTπj 6= 0. Hence, the claim.

Here we state our main convergence result. Although this result assumes that the
subproblems can be solved exactly (which is not the case in practice), it gives some
idea as to the convergence behavior of the method. We follow the reasoning of the
proof of convergence of nonlinear Gauss-Seidel [3, Proposition 3.9], adapted here for
the way that λ is handled.

Theorem 3.5 (Convergence of CP-APR). Suppose that f(M) is strictly convex
with respect to each block component and that it is minimized exactly for each block
component subproblem of CP-APR. Let M∗ be a limit point of the sequence {Mk}
such that λ∗ > 0. Then M∗ is a constrained stationary point of (3.1).

Proof. Let Mk = 〈λk,A(1)
k , . . . ,A

(N)
k 〉 be the kth iterate produced by the outer

iterations of Algorithm 1. Define Z
(n)
k to be the nth iterate in the inner loop of outer

iteration k with the λ-vector absorbed into the nth factor, i.e.,

Z
(n)
k = 〈A(1)

k+1, . . . ,A
(n−1)
k+1 ,B

(n)
k+1,A

(n+1)
k , . . . ,A

(N)
k 〉,

where B
(n)
k+1 is the solution to the nth subproblem at iteration k such that A

(n)
k+1 is

the column-normalized version of B
(n)
k+1, i.e., A

(n)
k+1 = B

(n)
k+1(diag(B

(n)
k+1e))−1. Observe

that

Z
(N)
k = 〈A(1)

k+1, . . . ,A
(N−1)
k+1 ,A

(N)
k+1 diag(λk+1)〉,

so there is a correspondence between Z
(N)
k and Mk+1 such that f(Z

(N)
k) = f(Mk+1).

For convenience, we define

Z
(0)
k = 〈A(1)

k diag(λk),A
(2)
k , . . . ,A

(N)
k 〉,

Since we assume the subproblem is solved exactly at each iteration, we have

f(Mk) ≥ f(Z
(1)
k) ≥ f(Z

(2)
k) ≥ · · · f(Z

(N−1)
k) ≥ f(Mk+1) for all k. (3.11)

Recall that Ω(ζ) is compact by Lemma 3.1. Since the sequence {Mk} is contained
in the set Ω(ζ), it must have a convergent subsequence. We let {k`} denote the indices

12 E. C. Chi and T. G. Kolda

of that convergent subsequence and M∗ = 〈λ∗,A(1)
∗ , . . . ,A(N)

∗ 〉 denote its limit point.
By continuity of f ,

f(Mk`)→ f(M∗).

We first show that ‖A(1)
k`+1−A

(1)
k`
‖ → 0. Assume the contrary, i.e., that it does not

converge to zero. Let γk` = ‖Z(1)
k`
− Z

(0)
k`
‖. By possibly restricting to a subsequence

of {k`}, we may assume there exists some γ0 > 0 such that γ(k`) ≥ γ0 for all `. Let

S
(1)
k`

= (Z
(1)
k`
−Z

(0)
k`

)/γk` ; then Z
(1)
k`

= Z
(0)
k`

+ γk`S
(1)
k`

, ‖S(1)
k`
‖ = 1, and S

(1)
k`

differs from

zero only along the first block component. Notice that {S(1)
k`
} belong to a compact

set and therefore has a limit point S(1)
∗ . By restricting to a further subsequence of

{k`}, we assume that S
(1)
k`
→ S(1)

∗

Let us fix some ε ∈ [0, 1]. Notice that 0 ≤ εγ0 ≤ γk` . Therefore, Z
(0)
k`

+ εγ0S
(1)
k`

lies on the line segment joining Z
(0)
k`

and Z
(0)
k`

+ γk`S
(1)
k`

= Z
(1)
k`

and belongs to Ω(ζ)
because Ω(ζ) is convex. Using the convexity of f w.r.t. the first block component

and the fact that Z
(1)
k`

minimizes f over all Z that differ from Z
(1)
k`

in the first block
component, we obtain

f(Z
(1)
k`

) = f(Z
(0)
k`

+ γk`S
(1)
k`

) ≤ f(Z
(0)
k`

+ εγ0S
(1)
k`

) ≤ f(Z
(0)
k`

).

Since f(Z
(0)
k`

) = f(Mk`)→ f(M∗), equation (3.11) shows that f(Z
(1)
k`

) also converges
to f(M∗). Taking limits as ` tends to infinity, we obtain

f(M∗) ≤ f(Z(0)
∗ + εγ0S

(1)
∗) ≤ f(M∗),

where Z(0)
∗ is just M∗ with λ∗ absorbed into the first component. We conclude that

f(M∗) = f(Z(0)
∗ + εγ0S

(1)
∗) for every ε ∈ [0, 1]. Since γ0S

(1)
∗ 6= 0, this contradicts the

strict convexity of f as a function of the first block component. This contradiction

establishes that ‖A(1)
k`+1 −A

(1)
k`
‖ → 0. In particular, Z

(1)
k`

converges to Z(0)
∗ .

By definition of Z
(1)
k`

and the assumption that each subproblem is solved exactly,
we have

f(Z
(1)
k`

) ≤ f(〈B,A(2)
k`
, . . . ,A

(N)
k`
〉) for all B ≥ 0.

Taking limits as `→∞, we obtain

f(M∗) ≤ f(〈B,A(2)
∗ , . . . ,A(N)

∗ 〉) for all B ≥ 0.

In other words, B(1)
∗ = A(1)

∗ diag(λ∗) is the minimizer of f with respect to the first

block components with the remaining components are fixed at A(2)
∗ through A(N)

∗ .
Using the KKT conditions from Theorem 2.2, we have that

B(1)
∗ ≥ 0,

∂f

∂B(1)
(B(1)
∗) ≥ 0, B(1)

∗ ∗
∂f

∂B(1)
(B(1)
∗) = 0.

In turn, since λ∗ > 0, we have

min
(
A(1)
∗ ,E−Φ(1)

∗

)
= 0.

Tensors, Sparsity, and Nonnegative Factorizations 13

Repeating the previous argument shows that ‖A(2)
k`+1 − A

(2)
k`
‖ → 0 and that

min
(
A(2)
∗ ,E−Φ(2)

∗

)
= 0. Continuing inductively, we eventually conclude that

min
(
A(n)
∗ ,E−Φ(n)

∗

)
= 0 for n = 1, . . . , N.

Thus, by Theorem 3.3, M∗ is a KKT point of f(M).

4. Solving the CP-APR Subproblem via Majorization-Minimization.
Consider the nth subproblem in (3.5). Here we drop the n’s for convenience and let
C = BT so that (3.5) reduces to

min
C≥0

∑
ij

cTi πj − xij log
(
cTi πj

)
︸ ︷︷ ︸

f(CT)

. (4.1)

Here, dropping the n’s, we have that C is a matrix of size R × I, Π is a matrix of
size R × J , and X is a matrix of size I × J . According to Assumption 3.2, for every
i there is at least one j such that xij > 0. Thus, we can assume that we have C̄ ≥ 0

such that f(C̄
T

) is finite. Then by Lemma 2.5, f is majorized at C̄
T

by the function

g(C, C̄) =
∑
rij

[
criπrj − αrijxij log

(
criπrj
αrij

)]
where αrij =

c̄riπrj

c̄Ti πj
. (4.2)

The advantage of this majorization is that the problem is now completely separable in
terms of cri, i.e., the individual entries of C. We now show that g(·, C̄) has a unique
global minimum and give an analytic expression for it.

Lemma 4.1. Let f and g be as defined in (4.1) and (4.2), respectively. Then, for

all C̄ ≥ 0 such that f(C̄
T

) is finite, the function g(·, C̄) has a unique global minimum
C∗ which is given by

(C∗)ri =
∑
j

αrijxij where αrij =
c̄riπrj

c̄Ti πj
, for all r = 1, . . . , R, i = 1, . . . , I.

Proof. Because g(C, C̄) separates in the elements of C we focus on solving each
elementwise minimization problem. Dropping subscripts, the minimization problem
with respect to cri can be rewritten as

min
c≥0

c−
∑
j

αjxj log

(
cπj
αj

)
, (4.3)

where we have used the fact that
∑
j πj = 1. It is sufficient to prove that this

univariate problem has a unique global minimizer, c∗ =
∑
j αjxj . First, consider

the case where the second term is nonzero. Some quick calculus reveals the solution.
Moreover, the function is strictly convex and so has a unique global minimum. Second,
consider the case where the second term is zero. Then, it is immediate that the
unique global minimum is c∗ = 0. Moreover, the second term can only vanish when∑
j αjxj = 0, and so the formula applies.

14 E. C. Chi and T. G. Kolda

Algorithm 2 CP-APR Algorithm (with Subproblem Solver)

Let X be a tensor of size I1 × · · · × IN . Let M = 〈λ; A(1), · · · ,A(N)〉 be an initial
guess for an R-component model such that M ∈ Ω(ζ) for some ζ > 0.

1: repeat
2: for n = 1, . . . , N do
3: B← A(n)Λ

4: Π←
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
5: repeat . subproblem loop
6: Φ←

(
X(n) � (BΠ)

)
ΠT

7: B← B ∗Φ
8: until convergence
9: λ← eTB

10: A(n) ← BΛ−1

11: end for
12: until convergence

Rewriting the results of Lemma 4.1 in terms of B yields an MM update of the
form:

bir ← bir
∑
j

xij∑
r′ bir′πr′j

πrj .

In matrix format, the updates can be expressed as

B← B ∗Φ,

where Φ is as defined in (3.7) and depends on B. The next result ensures that if
B 6= B ∗Φ, then the update strictly decreases f .

Corollary 4.2. Let B ≥ 0 such that f(B) is finite and suppose B 6= B ∗ Φ.
Then f(B) > f(B ∗Φ).

Proof. By Lemma 4.1 (B ∗Φ)T is the unique global minimizer of g(·,BT) which
majorizes f at BT. Therefore, if B 6= B ∗Φ, we must have

f(B) = g(BT,BT) > g((B ∗Φ)T,BT) ≥ f(B ∗Φ).

The CP-APR algorithm using the MM algorithm to solve the Gauss-Seidel sub-
problem is given in Algorithm 2.

4.1. Convergence of MM Algorithm for Subproblem. We prove the MM
Algorithm of §4 minimizes the subproblem in (3.5). If we are updating the nth factor
matrix and drop the n’s, we can write the subproblem as

min
B≥0

f(B) ≡ eT [BΠ−X ∗ log(BΠ)] e. (4.4)

Recall that X is the nonnegative data tensor reshaped to a matrix of size I × J , Π is
a nonnegative matrix of size R× J with rows that sum to 1, and B is a nonnegative
matrix of size I ×R. Recall that the MM algorithm iterations are defined by

Bk+1 = ψ(Bk) ≡ Bk ∗ Φ(Bk), where Φ(Bk) = [X� (BkΠ)] Π (4.5)

Tensors, Sparsity, and Nonnegative Factorizations 15

and X and Π come from (4.4). If B0 ≥ 0, clearly Bk ≥ 0 for all k. Observe that

∇f(B) = E−Φ(B). (4.6)

We now provide a series of lemmas leading up to a proof that, under mild conditions
on the starting point B0, the MM iterates will converge to the unique global minimum
of (4.4). For clarity, we restate Assumption 3.2 in terms of the local variables for this
section as follows:

Assumption 4.3. The rows of the submatrix Π (:, { j | Xij > 0 }) (i.e., only the
columns corresponding to nonzero rows in X are considered) are linearly independent
for all i = 1, . . . , I.

Lemma 4.4. Let f be as defined in (4.4). For any nonnegative matrix B0 such
that f(B0) is finite, the level set Lf (B0) = {B ≥ 0 | f(B) ≤ f(B0) } is compact.

Proof. The proof follows the same logic as the proof for Lemma B.1.
Lemma 4.5. Let f be as defined in (4.4) and ψ be as defined in (4.5), and suppose

Assumption 4.3 is satisfied. For any nonnegative matrix Bk such that f(B0) is finite,
the sequence Bk+1 = ψ(Bk) converges.

Proof. Note that all limit points of ψ are fixed points of f by Theorem 2.6.
First, we show that the set of fixed point is finite. Suppose that B is a fixed point

of ψ. Then we must have B ∗ (E−Φ(B)) = 0. By Theorem 2.3 and Lemma 3.4, it
can be verified that B is the unique global minimizer of

min f(U) s.t. U ∈ {U ≥ 0 | uir = 0 if bir = 0 } ,

where f is as defined in (4.4). Therefore, any fixed point that has the same zero
pattern of B must be equal to B. Since there are only a finite number of possible zero
patterns, the number of fixed points is finite.

Since every limit point is a fixed point by Theorem 2.6(a), there are only finitely
many limit points. Let {Np} denote a collection of arbitrarily small neighborhoods
around each fixed point indexed by p. Only finitely many iterates Bk are in Lf (B0)−
∪pNp. So, all but finitely many iterates Bk will be in ∪pNp. But ‖Bk+1 − Bk‖
eventually becomes smaller than smallest distance between any two neighborhoods by
Theorem 2.6(b). Therefore the sequence Bk must belong to one of the neighborhoods
for all but finitely many k. So, any sequence of iterates must eventually converge to
exactly one of the fixed points of ψ.

We now argue that it is impossible for the MM iterate sequence to converge to a
non-KKT point if it has been appropriately initialized.

Lemma 4.6. Let f be as defined in (4.4) and suppose Assumption 4.3 is satisfied.
Suppose Bk → B∗ is a convergent sequence of iterates defined by (4.5) with B0 ≥ 0 and
f(B0) finite. If (B0)ir > 0 for all (i, r) such that (Φ(B∗))ir > 1, then ∇f(B∗) ≥ 0.

Proof. We give a proof by contradiction. Suppose there exists (i, r) such that
(B0)ir > 0 but (∇f(B∗))ir < 0. Since B∗ is a fixed point of ψ, we must have [1 −
(Φ(B∗))ir](B∗)ir = 0. By our assumption, however (∇f(B∗))ir = [1−(Φ(B∗))ir] < 0.
Thus, we must have (B∗)ir = 0. On the other hand, (Bk)ir > 0 for all k (proof left to
reader). Since Φ(·) is a continuous function of B on Lf (B0), we know that there exists
some K such that k > K implies Bk is close enough to B∗ such that (∇f(Bk))ir = [1−
(Φ(Bk))ir] < 0. Since (Bk)ir > 0, we have [1− (Φ(Bk))ir](Bk)ir < 0, which implies
(Bk)ir < (Bk+1)ir for all k > K. But this contradicts limk→∞(Bk)ir = (B∗)ir = 0.
Hence, the claim.

Theorem 4.7 (Convergence of MM algorithm). Let f be as defined in (4.4) and
assume Assumption 4.3 holds, let B0 be a nonnegative matrix such that f(B0) is finite

16 E. C. Chi and T. G. Kolda

and (B0)ir > 0 for all (i, r) such that (Φ(B∗))ir > 1, and let the sequence {Bk} be
defined as in (4.5). Then {Bk} converges to the global minimizer of f .

Proof. By Lemma 4.5, the sequence {Bk} converges; we call the limit point B∗.
At this limit point, we have: (a) B∗ ≥ 0, (b) ∇f(B∗) ≥ 0 by Lemma 4.6, (c) and
B∗ ∗ ∇f(B∗) = 0 by virtue of B∗ being a fixed point of ψ. Thus, the point B∗
satisfies the conditions in (2.9) with respect to (4.4). Furthermore, since f is convex
by Lemma 3.4, we can conclude that B∗ is the global minimum of f .

Observe that the condition that (B0)ir > 0 for all (i, r) such that (Φ(B∗))ir > 1
is easily satisfied by simply choosing B0 strictly positive.

5. CP-APR Implementation Details. Algorithm 2 omits many details and
numerical checks that are needed in any practical implementation. Thus, Algorithm 3
provides a detailed version that can be directly implemented. A highlight of this imple-
mentation is the “inadmissible zero” avoidance, which fixes a long-standing problem
with multiplicative updates.

Algorithm 3 Detailed CP-APR Algorithm

Let X be a tensor of size I1 × · · · × IN . Let M = 〈λ; A(1), · · · ,A(N)〉 be an initial
guess for an R-component model such that M ∈ Ω(ζ) for some ζ > 0.
Choose the following parameters:

• kmax = Maximum number of outer iterations
• `max = Maximum number of inner iterations (per outer iteration)
• τ = Convergence tolerance on KKT conditions (e.g., 10−4)
• κ = Inadmissible structural zero avoidance adjustment (e.g., 0.01)
• κtol = Tolerance for identifying a potential structural nonzero (e.g., 10−10)
• ε = Minimum divisor to prevent divide-by-zero (e.g., 10−10)

1: for k = 1, 2, . . . , kmax do
2: isConverged ← true
3: for n = 1, . . . , N do

4: S(i, r)←

{
κ, if k > 1,A(n)(i, r) < κtol, and Φ(n)(i, r) > 1,

0, otherwise

5: B← (A(n) + S)Λ

6: Π←
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
7: for ` = 1, 2, . . . , `max do . subproblem loop
8: Φ(n) ←

(
X(n) � (max(BΠ, ε))

)
ΠT

9: if |min(B,E−Φ(n))| < τ then
10: break
11: end if
12: isConverged ← false
13: B← B ∗Φ(n)

14: end for
15: λ← eTB
16: A(n) ← BΛ−1

17: end for
18: if isConverged = true then
19: break
20: end if
21: end for

Tensors, Sparsity, and Nonnegative Factorizations 17

5.1. Divide-by-Zero Avoidance. In line 6 of Algorithm 2, if (BΠ)ij = 0 for
some (i, j) such that xij 6= 0, then we will have a division by zero. Although our
theory guarantees that we will never have an exact zero, very small divisors can be
equally problematic. In order to avoid this complication, we force every entry of the
divisor to be at least ε, i.e., we can change the divisor to

max(BΠ, ε),

where the max is computed elementwise and ε is some user-specified parameter. This
is a common adjustment in multiplicative updates.

5.2. Inadmissible Zero Avoidance. A long-standing problem with multiplica-

tive updates is that some elements may get “stuck” at zero. For example, if a
(n)
ir = 0,

then the multiplicative updates in line 7 of Algorithm 2 will never change it. In many
cases, a zero entry may be the correct answer, so we want to allow it. In other cases,
though, the zero entry may be incorrect in the sense that it does not satisfy the KKT

conditions, i.e., a
(n)
ir = 0 but

1− Φ
(n)
ir < 0.

We refer to these values as inadmissible zeros. We can correct this problem before we
enter into the multiplicative update phase of the algorithm, i.e., when we initialize B
in line 3 of Algorithm 2. In the detailed version of the algorithm, any inadmissible
zeros (or near-zeros) are “schooched” away from zero and into the interior in lines 4–5
of Algorithm 3. The amount of the schooch is controlled by the user-defined parameter
κ. We will later show that this adjustment prevents convergence to non-KKT points.

5.3. Practical Considerations on Convergence. Per Theorem 3.5, we know
that CP-APR will converge if each subproblem is solved exactly. In practice, however,
running the subproblem loop in lines 5–8 of Algorithm 2 until convergence is too
expensive. Therefore, we typically bound the maximum number of iterations in the
subproblem loop. Likewise, the number of outer iterations until convergence may be
excessive, so these are bounded as well. These bounds are specified by ¡¡¡¡¡¡¡ .mine
`max for the subproblem loop (note that each subproblem runs N times so the total
number of subproblem iterations is N`max) and kmax for the outer loop. =======
`max for the subproblem loop (note that N subproblem are run per outer iteration, so
the total number of subproblem iterations does not exceed N`max for a given outer
iteration) and kmax for the outer loop. ¿¿¿¿¿¿¿ .r424

The convergence conditions on the subproblem require that

min
(
B(n),E−Φ(n)

)
= 0,

which we check in line 9 of Algorithm 3. We do not require the value to be exactly
zero but instead check that it is smaller in magnitude than the user-defined parameter
τ . We break out of the subproblem loop as soon as this condition is satisfied.

From Theorem 3.3, we can check for overall convergence by verifying (3.8). We do
not want to calculate this at the end of every n-loop because it is expensive. Instead,
we know that the iterates will stop changing once we have converged and so we can
validate the convergence of all factor matrices by checking that no factor matrix has
been modified and every subproblem has converged. This is done via the Boolean
variable isConverged in Algorithm 3.

18 E. C. Chi and T. G. Kolda

5.4. Lee-Seung is a special case of CP-APR. If we only take one iteration
of the subproblem loop (i.e., setting `max = 1), then CP-APR is the Lee-Seung mul-
tiplicative update algorithm for the generalized KL divergence. Thus, we can view
the Lee-Seung algorithm as a special case of our algorithm where we do not solve the
subproblems exactly; quite the contrary, we only take one step towards the subprob-
lem solution. The fix for the inadmissible zeros can also be used for the standard
Lee-Seung algorithm.

5.5. Sparse Tensor Implementation. Consider a large-scale sparse tensor
that is too large enough to be stored as a dense tensor requiring

∏
n In memory. In

this case, we can store the tensor as a sparse tensor as described in [2], requiring only
(N + 1) · nnz(X) memory.

The elementwise division in the update of Φ in line 6 of Algorithm 2 requires
that we divide the tensor (in matricized form) X by the current model estimate (in
matricized form) M = BΠ. Unfortunately, we cannot afford to store M explicitly as
a dense tensor because it is the same size as X. In fact, we generally cannot even form
Π explicitly because it requires almost as much storage as the product. We observe,
however, that we need only calculate the values of M that correspond to nonzeros in
X.

Let P = nnz(X). Then we can store the sparse tensor X as a set of values and
multi-indices, (v(p), i(p)) for p = 1, . . . , P . In order to avoid forming the current model
estimate, M, as a dense object, we will store only selected rows of Π, one per nonzero
in X; we denote these rows by w(p) for p = 1, . . . , P . The pth vector is given by the
elementwise product of rows of the factor matrices, i.e.,

w(p) = A(1)(i
(p)
1 , :) ∗ · · · ∗A(n−1)(i

(p)
n−1, :) ∗A(n+1)(i

(p)
n+1, :) ∗ · · · ∗A(N)(i

(p)
N , :).

In order to determine X̂ = X�M in the calculation of Φ, we proceed as follows. The
tensor X̂ will have the same nonzero pattern as X, and we let v̂(p) denote its values.
It can be determined that

v̂(p) = x(p)/
〈
w(p),A(n)(i(p)n , :)

〉
.

To calculate Φ = X̂Π, we simply have

Φ(i′, r) =
∑

p:i
(p)
n =i′

v̂(p)w(p)(r).

The storage of the w(p) for p = 1, . . . , P vectors and the entries v̂(p) requires (R+1)P
additional storage.

6. Numerical Results for CP-APR.

6.1. Comparison of Objective Functions for Sparse Count Data. We
contend that, for sparse count data, (1.2) is a better objective function than least
squares. To support our claim, we consider simulated data where we know the correct
answer. We compare CP-APR (our method) with CP-ALS.

We consider a 3-way tensor (N = 3) of size 1000 × 800 × 600 and R = 10

factors. It will be generated from a model M = Jλ; A(1), . . . ,A(N)K. The entries of

the vector λ are selected uniformly at random from [0, 1]. Each factor matrix A(n)

is generated as follows: (1) For each column in A(n), randomly select 10% (i.e., 1/R)

Tensors, Sparsity, and Nonnegative Factorizations 19

of the entries to be selected uniformly at random from the interval [0, 100]. (2) The
remaining entries are selected uniformly at random from [0, 1]. (3) Each column
is scaled so that its 1-norm is 1 (i.e., its sum is 1). An “observed” tensor can be
thought of as the outcome of tossing ν �

∏
In balls into

∏
In empty urns where

each entry of the tensor corresponds to an urn. For each ball, we first draw a factor
r with probability λr/

∑
λr. The indices (i, j, k) are selected randomly proportional

to a
(n)
r for n = 1, 2, 3. In other words, the ball is then tossed into the (i, j, k)th

urn with probability a
(1)
ir a

(2)
jr a

(3)
kr . In this manner, the balls are allocated across the

urns independently of each other. This procedure generates entries xi that are each
distributed as Poisson(mi). We adjust the final λ so that the scale matches that of
X, i.e., λ← νλ/‖λ‖.

The CP-APR method uses the following parameters: kmax = 200 (maxiters),
`max = 10 (maxinneriters), τ = 10−4 (tol), κ = 10−2 (kappa), κtol = 100 · εmach

(kappatol), ε = 0 (epsilon). We use CP-ALS implementation in the Tensor Toolbox
for Matlab, Version 2.4; we use its default parameter settings except that we set the
maximum number iterations (maxiters) to 200 and the convergence tolerance (tol)
to 10−8. This relatively small tolerance ensures that it does not stop prematurely.

We compare CP-APR and CP-ALS in terms of their “factor match score,” de-
fined as follows. Let M = Jλ; A(1), . . . ,A(N)K be the true model and let M̄ =

Jλ̄; Ā
(1)
, . . . Ā

(N)K be the computed solution. The score of M̄ is computed as

score(M̄) =
1

R

∑
r

(
1− |ξr − ξ̄r|

max{ξr, ξ̄r}

)∏
n

a
(n)T
r ā

(n)
r

‖a(n)
r ‖‖ā(n)

r ‖
,

where

ξr = λr
∏
n

‖a(n)
r ‖ and ξ̄r = λ̄r

∏
n

‖ā(n)
r ‖.

The FMS is a rather abstract measure, so we also give results for the number of
columns in A(1) that are correctly identified. In other words, we count the number
of times that the cosine of the angle between the true solution and the computed
solution is greater than 0.95, mathematically,

a
(1)T
r ā

(1)
r

‖a(1)
r ‖‖ā(1)

r ‖
≥ 0.95.

We use the first mode, but the results are representative of the other modes.
Results that are averages of 10 problems are shown in Table 6.1. We compare

the factor match score of CP-APR and CP-ALS for observations ranging 480,000
(0.1%) down to 24,000 (0.005%). Recall that Assumption 3.2 implies that the absolute
minimum number of observations is R·maxn In = 10, 000. We consider both the factor
match score and the number of columns correctly identified, as described above. We
have used very few observations data as real problems do indeed tend to be this
sparse. Nonetheless, both CP-APR and CP-ALS are able to correctly identify many
of the components in the data. Overall, CP-APR gets better FMS scores and correctly
identifies more columns; moreover, this is consistent for every single problem. CP-ALS
does indeed find some correct information, but CP-APR finds more.

6.2. The Benefit of Extra Inner Iterations. We next show that varying the
maximum number of inner iterations `max can accelerate the convergence. Recall

20 E. C. Chi and T. G. Kolda

CP-APR CP-ALS
Observations FMS # Cols FMS # Cols

480,000 (0.100%) 0.96 9.5 0.71 7.3
240,000 (0.050%) 0.91 9.2 0.72 7.4
48,000 (0.010%) 0.80 7.9 0.59 6.3
24,000 (0.005%) 0.74 6.9 0.51 5.7

Table 6.1: Accuracy comparison of CP-APR and CP-ALS for sparse count data (mean
of 10 trials). The factor match score (FMS) is in the range [0, 1] with one being
optimal. The number of columns correctly identified ranges from 1 to 10, with 10
being ideal.

that `max = 1 corresponds to the Lee-Seung algorithm. We consider a 3-way tensor
(N = 3) of size 500 × 400 × 300 and R = 5 factors. We generate 100 problem

instances from 100 randomly generated models M = Jλ; A(1), . . . ,A(N)K as described
in §6.1 with 0.1% observations. We compare CP-APR with `max = 1, 5, and 10. We
track both the number of times line 8 of Algorithm 3 is executed and the CPU time
using the MATLAB command cputime. The experiments were performed on an iMac
computer with a 3.4 GHz Intel Core i7 processor and 8 GB of RAM. The mean and
median factor match scores as compared to the true generative factors are shown in
Table 6.2. We see that the value of `max does not significantly impact accuracy. The
high scores (near 1) indicate that CP-APR iterates typically converged to the true
model, regardless of the setting of `max.

`max 1 5 10
Median 0.9858 0.9858 0.9862
Mean 0.9483 0.9514 0.9603

Table 6.2: Median and mean factor match scores for 100 simulated problems, varying
the number of inner iterations.

Table 6.3a and Table 6.3b present summary statistics tally of multiplicative up-
dates and total run times respectively. The distribution of updates and times was
highly skewed as some problems required a substantial number of iterations. Nonethe-
less, we generally see a monotonic decrease in the number of updates and time as `max

increases. The differences are more substantial when comparing wall clock time. The
reason for the disproportionate decrease in wall-clock time compared to the tally of
updates is that the cost of the calculation of Π in line 6 of Algorithm 3 is amortized
over all the subproblem iterations.

6.3. Fixing Misconvergence of Lee-Seung. We demonstrate the effective-
ness of our simple fix for avoiding inadmissible zeros, as described in §5.2. Gonzalez
and Zhang [13] have a well known example that demonstrates this problem but does
not provide a solution. Here we produce similar results and show how our technique
corrects the problem. As in [13], we consider fitting a rank-10 bilinear model for a
25 × 15 dense positive matrix with entries drawn independently and uniformly from
[0, 1]. We apply CP-APR using `max = 1, τ = 10−15, ε = 0, κtol = 100 · εmach. We
do two runs: one with κ = 0, corresponding to the standard Lee-Seung algorithm,

Tensors, Sparsity, and Nonnegative Factorizations 21

`max 1 5 10
Mean 16370 11710 11660
Min 1641 1930 2748
1Q 6320 5016 5192
2Q 9819 7655 7290
3Q 17760 14020 11860

Max 161100 88390 81240

(a) Number of multiplicative updates

`max 1 5 10
Mean 299.60 106.10 87.92
Min 27.33 16.84 20.16
1Q 106.40 44.94 38.68
2Q 168.70 68.98 55.00
3Q 323.00 124.20 92.35

Max 3122.00 739.40 579.70

(b) Time (seconds)

Table 6.3: Comparing CP-APR with different values of `max for sparse count data
over 100 trials. We report the mean, minimum, maximum, and the quartiles.

0 5 10

x 10
4

10
−15

10
−10

10
−5

10
0

In
fin

ity
 n

or
m

 o
f K

K
T

 r
es

id
ua

l

Iterations

κ = 0
κ = 1e−10

Fig. 6.1: Lee-Seung permitting inadmissible zeros (blue solid line) and avoiding inad-
missible zeros (red dashed line).

and the other with κ = 10−10 to move away from inadmissible zeros. In both runs
we use the same strictly positive initial guess. Figure 6.1 shows the magnitude of
the KKT residual over more than 105 iterations. When κ > 0, the sequence clearly
convergences. On the other hand when κ = 0 the iterates appear to get stuck at a
non-KKT point. Closer inspection of the factor matrix iterates reveals a single of-
fending inadmissible zero in the second factor matrix. We recognize that we have an
inadmissible zero because its partial derivative is −0.0016 but should be nonnegative.

6.4. Enron Data. We consider the application of CP-APR to email data from
the infamous Federal Energy Regulatory Commission (FERC) investigation of Enron
Corporation. We use the version of the dataset prepared by Zhou et al. [37] and further
processed by Perry and Wolfe [29], which includes detailed profiles on the employees.
The data is arranged as a three-way tensor X arranged as sender × receiver × month,
where entry (i, j, k) indicates the number of messages from employee i to employee j
in month k. The original data set had 38,388 messages (technically, there were only
21,635 messages but some messages were sent to multiple recipients and so are counted

22 E. C. Chi and T. G. Kolda

multiple times) exchanged between 156 employees over 44 months (November 1998
– June 2002). We preprocessed the data, removing months that had less than 300
messages and removing any employees that did not send and receive an average of at
least one message per month. Ultimately, our data set spanned 28 months (December
1999 – March 2002), involved 105 employees, and a total of 33,079 messages. The data
is arranged so that the senders are sorted by frequency (greatest to least). The tensor
representation has a total of 8,540 nonzeros (many of the messages occur between the
same sender/receiver pair in the same time period). The tensor is 2.7% dense.

We apply CP-APR to find a model for the data. There is no ideal method for
choosing the number of components. Typically, this value is selected through trial
and error, trading off accuracy (as the number of components grows) and model
simplicity. Here we show results for R = 10 components. We use the default settings
for the method, with `max = 10 and kmax = 200.

Figure 6.2 illustrates six components in the resulting factorization. For each
component, the top two plots shows the activity of senders and receivers, with the
employees ordered from left to right by frequency of sending emails. Each employee
has a symbol indicating their seniority (junior or senior), gender (male or female),
and department (legal, trading, other). The sender and receiver factors have been
normalized to sum to one, so the height of the marker indicates each employee’s
relative activity within the component. The third component (in the time dimension)
is scaled so that it indicates total message volume explained by that component.
The light gray line shows the total message volume. It is interesting to observe how
the components break down into specific subgroups. For instance, component 1 in
Figure 6.2a consists of nearly all “legal” and is majority female. This can be contrasted
to component 5 in Figure 6.2d, which is nearly all “other” and also majority female.
Component 3 in Figure 6.2b is a conversation among “senior” staff and mostly male;
on the other hand, “junior” staff are more prominent in Component 4 in Figure 6.2c.
Component 8 in Figure 6.2e seems to be a conversation among “senior” staff after the
SEC investigation has begun. Component 10 in Figure 6.2f indicates that a couple
of “legal” staff are communicating with many “other” staff immediately after the
SEC investigation is announced, perhaps advising the “other” staff on appropriate
responses to investigators.

6.5. SIAM Data. As another example, we consider five years (1999-2004) of
SIAM publication metadata that has previously been used by Dunlavy et al. [8].
Here, we build a three-way sparse tensor based on title terms (ignoring common stop
words), authors, and journals. The author names have been normalized to last name
plus initial(s). The resulting tensor is of size 4,952 (terms) × 6,955 (authors) × 11
(journals) and has 64,133 nonzeros (0.017% dense). The highest count is 17 for the
triad (‘education’, ‘Schnabel B’, ‘SIAM Rev.’), which is a result of Prof. Schnabel’s
writing brief introductions to the education column for SIAM Review. In fact, the
next 4 highest counts correspond to the terms ‘problems’, ‘review’, ‘survey’, and
‘techniques’, and to authors ‘Flaherty J’ and ‘Trefethen N’.

Computing a ten-component factorization yields the results shown in Table 6.4.
We use the default settings for the method, with `max = 10 and kmax = 200. In the
table, for the term and author modes, we list any entry whose factor score is greater
than 10−7 · In, where In is the size of the nth mode; in the journal mode, we list any
entry greater than 0.01. The 10th component corresponds to introductions written
by section editors for SIAM Review. The 1st component shows that there is overlap
in both authors and title keyword between the SIAM J. Computing and the SIAM

Tensors, Sparsity, and Nonnegative Factorizations 23

(a) Component 1 (b) Component 3

(c) Component 4 (d) Component 5

(e) Component 8 (f) Component 10

Fig. 6.2: Components from factorizing the Enron data.

24 E. C. Chi and T. G. Kolda

Terms Authors Journals
1 graphs, problem, algorithms,

approximation, algorithm,
complexity, optimal, trees,
problems, bounds

Kao MY, Peleg D, Motwani R,
Cole R, Devroye L, Goldberg
LA, Buhrman H, Makino K, He
X, Even G

SIAM J Comput,
SIAM J Discrete
Math

2 method, equations, methods,
problems, numerical,
multigrid, finite, element,
solution, systems

Chan TF, Saad Y, Golub GH,
Vassilevski PS, Manteuffel TA,
Tuma M, Mccormick SF, Russo
G, Puppo G, Benzi M

SIAM J Sci Comput

3 finite, methods, equations,
method, element, problems,
numerical, error, analysis,
equation

Du Q, Shen J, Ainsworth M,
Mccormick SF, Wang JP,
Manteuffel TA, Schwab C,
Ewing RE, Widlund OB,
Babuska I

SIAM J Numer Anal

4 control, systems, optimal,
problems, stochastic, linear,
nonlinear, stabilization,
equations, equation

Zhou XY, Kushner HJ, Kunisch
K, Ito K, Tang SJ, Raymond
JP, Ulbrich S, Borkar VS,
Altman E, Budhiraja A

SIAM J Control
Optim

5 equations, solutions, problem,
equation, boundary,
nonlinear, system, stability,
model, systems

Wei JC, Chen XF, Frid H, Yang
T, Krauskopf B, Hohage T, Seo
JK, Krylov NV, Nishihara K,
Friedman A

SIAM J Math Anal

6 matrices, matrix, problems,
systems, algorithm, linear,
method, symmetric, problem,
sparse

Higham NJ, Guo CH, Tisseur
F, Zhang ZY, Johnson CR, Lin
WW, Mehrmann V, Gu M, Zha
HY, Golub GH

SIAM J Matrix Anal
A

7 optimization, problems,
programming, methods,
method, algorithm, nonlinear,
point, semidefinite,
convergence

Qi LQ, Tseng P, Roos C, Sun
DF, Kunisch K, Ng KF,
Jeyakumar V, Qi HD,
Fukushima M, Kojima M

SIAM J Optimiz

8 model, nonlinear, equations,
solutions, dynamics, waves,
diffusion, system, analysis,
phase

Venakides S, Knessl C, Sherratt
JA, Ermentrout GB, Scherzer
O, Haider MA, Kaper TJ, Ward
MJ, Tier C, Warne DP

SIAM J Appl Math

9 equations, flow, model,
problem, theory, asymptotic,
models, method, analysis,
singular

Klar A, Ammari H, Wegener R,
Schuss Z, Stevens A, Velazquez
JJL, Miura RM, Movchan AB,
Fannjiang A, Ryzhik L

SIAM J Appl Math

10 education, introduction,
health, analysis, problems,
matrix, method, methods,
control, programming

Flaherty J, Trefethen N,
Schnabel B, [None], Moon G,
Shor PW, Babuska IM, Sauter
SA, Van Dooren P, Adjei S

SIAM Rev

Table 6.4: Highest-scoring items in a 10-term factorization of the term × author ×
journal tensor from five years of SIAM publication data.

J. Discrete Math. The 2nd and 3rd components have some overlap in topic and two
overlapping authors, but different journals. Both components 8 and 9 correspond to
the same journal but reveal two subgroups of authors writing on slightly different
topics.

7. Conclusions & Future Work. We have developed an alternating Poisson
regression fitting algorithm, CP-APR, for PTF. While the specific loss function has
been studied before, our development focuses on issues related to sparse count data.
When tensor data is dense, CP fits based on minimizing least squares (CP-ALS) and
maximizing the Poisson likelihood (CP-APR) tend to be very similar. In the case of

Tensors, Sparsity, and Nonnegative Factorizations 25

sparse count data, however, we have shown in simulations that CP-APR recovers a
true CP model more reliably than CP-ALS. Indeed, in classical statistics, it is well
known that the randomness observed in sparse count data is better explained and
analyzed by the Poisson model than a Gaussian one.

Our algorithm is simple to implement and analyze theoretically. Specifically, CP-
APR admits an easily verifiable stopping rule based on KKT conditions instead of
heuristics, and can also exploit data sparsity to minimize computational and storage
requirements. CP-APR uses an MM algorithm to update each factor matrix in turn,
holding all others fixed. When only one step of the MM algorithm is performed, CP-
APR corresponds to the Lee and Seung algorithm. Allowing for multiple steps in the
MM subproblem solver, however, has the benefit of generally accelerating convergence.
More importantly, we show how to fix the well-known problem in the Lee and Seung
algorithm of getting stuck at non-KKT points by introducing a “schooch” to avoid
inadmissible zeros. We provide a numerical example verifying that this trivial change
remedies a non-trivial problem of misconvergence. With the benefits of the “schooch”
in hand, we use standard optimization theory to prove the convergence of CP-APR to
constrained stationary points. The regularity conditions imposed in our proofs make
rigorous and concrete our intuition that in the context of sparse count data, CP-APR
will converge provided that the data tensor meets a minimal density and that counts
are sufficiently spread throughout the data tensor with respect to the size of the factor
matrices being fit.

Finally, we present two real-data examples that demonstrate CP-APR’s ability to
find meaningful latent structure in very sparse count data. Nonetheless, as promising
as these results are, there remains much room for future work. Foremost among prac-
tical considerations is speed of convergence. Although iterate updates are relatively
simple to compute, CP-APR can require many iterates. One approach to accelerating
convergence would be to replace the MM algorithm subproblem solver. For example,
Kim et al. [16] present fast quasi-Newton methods for minimizing box-constrained
convex functions that can be used to solve a nonnegative least squares or minimum
KL-divergence subproblem in a nonlinear Gauss-Seidel solver. An added benefit of
CP-APR is that our convergence results are agnostic to the method used to solve each
subproblem. Provided that the subproblem is solved to optimality, the Gauss-Seidel
part of our algorithm is guaranteed to converge. A second approach is to focus on the
sequence of outer iterates. Zhou et al. [36] provide a general quasi-Newton accelera-
tion scheme for iterative methods based on a quadratic approximation of the iteration
map instead of the loss.

There has also been significant work in finding sparse factors via `1-penalization
for matrices [22] and tensors [25, 33, 12, 21]. Sparse factors often provide more easily
interpreted models, and penalization may also accelerate the convergence. While the
factor matrices generated by CP-APR are often sparse even without imposing an
`1-penalty, the degree of sparsity is not currently tunable.

Perhaps most challenging, however, are open questions related to rank and in-
ference. Questions about how to choose rank are not new. But given the context of
sparse count data, might that structure be exploited to derive a sensible heuristic or
even rigorous criterion for choosing the rank? We already see that Assumption 3.2
imposes an upper bound on the rank to ensure algorithmic convergence. Regard-
ing inference, our focus in this work was in thoroughly developing the algorithmic
groundwork for fitting a PTF model for sparse count data. CP-APR can be used to
estimate latent structure. Once an estimate is in hand, however, it is natural to ask

26 E. C. Chi and T. G. Kolda

how much uncertainty there is in that estimate. For example, is it possible to put
a confidence interval around the entries in the fitted factor matrices, especially zero
or near zero entries? Given that inference for the related but simpler case of Poisson
regression has been worked out, we suspect that a sensible solution is waiting to be
found. The benefits of answering these questions warrant further investigation. We
highlight them as important topics for future research.

Acknowledgments. We thank our colleagues at Sandia for numerous helpful
conversations in the course of this work, especially Grey Ballard and Todd Plantenga.

Appendix A. Notation Details.
Outer product. The outer product of N vectors is an N -way tensor. For example,

(a ◦ b ◦ c)ijk = aibjck.
Elementwise multiplication and division. Let A and B be two same-sized tensors

(or matrices). Then C = A ∗B yields a tensor that is the same size as A (and B)
such that ci = aibi for all i. Likewise, C = A�B yields a tensor that is the same size
as A (and B) such that ci = ai/bi for all i.

Khatri-Rao product. Give two matrices A and B of sizes I1×R and I2×R, then
C = A�B is a matrix of size I1I2 ×R such that

C =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aR ⊗ bR

]
,

where the Kronecker product of two vectors of size I1 and I2 is a vector of length I1I2
given by

a⊗ b =


a1b
a2b

...
aI1b

 .
matricization of a tensor. The mode-n matricization or unfolding of a tensor X

is denoted by X(n) and is of size In × Jn where Jn ≡
∏
m6=n In. In this case, tensor

element i maps to matrix element (i, j) where

i = in and j = 1 +

N∑
k=1
k 6=n

(ik − 1)

 k−1∏
m=1
m6=n

Im

 .

Appendix B. Proof of Lemma 3.1. In this section, we provide a proof for
Lemma 3.1. We first establish two useful lemmas.

Lemma B.1. Let f and M be as in (3.1). If f(M) ≤ ζ, then eTλ ∈ [e−ζ/ξ, ζ] for
some ξ > 0.

Proof. Because the factor matrices are column stochastic, we can observe that

f(M) = eTλ−
∑
i

xi log

(∑
r

λr a
(n)
i1r
· · · a(n)iNr

)
,

≥ eTλ− ξ log
(
eTλ

)
where ξ =

(
N∏
n=1

In

)
max

i
xi.

(B.1)

Tensors, Sparsity, and Nonnegative Factorizations 27

Lemma B.2. Let f be as defined in (3.1) and Ω(ζ) be as defined in (3.3). The
function f(M) is bounded for all M ∈ Ω(ζ).

Proof. Let M̄, M̂ ∈ {M | f(M) ≤ ζ }. Define M̃ to be the convex combination

M̃ = αM̄ + (1− α)M̂ where α ∈ [0.5, 1).

Note that the restriction on α is arbitrary but makes the proof simpler later on.
Observe that

m̃i =
∑
r

{(
αλ̄r + (1− α)λ̂r

)∏
n

(
αā

(n)
inr

+ (1− α)â
(n)
inr

)}

On the one hand, by Lemma B.1,

m̃i ≤
∑
r

(
αλ̄r + (1− α)λ̂r

)
= α

∑
r

λ̄r + (1− α)
∑
r

λ̂r ≤ αζ + (1− α)ζ = ζ.

On the other hand,

m̃i ≥
∑
r

{
αλ̄r

∏
n

αā
(n)
inr

}
= αN+1m̄i

Thus,

αN+1m̄i ≤ m̃i ≤ m̄i + ζ

Now consider

m̃i − xi log m̃i ≤ m̄i + ζ − xi logαN+1m̄i

= (m̄i − xi log m̄i) + ζ − (N + 1)xi logα

≤ (m̄i − xi log m̄i) + ζ + (N + 1)xi log 2.

Thus,

f(M̃) ≤ f(M̄)+ζ
∏
n

In+(N+1) log 2
∑
i

xi ≤ ζ

(
1 +

∏
n

In

)
+(N+1) log 2

∑
i

xi.

Given these two lemmas, we are finally ready to provide the proof of Lemma 3.1.

Proof. [of Lemma 3.1] Fix ζ. If {M ∈ Ω | f(M) ≤ ζ } is empty, then Ω(ζ)
is empty and there is nothing left to do. Thus, assume {M ∈ Ω | f(M) ≤ ζ } is
nonempty. Since f is continuous at all M ∈ Ω for which f(M) is finite, f is obviously
continuous on Ω(ζ) by Lemma B.2. Since f is continuous, {M ∈ Ω | f(M) ≤ ζ } is
closed because it is the preimage of the closed set (−∞, ζ] under f ; thus, Ω(ζ) is
closed because it is a convex combination of closed sets. Consequently, we only need
to show that Ω(ζ) is bounded. Assume the contrary. Then there exists a sequence of

models Mk =
r
λk; A

(1)
k , . . . ,A

(N)
k

z
∈ Ω(ζ) such that eTλk → ∞. By Lemma B.2,

f(M) is finite on Ω(ζ), but this contradicts Lemma B.1. Hence, the claim.

REFERENCES

28 E. C. Chi and T. G. Kolda

[1] B. W. Bader, M. W. Berry, and M. Browne, Discussion tracking in Enron email using
PARAFAC, in Survey of Text Mining: Clustering, Classification, and Retrieval, Second
Edition, M. W. Berry and M. Castellanos, eds., Springer, 2007, pp. 147–162.

[2] B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse and factored
tensors, SIAM Journal on Scientific Computing, 30 (2007), pp. 205–231.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice Hall, 1989.

[4] R. Bro and S. De Jong, A fast non-negativity-constrained least squares algorithm, Journal of
Chemometrics, 11 (1997), pp. 393–401.

[5] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling
via an N-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319.

[6] A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S.-I. Amari, Non-negative tensor
factorization using alpha and beta divergences, in ICASSP 07: Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2007.

[7] I. Dhillon and S. Sra, Generalized nonnegative matrix approximations with bregman diver-
gences, Advances in neural information processing systems, 18 (2006), p. 283.

[8] D. M. Dunlavy, T. G. Kolda, , and W. P. Kegelmeyer, Multilinear algebra for analyz-
ing data with multiple linkages, in Graph Algorithms in the Language of Linear Algebra,
J. Kepner and J. Gilbert, eds., Fundamentals of Algorithms, SIAM, Philadelphia, 2011,
pp. 85–114.

[9] D. M. Dunlavy, T. G. Kolda, and E. Acar, Temporal link prediction using matrix and
tensor factorizations, ACM Transactions on Knowledge Discovery from Data, 5 (2011),
pp. Article 10, 27 pages.

[10] L. Finesso and P. Spreij, Nonnegative matrix factorization and i-divergence alternating min-
imization, Linear Algebra and its Applications, 416 (2006), pp. 270–287.

[11] D. FitzGerald, M. Cranitch, and E. Coyle, Non-negative tensor factorisation for sound
source separation, IEE Conference Publications, 2005 (2005), pp. 8–12.

[12] M. P. Friedlander and K. Hatz, Computing nonnegative tensor factorizations, Computa-
tional Optimization and Applications, 23 (2008), pp. 631–647.

[13] E. F. Gonzalez and Y. Zhang, Accelerating the lee-seung algorithm for nonnegative matrix
factorization, tech. report, Rice University, March 2005.

[14] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis, UCLA working papers in phonetics, 16 (1970),
pp. 1–84. Available at http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.

[15] D. Kim, S. Sra, and I. S. Dhillon, Fast projection-based methods for the least squares non-
negative matrix approximation problem, Statistical Analysis and Data Mining, 1 (2008),
pp. 38–51.

[16] D. Kim, S. Sra, and I. S. Dhillon, Tackling box-constrained optimization via a new projected
quasi-newton approach, SIAM Journal on Scientific Computing, 32 (2010), pp. 3548–3563.

[17] H. Kim and H. Park, Nonnegative matrix factorization based on alternating nonnegativity
constrained least squares and active set method, SIAM Journal on Matrix Analysis and
Applications, 30 (2008), pp. 713–730.

[18] K. Lange, Optimization, Springer, 2004.
[19] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization,

Nature, 401 (1999), pp. 788–791.
[20] , Algorithms for non-negative matrix factorization, in Advances in Neural Information

Processing Systems, vol. 13, MIT Press, 2001, pp. 556–562.
[21] J. Liu, J. Liu, P. Wonka, and J. Ye, Sparse non-negative tensor factorization using colum-

nwise coordinate descent, Pattern Recognition, (2011). In press.
[22] W. Liu, S. Zheng, S. Jia, L. Shen, and X. Fu, Sparse nonnegative matrix factorization

with the elastic net, in BIBM2010: Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine, Dec. 2010, pp. 265–268.

[23] P. McCullagh and J. A. Nelder, Generalized linear models (Second edition), Chapman &
Hall, London, 1989.

[24] M. Mørup, L. Hansen, J. Parnas, and S. M. Arnfred, Decomposing the time-
frequency representation of EEG using nonnegative matrix and multi-way factoriza-
tion. Available at http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4144/pdf/

imm4144.pdf, 2006.
[25] M. Mørup, L. K. Hansen, and S. M. Arnfred, Algorithms for sparse non-negative TUCKER

(also named HONMF), Tech. Report IMM4658, Technical University of Denmark, 2006.
[26] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999.

http://dx.doi.org/10.1137/060676489
http://dx.doi.org/10.1137/060676489
http://dx.doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1109/ICASSP.2007.367106
http://dx.doi.org/10.1109/ICASSP.2007.367106
http://dx.doi.org/10.1145/1921632.1921636
http://dx.doi.org/10.1145/1921632.1921636
http://dx.doi.org/10.1016/j.laa.2005.11.012
http://dx.doi.org/10.1016/j.laa.2005.11.012
http://dx.doi.org/10.1049/cp:20050279
http://dx.doi.org/10.1049/cp:20050279
http://dx.doi.org/10.1080/10556780801996244
http://www.caam.rice.edu/tech_reports/2005/TR05-02.ps
http://www.caam.rice.edu/tech_reports/2005/TR05-02.ps
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://dx.doi.org/10.1002/sam.104
http://dx.doi.org/10.1002/sam.104
http://dx.doi.org/10.1137/08073812X
http://dx.doi.org/10.1137/08073812X
http://dx.doi.org/10.1137/07069239X
http://dx.doi.org/10.1137/07069239X
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1016/j.patcog.2011.05.015
http://dx.doi.org/10.1016/j.patcog.2011.05.015
http://dx.doi.org/10.1109/BIBM.2010.5706574
http://dx.doi.org/10.1109/BIBM.2010.5706574
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4144/pdf/imm4144.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4144/pdf/imm4144.pdf
http://www2.imm.dtu.dk/pubdb/p.php?4658
http://www2.imm.dtu.dk/pubdb/p.php?4658

Tensors, Sparsity, and Nonnegative Factorizations 29

[27] P. Paatero, A weighted non-negative least squares algorithm for three-way “PARAFAC” factor
analysis, Chemometrics and Intelligent Laboratory Systems, 38 (1997), pp. 223–242.

[28] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111–126.

[29] P. O. Perry and P. J. Wolfe, Point process modeling for directed interaction networks.
arXiv:1011.1703v1, Nov. 2010.

[30] G. Rodŕıguez, Poisson models for count data, in Lecture Notes on Generalized Linear Models,
2007, ch. 4. Available at http://data.princeton.edu/wws509/notes/.

[31] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis: Applications in the Chemical Sci-
ences, Wiley, West Sussex, England, 2004.

[32] J. Sun, D. Tao, and C. Faloutsos, Beyond streams and graphs: Dynamic tensor analysis, in
KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM Press, 2006, pp. 374–383.

[33] Z. Wang, A. Maier, N. K. Logothetis, and H. Liang, Single-trial decoding of bistable
perception based on sparse nonnegative tensor decomposition, Computational Intelligence
and Neuroscience, 2008 (2008).

[34] M. Welling and M. Weber, Positive tensor factorization, Pattern Recognition Letters, 22
(2001), pp. 1255–1261.

[35] S. Zafeiriou and M. Petrou, Nonnegative tensor factorization as an alternative csiszar-
tusnady procedure: algorithms, convergence, probabilistic interpretations and novel proba-
bilistic tensor latent variable analysis algorithms, Data Mining and Knowledge Discovery,
22 (2011), pp. 419–466.

[36] H. Zhou, D. Alexander, and K. Lange, A quasi-Newton acceleration for high-dimensional
optimization algorithms, Statistics and Computing, 21 (2011), pp. 261–273.

[37] Y. Zhou, M. Goldberg, M. Magdon-Ismail, and A. Wallace, Strategies for cleaning organi-
zational emails with an application to enron email dataset. NAACSOS 07: 5th Conference
of North American Association for Computational Social and Organizational Science, June
2007.

http://dx.doi.org/10.1016/S0169-7439(97)00031-2
http://dx.doi.org/10.1016/S0169-7439(97)00031-2
http://dx.doi.org/10.1002/env.3170050203
http://dx.doi.org/10.1002/env.3170050203
http://arxiv.org/abs/1011.1703
http://data.princeton.edu/wws509/notes/
http://dx.doi.org/10.1145/1150402.1150445
http://dx.doi.org/doi:10.1155/2008/642387
http://dx.doi.org/doi:10.1155/2008/642387
http://dx.doi.org/10.1016/S0167-8655(01)00070-8
http://dx.doi.org/10.1007/s10618-010-0196-4
http://dx.doi.org/10.1007/s10618-010-0196-4
http://dx.doi.org/10.1007/s10618-010-0196-4
http://dx.doi.org/10.1007/s11222-009-9166-3
http://dx.doi.org/10.1007/s11222-009-9166-3

