
A scalable null model for directed graphs matching
all degree distributions: in, out, and reciprocal

Abstract—Degree distributions are arguably the most impor-
tant property of real world networks. The classic edge config-
uration model or Chung-Lu model can generate an undirected
graph with any desired degree distribution. This serves as an
excellent null model to compare algorithms or perform experi-
mental studies that distinguish real networks from this baseline.
Furthermore, there are scalable algorithms that implement these
models and they are invaluable in the study of graphs. However,
networks in the real-world are often directed, and have a
significant proportion of reciprocal edges. A stronger relation
exists between two nodes when they each point to one another
(reciprocal edge) as compared to when only one points to the
other (one-way edge). Despite their importance, reciprocal edges
have been disregarded by most directed graph models.

We propose a null model for directed graphs inspired by the
Chung-Lu model that matches the in-, out-, and reciprocal-degree
distributions of the real graphs. Our algorithm is scalable and
requires O(m) random numbers to generate a graph with m
edges. We perform a series of experiments on real datasets and
compare with existing graph models.

Keywords: null models, reciprocal edges, directed graphs,
graph model, scalability, big data

I. INTRODUCTION

Ever since the seminal work of Barabási and Albert [2],
Faloutsos et al [11], Broder et al [7], degree distributions
are widely regarded as a key feature of real-world networks.
The heavy-tailed nature of these degree distributions has been
repeatedly observed in a wide variety of domains. One of the
invaluable tools in analyzing heavy-tailed graphs is the ability
to produce a random or “generic” graph with a desired degree
distribution. The classic edge configuration [3], [5], [27], [28]
does exactly that and is a common method for constructing
such graphs. Chung and Lu [1], [9] give more analyzable
variants of this model. MCMC methods based on random
walks are also used for this purpose [14], [15].

These constructions are useful for testing algorithms and
comparing with existing models. It also helps in design of
new algorithms. For example, versions of the stochastic block
model [4], [16] used for community detection use Chung-
Lu type constructions for null models. The classic notion
of modularity [13] measures deviations from a Chung-Lu
structure to measure community structure. At a higher level,
having a baseline model that accurately matches the degree
distribution informs us about other properties. Notably, work
on the eigenvalue distributions on Chung-Lu graphs [10], [23]
suggest the observations on so called “eigenvalue power laws”
are simply a consequence of heavy tailed degree distributions.
For these reasons, we think of the edge-configuration or
Chung-Lu constructions as null models.

While all of this work has been extremely useful in advanc-
ing graph mining, it ignores the crucial property of direction in

networks. Most interaction, communication, web networks are
inherently directed, and the standard practice is to make these
undirected. Furthermore, directed networks exhibit reciprocity,
where some pairs of vertices have edges in both directions
connecting them. For example, in Figure 1, there are two-
way connections between some vertices. This indices a much
stronger connection between them.

Newman [29] introduces the reciprocity, r, which measures
the density of reciprocal edges in a network. It can be
interpreted as the probability of a random edge in a network
being reciprocated. The reciprocity ratio is often high in social
networks but is lower in information networks; see Table I.
It was observed that high reciprocity leads to faster spread
of viruses or news [12], [29]. The importance of reciprocal
edges is underscored by a study of formation order of these
edges [25]. In the Flickr network (which has 68% reciprocal
edges), 83% of all reciprocal edges are created within 48
hours after the initial edge creation. The Twitter network has
22.1% of the reciprocal edges [18]. All these studies show that
reciprocal edges are quite special, and provide important infor-
mation about the social processes underlying these graphs. But
all graph models and constructions completely ignore these
edges.

A key concern with graph generation is simple construction
and scalability, as we may want test instances with millions
(and more) edges. For a null model to be of any use, it must
be scalable and have the ability to quickly produce a large
graph that matches degree distributions.

Fig. 1: A directed graph with reciprocal (e.g., B-D) and one-
way (e.g., D-A) edges.

A. Contributions

For a directed graph, there are three distinct degree distri-
butions associated with it: the indegree, the outdegree, and the
reciprocal degree distribution. The last can be thought of as
the degree distribution of the undirected subgraph obtained by
only taking reciprocal edges. A good null model, along the
lines of the configuration model or Chung-Lu, must match all
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three of these. We design the Fast Reciprocal Directed (FRD)
graph generator that does exactly that.
• The Fast Reciprocal Directed (FRD) graph generator

takes as input in-,out-, and reciprocal degree distributions,
and produces a random graph matching these. It can be
thought of as a generalization of the Chung-Lu model
for this setting. We provide a series of empirical results
showing how it matches these degree distributions for real
datasets.

• Our algorithm is fast and scalable. It only requires
some minimal preprocessing and the generation of O(m)
random numbers. It takes less than a minute to generate
a graph with multi-million nodes and edges, faster than
any comparable models.

• We compare FRD’s degree distributions fits with existing
directed graph models. At some level, this is not a fair
comparison, since we do not consider our generator to
be realistic (while competing methods attempt to match
other important graph properties and mimic real world
processes). Our model is meant to be a baseline or null
model that matches degree distributions. But our compar-
isons with realistic graph modes are quite illuminating.
Despite the large number of reciprocal edges in real
networks, none of the other models come even marginally
close to the reciprocal degree distribution.

• As an aside, we explain why the number of degree-1
nodes is much lower than intended in Chung-Lu like
models [8], [30] and propose a solution to obtain a better
match for the degree-1 vertices. This fix is incorporated
in the FRD generator.

II. RELATED WORK

As mentioned earlier, edge configuration models have a long
history. Miller and Hagberg [24] discuss faster algorithms for
implementing Chung-Lu, while Seshadhri et al [30] discuss
a different parallel version. A directed version of the edge
configuration model together with mathematical analyses of
connected component structure was given in [22]. Our work
is related to this construction.

Most common graph models do not account for recipro-
cal edges. The Forest Fire (FF) model [21] and Stochastic
Kronecker Graph (SKG) model [19], [20] are often used to
generate graphs, and do give directed graphs. They can match
in- and outdegree distributions reasonably well, and we use
these models for comparisons.

Most common graph models (preferential attachment [2],
edge copying model [17], forest fire [21]) produce directed
graphs incrementally to imitate the growth of graphs. They
produce heavy-tailed in- and out- degree distributions, but
almost no reciprocal edges. Furthermore, they are not scalable
to millions of nodes and billions of edges. The Stochastic
Kronecker Graph model [19], [20] is scalable, but is also
unable to produce reciprocity. (In our study, we compare
our results with the Forest Fire (FF) model and Stochastic
Kronecker Graph (SKG) model.)

A notable exception is work of Zlatic et al [33], [34]
that generalize Preferential Attachment (PA) using reciprocal
edges. Unfortuntely, it is not scalable and does not match
out degree distributions (in their experiments). Another variant
of PA [6] does allow edges between existing nodes (thereby
introducing some reciprocity), but the model is not meant to
really match real data.

III. THE FAST RECIPROCAL DIRECTED NULL MODEL

We first introduce some notation. Given a directed graph G,
let n be the number of nodes and m be the number of directed
edges. For instance, in Figure 1, n = 5 and m = 7. We divide
the edges into three types:
• d↔i = reciprocal degree (each reciprocal edge corresponds

to a pair of directed edges),
• d←i = in-degree (excluding reciprocal edges), and
• d→i = out-degree (excluding reciprocal edges).

We also define the total in- and out- degrees, which include
the reciprocal edges, i.e.,
• d⇐i = d←i + d↔i = total in-degree, and
• d⇒i = d→i + d↔i = total out-degree.

Most directed graph models consider only the total in- and
out-degrees, ignoring reciprocity. As an example of these
measures, node B in Figure 1 has d↔B = 2, d←B = 2, d→B = 0,
d⇐B = 4, and d⇒B = 2.

We may also assemble corresponding degree distributions,
as follows. For any d = 0, 1, . . . , define
• n↔d = Number of nodes with reciprocal-degree d,
• n←d = Number of nodes with in-degree d,
• n→d = Number of nodes with out-degree d,
• n⇐d = Number of nodes with total-in-degree d, and
• n⇒d = Number of nodes with total-out-degree d.

Let dmax be the maximum of all possible degrees. Then we
can express n and m as

n =

dmax∑
d=0

n←d =

dmax∑
d=0

n→d =

dmax∑
d=0

n↔d ,

m =

dmax∑
d=1

d · n←d + d · n↔d =

dmax∑
d=1

d · n→d + d · n↔d .

The reciprocity ratio of a graph [29] is

r =
# reciprocated edges

# edges
=

∑dmax

d=1 d · n↔d
m

.

We will present an extension of the Chung-Lu model that
accounts for in- and outdegrees. This will be a part of the final
FRD generator.

A. The Fast Directed Generator

We consider only the total in- and out-degrees and ignore
reciprocity. This can be thought of as a fast implementation
of the directed edge configuration model in [22].

We extend the Fast Chung-Lu (FCL) algorithm for undi-
rected graphs [30]. This is based on the idea that each edge
creation can be done independently if the degree distribution
is given. The FCL reduces the complexity of the CL model



from O(n2) to O(m), and the same can be done in the directed
case.

In the Chung-Lu model [8], after m insertions (and assum-
ing d⇒i d

⇐
j < m for all i, j) the probability of edge (i, j) is

pij =
d⇒i d

⇐
j

m
.

The naive approach flips a coin for each edge independently.
The “fast” approach flips a coin to pick each endpoint. The
probability of picking node i as the source is proportional to
d⇒i and the probability of picking node j as the destination is
proportional to d⇐j .

Our implementation works as described in Alg. 1. We first
pick all the source nodes and then all the sink nodes using the
weighted vertex selection described in Alg. 2. If we want 500
nodes of out-degree of 2, for example, we create a “degree-2
pool” of 500 vertices and pick from it a total of 1000 times in
expectation by doing weighted sampling of the pools. Within
the pool, we pick a vertex uniformly at random with the further
expectation that each vertex in the pool will be picked 2 times
on average. In Alg. 2, the pool of degree-d vertices is denoted
by Pd and the likelihood that the dth pool is selected is denoted
by wd. In all cases except d = 1, the size of the pool is defined
by the number of vertices of that degree and the weight of
the pool is the number of edges that should be in that pool.
The one exception is the degree-1 pool which has a blowup
factor b. For now, assume b = 1; we explain its importance
further on in §III-C. At the end of Alg. 2, we randomly relabel
the vertices so there is no correlation between the degree and
vertex identifier.

The FD method can produce repeat edges, unlike the naive
version that flips n2 weighted coins (one per edge). Never-
theless, this has not been a major problem in our experience.
Another alternative to Alg. 2 is to put d copies of each degree-
d vertex into a long array and then randomly permute it—this
is the approach of the edge configuration model. This gives the
exact specified degree distribution (excepting possible repeats)
by using a random permutation of a length m∗ array. This
would produce very similar results to what we show here, and
is certainly a viable alternative. We also mention an alternate
way of generating Chung-Lu graphs that could be adapted for
the directed case [24].

Algorithm 1 Fast Directed Graph Model

procedure FDMODEL(G,b⇐,b⇒)
Calculate {n⇐d } and {n⇒d } for G
{ ik } ← VERTEXSELECT({n⇒d } , b⇒)
{ jk } ← VERTEXSELECT({n⇐d } , b⇐)
E ← { (ik, jk) }
Remove self-links and duplicates from E
return E

end procedure

Algorithm 2 Weighted Vertex Selection

procedure VERTEXSELECT({nd }, b)
n←

∑dmax

d=0 nd
n∗ ← b · n1 +

∑dmax

d=2 nd
m←

∑dmax

d=1 d · nd
P = { 1, . . . , n∗ }
for all d = 1, . . . , dmax do

wd ← d · nd/m
if d > 1 then
Pd ←nd vertices from P

else
P1 ←b · n1 vertices from P

end if
P ← P \ Pd

end for
for all k = 1, . . . ,m do

d̂k ← Random degree in { 1, . . . , dmax },
proportional to weights {wd }

ik ← Uniform random vertex in Pd̂k

end for
P ← unique indices in { ik }mk=1

π ← Random mapping from P to { 1, . . . , n }
return {π(ik) }mk=1

end procedure

B. Introducing reciprocity

The FD model generates a directed graph and matches to
the total in- and out-degree distributions. However, it produces
virtually no reciprocal edges. The FRD null model explicitly
introduces reciprocity using an undirected model and uses FD
to for remaining directed edges. We blend the generated edges
from each model in one model. In this case, we explicitly
consider the three distributions, {n↔d }, {n←d }, and {n→d }.
The method is presented in Alg. 3.

Algorithm 3 Fast Reciprocal Directed Graph Model

procedure FDMODEL(G,b↔, b←,b→)
Calculate {n↔d }, {n←d }, and {n→d } for G
{ ik } ← VERTEXSELECT({ 1

2n
↔
d } , b↔)

{ jk } ← VERTEXSELECT({ 1
2n
↔
d } , b↔)

E1 ← { (ik, jk), (jk, ik) }
{ il } ← VERTEXSELECT({n→d } , b→)
{ jl } ← VERTEXSELECT({n←d } , b←)
E2 ← { (il, jl) }
E ← E1 ∪ E2

Remove self-links and duplicates from E
return E

end procedure

C. Fixing the Number of Degree-1 Nodes

Below, we present our arguments for the case of the in-
degree, but the same arguments applied to out-degree or recip-
rocal degree (with slightly more complexity in the reciprocal



case which is omitted due to space). We use just the notation
d to denote the in-degree, for simplicity.

If we run VERTEXSELECT (Alg. 2) repeatedly, always
assigning the same ids to each vertex pool and omitting the
random relabeling (π) at the end, each node will get its desired
in-degree on average across multiple runs. For any single run,
however, this will not be the case. In fact, the degrees are
Poisson distributed.

Claim 1. The probability that a vertex v in pool Pd is selected
x times is

Prob { v selected x times | v ∈ Pd } =
dxe−d

x!
.

This claim is easy to see. We expect that pool Pd will be
selected wd = d · nd times. Therefore, each element of Pd

will be selected an average of d times, so that is the Poisson
parameter. (There may be some small variance in the number
of times that each pool is selected, but the variance should be
small enough not to greatly impact the average degree.)

The effect of the Poisson distribution is particularly notice-
able in the pool of degree-1 nodes where the probability that
a node in P1 has in-degree x = 1 is only 36%. An additional
36% will have an in-degree of x = 0 and the remaining 28%
will an in-degree of x ≥ 2. Of course, there will be some
contributions from the other pools, e.g., P2 will produce 27%
degree-1 nodes. However, in a power law degree distribution,
n2 � n1 so its contribution is small. Nevertheless, we can
calculate the expected number of degree-x nodes by summing
over the contributions across all degrees pools.

Claim 2. Let n′x denotes the number of nodes that are selected
exactly x times. Then

E(n′x) =
∑
d

nd
dxe−d

x!
.

Again, the claim is easy to see and so the proof is omitted.
For many real-world distributions, n′1 � n1. We propose a

workaround to this problem — we would like to reduce the
number of nodes in P1 that are selected multiple times. To
do this, we increase the size of the pool via a blowup factor
b, which is used as follows. Let P1 contain b · n1 nodes. The
weight of the pool will not change, meaning that it will still
be selected n1 times. Therefore, we may make the following
claim.

Claim 3. The probability that a vertex v in pool P1 with b ·n1
elements is selected x times is

Prob { v selected x times | v ∈ P1 } = e−1/b/(bx · x!).

Furthermore, the expected number of nodes in P1 that are
selected exactly one time is n1 ·e−1/b. Hence, letting n′x denote
the number of nodes that are selected exactly x times, we have

E(n′x) = n1 ·
e−1/b

bx−1 · x!
+
∑
d>1

nd
dxe−d

x!
.

Proof: We still pick pool P1 a total of n1 times, so
that average (i.e., the Poisson parameter) for this pool is now
reduced to n1/(n1 · b) = 1/b since there are b · n1 elements.

The next equation comes from the fact that there are b · n1
nodes in the pool, so we multiply the number of nodes with the
probability of being picked x times with x = 1 to determine
the expected number.

Finally, the revised expectation comes from changing the
formula for the first pool to account for the enlarged pool
size.

If we choose, for example, b = 10, then we can expect
that 0.9 · n1 nodes in P1 to be selected exactly one time.
We show an example of the impact of this modification in
Figure 2, where we show the total in-degree for soc-Epinions1
with and without a blowup factor of b = 10. The degrees are
logarithmicly binned and summed. Note that the match for
the number of degree-1 nodes is improved, but there is small
penalty in the match for degree-2 nodes. We use b = 10 in all
experiments reported in this paper.
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Fig. 2: Example of in-degree distribution with and without
blowup factor. Note that the model with the blow-up factor
matches degree-1 nodes precisely, however, the model without
blow-up generates only half of the degree-1 nodes in the
original graph.

IV. EXPERIMENTAL STUDIES

We test our models on various directed networks such as
citation (cit-HepPh), web (web-NotreDame), and social (soc-
Epinions1, soc-LiveJournal) [35]. We also test our models
on large scale graphs coming from online social networks
(youtube, flickr, liveJournal) [26]. We list the attributes of the
networks in Table I after removing self-links and making the
graph unweighted (simple). As expected, the reciprocity r is
very low in the citation network. We elaborate how we fit the
models to the real networks below.

a) Fast Directed (FD) and Fast Reciprocal Directed
(FRD): This only requires the appropriate degree distributions
of the input graphs. We used a blowup factor of b = 10 in all
cases.



TABLE I: Networks used in this study. The value of r is the reciprocity measure, pf is the forward burning parameter for FF,
and the last column is the SKG initiator matrix.

Graph Name Nodes Edges Rec. Edges r pf SKG initiator
cit-HepPh [35] 34K 421K <1K 0.003 0.37 [0.990,0.440;0.347,0.538] [19]
soc-Epinions1 [35] 76K 508K 206K 0.405 0.346 [0.999,0.532;0.480,0.129] [19]
web-NotreDame [35] 325K 1,469K 759K 0.517 0.355 [0.999,0.414;0.453,0.229] [19]
soc-LiveJournal [35] 4,847K 68,475K 32,434K 0.632 0.358 [0.896,0.597;0.597,0.099] [32]
youtube [26] 1,157K 4,945K 3,909K 0.791 0.335 —
flickr [26] 1,861K 22,613K 14,117K 0.624 0.355 —
LiveJournal [26] 5,284K 77,402K 56,920K 0.735 0.355 —

b) Forest Fire (FF): We provide the number of nodes
n, and the forward and backward burning probabilities pf
and pb to the SNAP software [35]. To fit FF, we match the
generated graph models to the number of edges in the real
networks. For each target graph, we search a range of values
by incrementing pf value by δp = 0.001 in range [0.2-0.5]
to find the best model giving the similar number of edges to
the original network; the values we use are reported in Table I.
We set pb = 0.32 as described in [21].

c) Stochastic Kronecker Graphs (SKG): We use the
initiator matrices reported by previous studies: [19] for cit-
HepPh, soc-Epinions, and web-NotreDame and [32] for soc-
LiveJournal. We attempted to generate initiator matrices for
large graphs using [35], but the program did not terminate
within twenty-four hours. Therefore, we only fit SKG to the
networks obtained from SNAP [35] data warehouse. We set
the size of the final adjacency matrix is 2dlog2(n)e, where n is
the number of nodes in the real graph.

We generate all the models in a Linux machine with 12GB
memory and Intel Xeon 2.7 Ghz processor. The FD and FRD
methods were implemented by us in MATLAB; the SKG and
Forest Fire generation code were implemented in C++ from
[35]. For fair comparison, we do not time the printing or file
saving parts from the Snap software. Graph generation time
for each model is listed in Table II. Among all of the results,
FD and FRD are the fastest, in that order. SKG is little bit
slower than both FD and FRD models. The forest fire is the
slowest even though C++ is much faster than MATLAB code.

TABLE II: Graph generation time

Graph Name SKG FD FRD FF
cit-HepPh 2.17s 0.16s 0.19s 18.80s
soc-Epinions 1.53s 0.29s 0.41s 6.73s
web-NotreDame 4.95s 0.56s 0.62s 29.66s
soc-LiveJournal 6m51s 31.15s 41.75s 2h28m32s
youtube — 2.16s 2.53s 2m22s
flickr — 10.30s 12.20s 1h11m2s
liveJournal — 35.30s 59.98s 8h30m18s

We analyze the number of reciprocal edges generated by
each model in Table III. The FF model cannot generate any
reciprocal edges. The FD model can generate a few random
reciprocal edges but this number is negligible compared to the

real number of reciprocal edges. The SKG model generates
some reciprocal edges; however, it is also much less than the
real number. The FRD model performs the best and generate
correct amount of reciprocal edges.

TABLE III: Reciprocal Edges created by each model

Graph Name Orig. SKG FD FRD FF
cit-HepPh 1071 1160 159 1148 0
soc-Epinions1 31K 835 86 30K 0
web-NotreDame 89K 5K 27 85K 0
soc-LiveJournal 1.5M 14K 171 1.5M 0
youtube 526K — 18 499K 0
flickr 1.3M — 205 1.3M 0
liveJournal 4.1M — 258 4.0M 0

We also analyze the generated degree distributions by each
model. The plot are log-binned for each of readability. Figure 3
shows the results on the soc-Epinions1 graph. Here we see
that all four methods do fairly well in terms of matching the
total in- and out-degree distributions. (The few low values
for SKG are due to its well-known cycling behavior [31].)
However, only the FRD method matches the reciprocal degree
distribution. The FD and SKG methods produce far too few
reciprocal edges and FF does not produce any. We see very
similar behavior in Figure 4 for soc-LiveJournal, except here
the FF and SKG degree distributions do not match the total
out-degree distribution very well. Once again, neither FD nor
SKG produce many reciprocal edges and FF does not produce
any. Figures for cit-HepPh and web-NotreDame are shown in
the appendix.

For larger graphs, we have not included SKG due to the
expense of fitting the model. We do compare to FF, however,
for the youtube and flickr graphs shown in Figure 5 and
Figure 6, respectively. After extensive tuning, FF is able to
match the total in- and out-degree distributions fairly well.
But it of course cannot match the reciprocal degree.

We also show results just for our methods on the largest
graph: livejournal in Figure 7. We observe a very close match
for the FRD method in all three distributions. For complete-
ness, we show results for the citation network cit-HepPh
in Figure 8 and web network Web-NotreDame in Figure 9.
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Fig. 3: Comparisons of degree distributions produced by various models for graph soc-Epinions1.
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Fig. 4: Comparisons of degree distributions produced by various models for graph soc-LiveJournal.

V. CONCLUSION

Directed networks with reciprocity have not received much
attention in terms of generative models. An obvious first-level
goal for a generative model would be to match the in-, out-,
and reciprocal degree distributions of a given graph. The FRD
generator does exactly that and therefore serves as a good null
model for social network analysis. It is basically a variant of
Chung-Lu that explicitly takes care of reciprocal edges. We
find it very intriguing that existing graph models completely
ignore reciprocal edges despite the relatively high fraction of
such edges.

While the main challenge in graph modelling would be to
design a realistic model that accounts for reciprocity, we feel
that FRD is a first step in that direction.

Null models also serve as a baseline for understanding
networks. For instance, a community is often defined as a
subgraph with more edges than expected as compared to a
random model. An interesting further direction is to use FRD
in stochastic block models for community detection algorithms
that can account for reciprocity.
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Fig. 7: Comparisons of degree distributions produced by various models for graph livejournal.
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Fig. 8: Comparisons of degree distributions produced by various models for graph cit-HepPh.
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Fig. 9: Comparisons of degree distributions produced by various models for graph web-NotreDame.
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