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ABSTRACT
The computation and study of triangles in graphs is a stan-
dard tool in the analysis of real-world networks. Yet most
of this work focuses on undirected graphs. Real-world net-
works are often directed and have a significant fraction of
reciprocal edges. While there is much focus on directed tri-
adic patterns in the social sciences community, most data
mining and graph analysis studies ignore direction.

But how to we make sense of this complex directed struc-
ture? We propose a collection of directed closure values
that are analogues of the classic transitivity measure (the
fraction of wedges that participate in triangles). We per-
form an extensive set of triadic measurements on a variety
of massive real-world networks. Our study of these values
reveal a wealth of information of the nature of direction.
For instance, we immediately see the importance of recipro-
cal edges in forming triangles and can measure the power of
transitivity. Surprisingly, the chance that a wedge is closed
depends heavily on its directed structure. We also observe
striking similarities between the triadic closure patterns of
different web and social networks.

Together with these observations, we also present the first
sampling based algorithm for fast estimation of directed tri-
angles. Previous estimation methods were targeted towards
undirected triangles and could not be extended to directed
graphs. Our method, based on wedge sampling, gives orders
of magnitude speedup over state of the art enumeration.

†Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.
∗This work was funded by the GRAPHS Program at
DARPA and the Laboratory Directed Research and Devel-
opment program at Sandia National Laboratories.
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1. INTRODUCTION
The study of triangles is by now a classic tool in the anal-

ysis of large-scale networks. The focus on triangles has its
roots in a variety of disciplines: in social sciences as a man-
ifestation of various theories, in physics as local measures of
clustering, in biology as motifs. Yet most contemporary data
mining and massive graph analysis first convert real-world
interaction data (think of this as a graph with attributes)
into an undirected graph, and then work on this graph. This
is a very fruitful method, since the complexity of the un-
derlying problem is reduced, and we still get a significant
amount of information. Nonetheless, it is a major challenge
to account for the attributes on edges.

The most common attribute for edges is direction. For
example, most social networks, web networks, and product
networks are all truly directed networks. Moreover, directed
networks often have a significant percentage of reciprocal
edges. Newman et al. [18] shows that the fraction of such
edges in commonly studied graphs is quite high, and sub-
sequent studies underlined the importance of such edges in
virus/news spreading and understanding the network forma-
tion [10, 17, 14].

The set of triangles (and wedges) involving directed and
reciprocal edges is rich and holds information about the un-
derlying dynamics [13, 16, 9, 8, 23]. But it is challenging to
make sense of this information and also compare different
graphs (from varied sources) along these metrics. Further-
more, computation of triangles becomes quite expensive for
large graphs.

1.1 Some preliminaries
We focus on a directed graph (digraph) G = (V,E). In a

standard digraph, all edges are just ordered pairs of vertices
of the form (i, j). We will think of the graph as having two
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(i): out (ii): path (iii): in

(iv): recip-in (v): recip-out (vi): recip-tot

(a) Directed wedges

(a): trans (b): loop

(c): out-recip (d): path-recip (e): in-recip

(f): 2-recip (g): 3-recip

(b) Directed triangles

Figure 1: Directed structures

different types of edges: basic and reciprocal. A reciprocal
edge is technically a pair {(i, j), (j, i)}, which we merge into
a single reciprocal edge. We do not think of a reciprocal
edge as containing two directed edges, but consider it to be a
special edge on its own. In our figures, reciprocal edges are
depicted as double-headed arrows. We define reciprocity of
a graph, r, as the ratio of the number of reciprocal edges to
the total number of edges. Note that our definitions lightly
different than that of [18].

A wedge is a pair of edges that share an endpoint, and
a triangle is a set of three (unparallel) edges that are inci-
dent on a set of three vertices. We have 6 different types of
wedges and 7 different types of triangles. We give more de-
tails about these structures in §2. We give the list of directed
wedges and triangles with reciprocity in Figure 1. The earli-
est construction of this list is by Holland and Leinhardt [13].

1.2 Main results of this paper
• Definition of directed closures: We generalize the

classic notion of transitivity (pg. 243 of [25]), which is also
called the global clustering coefficient, to digraphs. This
leads to a set of 15 closure values that provide a triadic
pattern of a digraph.

• Computation of directed triangles and closures:

We extend the basic method of wedge sampling [19, 20] to
approximating the counts of directed triangles. This gives
fast scalable algorithms with provable error bounds. While
triangle counting is a well-studied problem, we present the
first algorithm that works for digraphs. This algorithm en-
ables efficient computation of all closure values.

We perform experiments on a set of publicly available datasets.
We present the directed closure information in a succinct
form that allows comparison of different graphs. This leads
to a series of observations.

• Heterogeneity of closure: We find the closure frac-
tions of wedges vary greatly depending on the wedge type.
In-wedges ((iii) in Figure 1a) usually dominate the graph
but are rarely closed. In many cases, all other wedge types
close frequently.

• Reciprocity induces closure: For almost every graph
we analyze, the presence of a reciprocal edge in a wedge
greatly increases the chance of closure. In other words,
wedges with reciprocal edges participate in triangles more
frequently than (uniform) random wedges.

• The power of transitivity: Loops and path-recip tri-
angles ((b) and (d) in Figure 1b) are very infrequent. These
triangles contain a transitive wedge that is not reciprocated,
and the fact that they are so rare suggest the power of transi-
tivity in the underlying dynamics. This appears to validate
the importance of transitivity, as posited by Holland and
Leinhardt [13] in the social science community (Recent re-
sults of Leskovec et al. [15] in signed networks make compa-
rable observations). These observations also underscore the
importance of reciprocity, since this distinguishes triangles
without transitivity from those that have it.

• The non-randomness of direction: We define a sim-
ple random model of direction in an underlying undirected
graph and compute directed closure values for this model.
The predictions from this are significantly different from the
actual data, showing that our findings indicate a deep di-
rected structure in real-world networks.

What is the significance of these results? First, we feel that
these observations show the importance of direction and reci-
procity, which we believe is not emphasized enough in anal-
yses of social networks. Designing meaningful measures re-
lated to directed triangles and interpretable presentations is
an important step in understanding digraphs. We also need
efficient algorithms to compute such measures. We hope
that this work is a step in this process. The wealth of infor-
mation that is obtained by looking at directed closure values
(at least in the authors’ opinion) shows the importance of
the directed closure values.

These values also inform graph modeling because they pro-
vide formal measures that models can be tested against. It
has been observed before that existing graph models have
little to no reciprocity [7], so no model can even come close
to matching directed closures. We have no models that even
come close to recreating structure of digraphs. This is proba-
bly a very difficult problem, but greater insight into directed
closures might help in making progress.

An attribute of networks that we ignore is sign (a positive
versus negative relationship). Many social science theories
focus on sign in networks, and recent work by Leskovec et
al. [15] studies signed networks. It would be interesting to
extend our work to signed and directed networks.

1.3 Previous work
The earliest study of directed triads with reciprocity, to

our knowledge, is in the social sciences, by Holland and Lein-
hardt [13]. They explicitly list the 16 different possible triads
(including the 3 patterns with at most one edge) and count
them in various social networks of the time. They also try
to measure the effects of reciprocity in network formation.
This is called the triad census. Skvoretz [21] and Skvoretz
et al. [22] use these numbers of predict various biases in net-
work formation. In a more recent study, Faust [9] computes
a triad census on many graphs to compare their structure.

2



Most of this work has been restricted to small data sets
(at most hundreds of nodes). Finding such triads has been
referred to as motif finding in the bioinformatics commu-
nity [16]. Simpler versions of triad census counts have also
been used to analyze gaming data [23].

A classic local measure of triangle density is clustering co-
efficient, introduced by Watts and Strogatz [26]. Fagiolo [8]
proposes a local clustering coefficient measure for directed
networks, though he ignores reciprocity. Ahnert and Fink [2]
construct“clustering coefficients signatures” from these mea-
sures and classify directed networks.

Leskovec et al [15] study signed networks and validate
(and extend) the theory of balance [11, 3]. They study the
behavior of signed triangles to show that theory of balance
does not suffice to explain networks. They also look at di-
rection, but their datasets do not involve much reciprocity.
It would be interesting to combine their work with our mea-
sures of directed closures.

2. THE DIRECTED CLOSURES
We begin with some notation and introduction to the di-

rected structures in Figure 1a and Figure 1b. We use small
Roman numerals to index the types of wedges, and small
Latin letters for triangles. Furthermore, ψ is used to denote
a variable wedge type, and τ for a variable triangle type.
We also give some names for further reference. (Holland
and Leinhardt [13] have a naming scheme for directed triads
that involve a triple of numbers with a letter. We deviate
from this notation because its easier to remember names
than 3 digit codes.)

We stress that these types form a partition of all wedges
and triangles. Since reciprocal edges are special, we do not
think of (say) the recip-out wedge containing an out wedge.

For each vertex v, we have three associated degrees: the
indegree, outdegree, and reciprocal degree. These are de-
noted by d←v , d→v , and d↔v . The total degree dv = d←v +
d→v + d↔v . We mention some of the salient features of these
directed structures.

• Basic vs reciprocal structures: The structures with-
out reciprocal edges form the first rows in both Figure 1a
and Figure 1b. There are only 3 types of wedges and 2 types
of triangles, underscoring the importance of reciprocity.

• Cyclic relations: Triangle types (b), (d), (f), (g) all
contain a cycle, and there is a progression of 0, 1, 2, and 3
reciprocal edges.

• The table of χ(ψ, τ ) values: Different triangle types
naturally contain different types of wedges. This informa-
tion is summarized by the function χ(ψ, τ ), which we define
as the number of type ψ wedges in type τ triangles. The
list of nonzero values of χ(ψ, τ ) is provided in Table 1. Each
row contains the wedge information of that triangle type.
There are 15 nonzero entries in this table.

• Wedge counts: For vertex v, let Wv,ψ be the set of ψ-
wedges centered at v. It is routine to compute |Wv,ψ| given
the degrees of v. This is summarized in Table 2.

2.1 (ψ, τ )-closure
The transitivity (or global clustering coefficient) is defined

as 3|T |/|W | (T is the set of triangles and W is the set of
wedges). Semantically, this is the fraction of wedges that
participate in triangles.

In the undirected setting, a wedge is called closed if it
participates in a triangle and open otherwise. We say that

Wedge types (ψ)

T
ri
a
n
g
le

ty
p
es

(τ
) i ii iii iv v vi

a 1 1 1
b 3
c 1 2
d 1 1 1
e 1 2
f 1 1 1
g 3

Table 1: Number of occurrences of each wedge type per
triangle type: χ(ψ, τ ).

ψ

Wv,ψ

(
d→v
2

)

d←v d
→
v

(
d←v
2

)

d←v d
↔
v d→v d

↔
v

(
d↔v
2

)

Table 2: Number of wedges per vertex for each wedge type.

a ψ-wedge is τ -closed if the wedge participates in a type
τ triangle. The (ψ, τ )-closure, κψ,τ , is the fraction of ψ-
wedges that are τ -closed. Formally, let Wψ be the set of
ψ-wedges and Tτ be the set of τ -triangles.

κψ,τ =
χ(ψ, τ )|Tτ |

|Wψ|

The number of ψ-wedge in τ -triangles is χ(ψ, τ )|Tτ |. Note
that if type τ triangles contain no type ψ wedge, then this
quantity is just zero because of χ(ψ, τ ). As mentioned ear-
lier, there are 15 non-trivial (ψ, τ )-closures.

2.2 Representations
We create a directed closure chart, which combines all the

κψ,τ values. We give an example for the web-Google [27]
graph in Figure 2. The bars on the x-axis are indexed by
the different wedge types, and the y-axis is κψ,τ . We make
a stacked bar chart with the different closure values, where
the triangle types are shown in 7 different colors. For exam-
ple, the blue part of the first bar is the fraction of out-wedge
closing into trans triangles (κi,a). Some of the salient fea-
tures:

1. Single closure value: Consider some wedge type and
triangle type (say out-wedge and trans-triangle). The value
κi,a is shown by the height of the blue part of the first bar.
The height of the blue part in the second bar show the frac-
tion of path-wedges that are closed into a trans-triangle.

2. Total closure of wedge type: The total height of
the bar is total fraction of closed wedges of that type. For
example, we see that see that in-wedges close infrequently.

3. Percentage of wedge type: Underneath the wedge
pictures is the percentage of that wedge type.

4. Percentage of triangle type: Underneath the leg-
end for triangles is the percentage of that triangle type.

5. Undirected transitivity: The value of κ is marked
by a thick dashed line.
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Figure 2: Directed closure for web-Google
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Figure 3: Directed closure for web-Stanford
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Figure 4: Directed closure for web-BerkStan
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Figure 5: Directed closure for soc-Epinions1
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Figure 6: Directed closure for livejournal
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Figure 7: Directed closure for soc-Slashdot0902
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Table 3: Properties of the graphs

Graph Name |V| |E| |W| |T| r κ

amazon0505 410K 3357K 73M 3951K 0.55 0.162
soc-Slashdot0902 82K 870K 75M 603K 0.84 0.024

web-Stanford 282K 2312K 3944M 11330K 0.28 0.009
web-BerkStan 685K 7601K 27983M 64691K 0.25 0.007

wiki-Talk 2394K 5021K 12594M 9204K 0.14 0.002
web-Google 876K 5105K 727M 13392K 0.31 0.055

soc-Epinions1 76K 509K 74M 1624K 0.41 0.066
web-NotreDame 326K 1470K 305M 8910K 0.52 0.088

youtube-links 1158K 4945K 1474M 3057K 0.79 0.006
flickr-links 1861K 22614K 14675M 548659K 0.62 0.112

soc-livejournal 5284K 76938K 7519M 310877K 0.73 0.124

3. OBSERVATIONS ON CLOSURE CHARTS
We analyze the directed closure properties of various real

graphs, whose properties are presented in Table 3. In this
table, |V |, |E|, |W |, and |T | correspond to the number of ver-
tices, edges, wedges, and triangles, respectively. The reci-
procity r is the fraction of total edges that are reciproal
edges. The undirected transitivity (3|T |/|W |) is given by κ.

3.1 Similarities of directed closures
Figure 2, Figure 3, and Figure 4 have the closure charts

for three different web graphs: web-Google, web-Stanford,
and web-BerkStan [27]. These graphs have vertices for web-
pages and directed edges for web links. Figure 5, Figure 6,
and Figure 7 have the charts for three social networks [27].
The vertices of soc-Epinions are member of Epinions, a con-
sumer review site. A directed edge between users shows a
trust relationship originating from one user (these are signed
by trust/distrust, which we ignore). The vertices of soc-
Slashdot [27] are users and edges represent tagging as friend
or foe. The vertices of soc-livejournal [5, 1] are Slashdot
users with edges denoting friendship (which is one-way).

Observe the uncanny similarity of the closure charts web
graphs, despite them being from different sources (and dif-
ferent sizes). The color patterns are remarkably similar,
showing similar distributions of different closures. The so-
cial networks show more variation, but the overall structure
of the charts is not far from the web graphs. In general, we
note that in-wedges rarely close and reciprocal wedges close
much more frequently.

3.2 Heterogeneity of closure
The heterogeneity of wedge closure is quite clear from all

the closure charts. Focus on the web graphs. Other than
in-wedges, all other wedge types close (quite) frequently.
The undirected transitivity is always below 0.05, but specific
wedge types close more than 50% of the time (shown by the
total height of the bar). In-wedges form a dominant ma-
jority of all wedges (more than 98%) but close infrequently.
Indeed, the low value of transitivity is explained by the high
percentage yet low closure of in-wedges.

The picture is not as dramatic in the social networks, but
there is some variation in closures over the wedge types.
Quite consistently, in-wedges do not close and recip-tot-
wedges close more frequently.

3.3 Effect of reciprocity on closure rates
How does reciprocity change the chance of closure? Ob-

serve that in, path, and out-wedges contain no reciprocal
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Figure 8: How reciprocity increases closure rates: the x-axis
goes over various graphs. The colored bars correspond to
wedges with 0, 1, or 2 reciprocal edges. The y-axis gives the
fraction of those wedges that close (into any triangle).

edges, recip-in and recip-out-wedges have exactly 1 recipro-
cal edge, and recip-tot has 2 reciprocal edges. As the charts
clearly indicate, having reciprocal edges increases the chance
of closure a wedge. We do a comprehensive calculation on a
variety of graphs in Figure 8.

Consider a graph and choose k from {0, 1, 2}. Fix the set
of wedges with k reciprocal edges, and look at the fraction
of those that close (into any triangle). This gives the data
presented in Figure 8. Observe how there is consistently a
monotonic (and often dramatic) increase in closure fractions
as reciprocity increases. The average of chance of closure for
a wedge without reciprocal edges is only 3%. But this num-
ber goes to 23% if one of the edges is reciprocal and further
increases to 38% when both edges are reciprocal. This find-
ing is consistent with the earlier reports about reciprocal
edges, indicating stronger ties between two vertices [18, 10,
17, 14]. It also underscores how important it is to consider
direction in networks.

3.4 The power of transitivity
Throughout the closure charts, one notices in infrequency

of loop and path-recip-triangles. These are colored light
blue and yellow, and one can see how little of those colors
are present (or one can directly look at their percentages).
Let us focus on triangles that contain a cycle showing a
“cyclic” relationship. These are exactly loop, path-recip, 2-
recip, and 3-recip-triangles. (These are given in light blue,
yellow, brown, and pink, respectively.) Now consider tran-
sitive relations that are not reciprocated. For example, A
connects to B who connects to C, but A does not connect
to C. When a triangle contains a cycle, a reciprocated tran-
sitive relationship creates a reciprocal edges.

Since loop-triangles have no reciprocal edges, there are
three transitive relations that are not reciprocated. Analo-
gously, for path-recip-triangle, there are two such unrecipro-
cated relations. And for 2-recip and 3-recip triangles, these
numbers are one and zero.

So we ask, when a triangle contains a cycle, does it con-
tain unreciprocated transitive relations? One would think
that a cycle indicates a strong tie between three vertices,
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Figure 9: Power of transitivity: For each graph in our col-
lection, we plot the percentages of (different) triangle types
containing a cycle. Each bar corresponds to a single graph,
and the stacked bar charts gives the percentages of the 4
different triangle types. Note the dominance of pink and
brown (3-recip and 2-recip-triangles).

(1− r)2

4

(1− r)2

2

(1− r)2

4
r(1− r) r(1− r) r2

Table 4: The probability of an undirected wedge become a
particular directed type wedge

and so reciprocation is expected. This is exactly what we
see in Figure 9, quite strongly over practically all graphs.
Almost all triangles with a cycle are either 2-recip or 3-recip-
triangles. We almost never see any loop-triangles, shown by
the lack of light blue in Figure 9. Again, this is more evi-
dence that reciprocal edges play an important role in graph
structure. The results demonstrate that the power of tran-
sitivity of real world networks. One can observe that social
relationships carried forward two steps (as a transitive rela-
tion) almost always lead to reciprocation.

4. NULL MODELS FOR (ψ, τ )-CLOSURE
In the previous section, we made several observations about

the (ψ, τ )-closure rates in real graphs. How significant are
these results? Can they be explained merely by the reci-
procity of a graph? We propose a null hypothesis, based on
assigning the type of each edge only based on the reciprocity
of the graph. We start by making the graph undirected and
and insert direction and reciprocity randomly as follows. If
(u, v) is an undirected edge, we make it reciprocal with prob-
ability r; we direct it from u to v with probability (1− r)/2,
we direct from v to u with probability (1− r)/2. Based on
this model, the probabilities of an undirected wedge and/or
triangle being of a certain type can be calculated through
simple calculations. This information is presented in Table 4
and Table 5.

3(1− r)3

4

(1− r)3

4

3r(1− r)2

4

3r(1− r)2

2

3r(1− r)2

4
3r2(1− r) r3

Table 5: Fractions of triangle types based on the null model.
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Figure 10: Closure chart of web-Google for random direc-
tions: We consider the undirected version of web-Google
graph and added one-way and reciprocal edges according the
random null model. Observe that the total closure for each
wedge is identical, and how different this is from Figure 2.

Table 5 reveals that observations of the previous section
cannot be explained by randomness or reciprocity. For in-
stance, if we compare the expected fractions of the last two
triangles 2-recip and 3-recip, we see that 2-recip should be
more frequent when the reciprocity, r < 0.75. Even though
this condition holds in most of the graphs in our data set, we
observe the contrary behavior in real data sets, and 3-recip
generally is more frequent than 2-recip. Another observa-
tion is about loop triangles. According to our null model,
trans and loop triangles have the same dependence of reci-
procity, and trans triangles are expected to be only 3 times
more frequent than loop triangles. However, transtriangles
are much more frequent in practice. In other words, the
null model can explain the sparsity of looptriangles, but not
their near absence.

Figure 10 illustrates how the directed closure chart would
look when direction is random. We take the undirected ver-
sion of web-Google graph and add one-way and reciprocal
edges according the random null model. If we compare this
figure to Figure 2, we see a totally different distribution,
pointing to the significance of our results. Here, we are only
presenting the results for web-Google due to space limita-
tions, but we observed the same trend in all other graphs.

Finally, in Figure 11 we look at two triangle types, out-
recip and path-recip, whose dependences on reciprocity are
the same, but one is overrepresented, while the other is un-
der represented, compared to the expectation of the null
hypothesis. Type out-recip-triangles are overrepresented in
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Figure 11: Deviations from the null model: For various graphs, we plot the fraction of triangles of a given type together
with what is predicted by the random null model. This is done for the out-recip and path-recip-triangles. Observe the large
differences, showing that directed triangle distributions are far from random.

all graphs except web-NotreDame and youtube-links, while
path-recip-triangles are underrepresented in all graphs.

All these results show that the direction in triangles re-
veals a special structure, which cannot be explained by ran-
domness or reciprocilty.

5. COUNTING DIRECTED TRIANGLES
The results in the previous section showed the impor-

tance of computing directed closure charts. In this section,
we turn our attention how to perform this task efficiently
and describe approximation algorithms to estimate the var-
ious clustering coefficients (and also the numbers of trian-
gles). We extend the method of wedge sampling for directed
graphs.

We begin with some basic notation. We define the follow-
ing seven subsets of Wψ. Let

Wψ(τ ) = { w ∈Wψ | w is τ -closed } .

Note that κψ,τ = |Wψ(τ )|/|Wψ|. This fraction can now be
estimated through the following algorithmic template.

1. Select k uniform random ψ-wedges (with replacement).
2. Determine k′, the number of τ -closed wedges among

this sample.
3. Output estimate κ̂ψ,τ = k′/k for κψ,τ .

The main theorem shows that this provides a good estimate
for κψ,τ . Similar versions of this theorem have appeared in
our earlier work [19, 20], but we provide a proof for com-
pleteness. We first state Hoeffding’s inequality.

Theorem 5.1 (Hoeffding [12]). Let X1, X2, . . . , Xk be
independent random variables with 0 ≤ Xi ≤ 1 for all i =
1, . . . , k. Define X̄ = 1

k

∑k

i=1
Xi. Then for any ε > 0, we

have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(−2t2/k).

Theorem 5.2. Let ε, δ > 0 and set k = ⌈0.5 ε−2 ln(2/δ)⌉.

Pr[|κ̂ψ,τ − κψ,τ | ≥ ε] ≤ δ

Proof. Define indicator random variable Xi for the ith
ψ-wedge being τ -closed (so Xi = 1 if the wedge is τ -closed
and 0 otherwise). Note that E[Xi] = κψ,τ , so E[

∑
i≤kXi] =

kκψ,τ . Since κ̂ψ,τ =
∑
i≤k

Xi/k, the event |κ̂ψ,τ − κψ,τ | ≥ ε

is the same as |
∑
i≤k

Xi−E[
∑
i≤k

Xi]| ≥ εk. By Theorem 5.1,
the probability of this event, by choice of k, is at most
2 exp(−2ε2k2/k) < δ.

A direct corollary of this theorem gives bounds for triangle
estimates. This is obtained by multiplying event inequality
in Theorem 5.2 by |Wψ|/χ(ψ, τ ) and observing that |Tτ | =
κψ,τ |Wψ|/χ(ψ, τ ).

Corollary 5.3. Fix types ψ and τ such that χ(ψ, τ ) 6= 0.

Denote T̂ = κ̂ψ,τ |Wψ|/χ(ψ, τ ).

Pr[|T̂ − |Tτ || ≥ ε|Wψ|/χ(ψ, τ )] ≤ δ

There are a few subtleties here worth mentioning. For the
same number of samples, we can use different wedge types
to count the same triangle set |Tτ |. For a candidate type
ψ, the error is proportional to |Wψ|/χ(ψ, τ ). Hence, using
wedge types that are less frequent give stronger approxima-
tions for the same triangle type. Another consequence of
this observation is that only 4 wedge types (e.g., in, recip-
out, recip-in, and recip-tot) are sufficient to compute the
numbers of all triangles types and thus the 15 closure rates.

5.1 Uniform sampling of wedge types
To give a full algorithm, we need to give a procedure that

samples uniform random wedges of any desired type. We
can split wedge types into two groups: homogenous and
heterogenous. Homogenous wedges have only one kind of
edge, such as in, out, and recip-tot-wedges. Heterogenous
wedges have different kinds of wedges, such as mid, recip-in,
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Figure 12: Speed-up over enumeration: We count the total
number of directed triangles through wedge sampling and
compare it to enumeration methods. We runs our algorithm
for 5K, 10K, and 20K samples.

and recip-out-wedges. The sampling procedures are analo-
gous for types within a group. Hence, we will only describe
how to sample uniform random in-wedges and random mid-
wedges.

First, we deal with in-wedges. Set pv =
(
d←
v

2

)
/|Wiii|,

where v ∈ V . Note that
∑
v∈V

pv = 1, so this forms a
probability distribution over V .

• Sample a random v according to the distribution given
by {pv}.

• Sample a uniform random pair u,w of in-neighbors of
v.

• Output the wedge {(u, v), (v, w)}
This generates a uniform random in-wedge. The number of
in-wedges incident to v is exactly pv|Wiii|, and the second
step generates a uniform random in-wedge centered at v.

Now for out-wedges. Set pv = d←v d
→
v /|Wii|, where v ∈ V .

Again,
∑
v∈V

pv = 1.
• Sample a random v according to the distribution given

by {pv}.
• Sample u, a uniform random in-neighbor of v, and w, a

uniform random out-neighbor.
• Output the wedge {(u, v), (v, w)}

We can show that is a uniform random out-wedge, using an
argument almost identical to that used above.

With these procedures, we can implement the wedge sam-
pling algorithms for all wedge/triangle types.

5.2 Experimental Results
We implemented our algorithms in C and ran our experi-

ments on a computer equipped with a 2.3GHz Intel core i7
processor with 4 cores and 256KB L2 cache (per core), 8MB
L3 cache, and 8GB memory. We performed our experiments
on 11 graphs, whose properties are presented in Table 3.

In Figure 12, we compare the runtime of wedge sampling
to the best enumeration algorithm. Our enumeration algo-
rithm is based on the principles of [4, 19, 6, 24], such that
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Figure 13: Improved accuracy with more wedge samples:
We focus on estimating the fraction that a out-wedge closed
to a out-recip-triangle (κiii,c). We consider 5K, 10K, 20K
wedge samples. The errors are all in third decimal point.

each edge is assigned to its vertex with a smaller total de-
gree, dv, (using the vertex numbering as a tie-breaker), and
then vertices only check closure for wedges formed by edges
assigned to them. Once a triangle is identified, it is classified
according to its edges. As seen in Figure 12, wedge sampling
works orders of magnitude faster than the enumeration al-
gorithm. The timing results show tremendous savings; for
instance, wedge sampling only takes 0.064 seconds on web-

BerkStan while full enumeration takes 271 seconds.
Figure 13 shows the accuracy of the wedge sampling algo-

rithm, by displaying the sampling error in computing how
often a out-wedge closes to a out-recip-triangle. At 99.9%
confidence (δ = 0.001), the upper bound on the error we
expect for 5K, 10K, and 20K samples is .028, .020, and .013,
respectively. In all our experiments, the observed error is al-
ways much smaller than what is indicated by Theorem 5.1.
For instance, the maximum error for 5K samples is .0085,
much less than that 0.028 given by the upper bound.

Due to space limitations, we cannot present results accura-
cies for other closer rates. However, we can report that the
proposed wedge sampling algorithm produced consistently
more accurate results than what is indicated by Theorem 5.1
for all graphs and all closure rates.

6. CONCLUSIONS
We initiate the study of directed triangles in massive net-

works, by defining the set of directed closure measures. These
quantities reveal a surprising amount of information about
digraphs. He observe heterogeneity in closure rates of differ-
ent wedges, strong effect of reciprocity in closure rates, the
power of transitivity in the structure of triangles. Our re-
sults also show that these observations cannot be explained
merely by randomness or reciprocity. We hope that this pa-
per leads the way in deeper studies into digraphs, and also
convinces the data mining and social networks community
that direction cannot be ignored. The fast estimation re-
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sults show that the measures can be computed in a scalable
manner.
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