
COMET: A Recipe for Learning and Using Large
Ensembles on Massive Data

Justin D. Basilico, M. Arthur Munson, Tamara G. Kolda,
Kevin R. Dixon, W. Philip Kegelmeyer

Sandia National Laboratories
Livermore, CA 94551, USA

{jdbasil, mamunso, tgkolda, krdixon, wpk}@sandia.gov

ABSTRACT
The collection of massive volumes of data requires machine
learning algorithms that can be applied to distributed data.
We describe COMET (Cloud of Massive Ensemble Trees), a
recipe for distributed supervised learning consisting of three
components: (1) MapReduce is used to parallelize the learn-
ing and evaluation tasks and collect the results, (2) an IVot-
ing Random Forest is used for the learning task on each local
data partition, and (3) the results of all local ensembles are
combined into one massive ensemble and lazy evaluation is
used to dynamically subsample it. We propose a new Gaus-
sian approach for lazy ensemble evaluation that is easier to
implement and faster to compute than previous approaches.
Empirical experiments on two large datasets demonstrate
that a) COMET leads to dramatically faster learning than
serial IVoting or improved accuracy if training time is equal,
and b) lazy ensemble evaluation drastically reduces the cost
of making predictions with massive ensembles.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Models—Statistical ; I.2.6 [Art-
ificial Intelligence]: Learning—induction, concept learn-
ing ; H.2.8 [Database Management]: Database Applica-
tions—data mining

General Terms
Algorithms, Performance

Keywords
MapReduce, Decision Tree Ensembles, IVoting, Lazy En-
semble Evaluation, Distributed Learning

1. INTRODUCTION
The integration of computer technology into science and

daily life has enabled the collection of massive volumes of
data that cannot be practically analyzed on a single com-
modity computer because these datasets are too large to fit
in memory. Consider website transaction logs, credit card
records, high-throughput biological assay data, sensor read-
ings, GPS locations of cell phones, and more. Analyzing
massive data requires either a) subsampling the data down
to a size small enough to be processed on a workstation;
b) restricting analysis to streaming methods that analyze a
fixed size, evolving working data subset; or c) distributing
the data across multiple computers that perform the analy-
ses in parallel.

In this paper, we focus on the problem of learning on mas-
sive data. Distributed approaches are attractive because
they can exploit multiple processors to construct models
faster and/or more accurately than a subsampling or stream-
ing approach running on a single processor. Moreover, the
MapReduce framework [16] makes distributed computations
straightforward to implement, and the Amazon Elastic Com-
pute Cloud (EC2) makes cluster computing accessible to all
by allowing users to rent cluster cycles as needed.

We use a divide-and-conquer approach: the data is par-
titioned across multiple compute nodes, and each node in-
dependently constructs one or more classifiers from its data
partition. The resulting classifiers (from all nodes) form an
ensemble, or committee, model that makes predictions by
combining predictions from the constituent classifiers. The
MapReduce framework is used for handling data distribu-
tion and resource scheduling; in general, our method needs
only a single pass for all the individual learners.

Each compute node builds a local IVoting Random For-
est. Random Forests [7] is a method for building decision
tree ensembles which has been shown to produce accurate
classifiers for a wide variety of problem domains [11, 10]. We
use a variant of Random Forests that uses IVoting [6] rather
than bagging [4] to sample training subsets because it has
been shown to work better in a distributed context [14].

All the local ensembles are combined into a mega-ensemble
containing thousands of classifers in total. Using such a large
ensemble is computationally expensive and generally overkill
for data points that are easy to classify. Thus, we employ
a lazy ensemble evaluation scheme that only uses as many
ensemble members as are needed to make a confident predic-
tion. We propose a new Gaussian-based approach for Lazy
Ensemble Evaluation (GLEE) that is easier to implement
and more scalable than previously proposed approaches.

Thus, as a recipe for massive data analysis, we propose to
combine (1) MapReduce for naturally parallelizing the learn-
ing and evaluation tasks and collecting the results, (2) an
IVoting Random Forest for learning on each local data par-
tition, and (3) lazy ensemble evaluation for efficiently apply-
ing the massive ensemble. We call our approach COMET,
short for Cloud Of Massive Ensemble Trees.

Our main contributions are as follows:
• We describe COMET, a MapReduce-based framework

for distributed IVoting Random Forest ensemble learn-
ing which uses a divide-and-conquer approach for learn-
ing on massive data. Unlike recent work using MapRe-
duce to learn decision tree ensembles [29], COMET
requires only a single MapReduce pass for training.

ar
X

iv
:1

10
3.

20
68

v1
 [

cs
.L

G
]

 1
0

M
ar

 2
01

1

• We propose a new approach for lazy ensemble evalu-
ation based on a Gaussian confidence interval. Our
GLEE technique is easier to implement and more scal-
able than a previous Bayesian approach [23], and our
experimental comparisons show that there is no per-
formance degradation with our new approach.
• Using two publicly available datasets (the larger of

which contains 200M examples), we show that COMET
produces more accurate models than learning from a
subsample. Alternatively, distributed learning with
COMET achieves the same accuracy as subsample learn-
ing but trains 5–10 times faster.

2. RELATED WORK

2.1 Supervised Learning on MapReduce
Distributed versions of many supervised learning algo-

rithms have been implemented using MapReduce. Chu et
al. [15] note that several common learning algorithms can
be written in summation forms and that the sums can be
computed in parallel by MapReduce operations. Often the
summation represents a single computational step in an it-
erative algorithm. This iterative category includes logistic
regression [15], linear [15] and non-linear support vector ma-
chines [13], backpropagation neural networks [15, 24], deci-
sion trees [29], and belief propagation for graphical models
[22]. Deodhar et al.’s hybrid co-clustering and linear re-
gression algorithm, SCOAL, involves three summations per
iteration [17]. The downside with these iterative algorithms
is that they require multiple MapReduce jobs, which means
multiple scans through the data as well as overhead from
setting up and shutting down MapReduce jobs. Coordinat-
ing multiple MapReduce iterations can also be complicated.
PLANET [29], for example, constructs a decision tree using
MapReduce primitives but requires implementing a separate
job control system to supervise the search for node splits and
to reduce job setup and teardown overhead.

Algorithms that require a single distributed computation
step—such as locally weighted linear regression [15], näıve
Bayes [15], and Gaussian discriminate analysis [15]—can be
a better fit for MapReduce. For example, Alham et al. [1]
propose a distributed support vector machine (SVM) learn-
ing algorithm implemented with a single MapReduce job.
The map step runs the standard SVM algorithm multiple
times, in parallel, on disjoint partitions of the training data.
The reduce stage forms a single SVM by taking the union of
the support vectors learned from each partition. While this
algorithm is approximate (the final SVM is different from an
SVM trained serially on all the data), the distributed SVM
is comparable in accuracy to a serial one and faster to train.

Gao et al. [21] build an ensemble of decision trees with
purely random topologies. Leaf count statistics are collected
in parallel and are based on the full data set. This approach
outperforms an ensemble of purely random trees with leaf
counts computed from one data partition (each).

2.2 Distributed Ensembles
Ensemble learning has long been used for large-scale dis-

tributed machine learning. Instead of converting a learning
algorithm to be natively parallel, run the (unchanged) al-
gorithm multiple times, in parallel, on each data partition
[12, 18, 19, 14]. An aggregation strategy combines the set
of learned models into an ensemble that is usually as accu-

rate, if not more accurate, than a single model trained from
all data would have been. For example, Chan and Stolfo
[12] study different ways to aggregate decision tree classi-
fiers trained from disjoint partitions. They find that voting
the trees in an ensemble is sufficient if the partition size is
big enough to produce accurate trees. They propose arbiter
trees to intelligently combine and boost weaker trees to form
accurate ensembles in spite of small partitions. Domingos
[18] similarly learns sets of decision rules from partitioned
data, but combines them using a simpler weighted vote.
Yan et al. [34] train many randomized SVM models with
a MapReduce job; a second job runs forward stepwise selec-
tion to choose a subset with good performance. The final
ensemble aggregates predictions through a simple vote. In
this work we use simple voting as our aggregation strategy
because our data partitions are relatively large.

Our distributed learning strategy is inspired by Chawla
et al.’s work on distributed IVoting [14]. They empirically
compare IVoting applied to all training data to distributed
IVoting (DIVoting) in which IVoting is run multiple times,
independently, on disjoint partitions of the training data.
Unlike the studies described above, they trained multiple
models from each data partition. Their results show that
DIVoting achieves comparable classification accuracy to IV-
oting with a faster running time, and better accuracy than
distributed bagging that used the same sample sizes. Our
work differs from theirs because a) we use MapReduce to
implement DIVoting (they used MPI), b) our data is 190X
larger, and c) we apply lazy ensemble evaluation to speed up
predictions from large ensembles. The work of Wu et al. [33]
is also closely related to ours. They also train a decision tree
ensemble using MapReduce, but only train one decision tree
per partition (we run IVoting on each partition), do not use
lazy ensemble evaluation, and evaluate the ensemble on a
single small data set with 699 records.

Moretti et al. [27] build a framework to support easy learn-
ing of distributed ensembles. The framework is like MapRe-
duce but with builtin support for specialized data partition-
ing and the ability to specify data as test data (to avoid
storing it in replicated file systems). They demonstrate that
their framework scales on synthetic datasets as big as 54GB.

Ye et al. [35] take advantage of efficient internode com-
munication in MPI to implement distributed boosted deci-
sion trees. Their algorithm partitions the data by feature so
that each node contains a disjoint subset of the attributes.
Nodes compute the goodness of splitting on different fea-
tures in parallel and send a controller node the best split
from their view of the data. The controller communicates
the best global split to the worker nodes, which then be-
gin the search for the next tree node split. While all the
communications are small in this algorithm, the frequent
communications would be very expensive on MapReduce.

2.3 Lazy Ensemble Evaluation
Lazy ensemble evaluation is the strategy of only evaluating

as many ensemble members as needed to make a good pre-
diction. Whereas much research has studied removing un-
necessary models from an ensemble (called ensemble prun-
ing) [32], only a few studies have used lazy ensemble evalua-
tion to dynamically speed up prediction time in proportion
to the ease or difficulty of each data point. Fan et al. [19] use
a Gaussian confidence interval to decide if ensemble evalu-
ation can stop early for a test point. Their method differs

from the one described in Section 3.3 in that a) ensemble
members are always evaluated from most to least accurate,
and b) confidence intervals are based on where evaluation
could have reliably stopped on validation data. A fixed or-
dering is not necessary in our work because the base models
should have similar accuracy; this leads to a simpler Gaus-
sian lazy ensemble evaluation rule.

Hernández-Lobato et al. [23] use Bayesian inference to de-
cide when ensemble evaluation can be stopped early. We
compare to this method in our experiments, and refer to it as
the Madrid Lazy Ensemble Evaluation (MLEE). In MLEE,
the distribution of vote frequencies for different classes is
modeled as a multinomial distribution with a uniform Dirich-
let prior. The posterior distribution of the class vote pro-
portions is updated at each evaluation step to reflect the
observed base model prediction. MLEE computes the prob-
ability that the final ensemble predicts class c by enumer-
ating the possible prediction sequences for the as-yet un-
queried ensemble members, based on the current posterior
distribution. Ensemble evaluation stops when the probabil-
ity of some class exceeds the specified confidence level or
when all base models have voted. MLEE is exponential in
the number of classes but is O(m2) for binary classification
(m ensemble members) and approximations exist to make it
tractable for multi-class problems [26].

Markatopoulou et al. [25] propose a more complicated
runtime ensemble pruning, where the choice of which base
models to evaluate is decided by a meta-model trained to
choose the most reliable models for different regions of the
input data space. Their method can achieve better accuracy
than using the entire ensemble, but generally will not lead
to faster ensemble predictions.

3. COMET RECIPE
COMET is a recipe for large-scale distributed ensemble

learning and efficient ensemble evaluation. The recipe has
three components:

1. MapReduce: We write our distributed learning algo-
rithm using MapReduce to easily parallelize the learn-
ing task. The mapper tasks build classifiers on lo-
cal data partitions (“blocks” in MapReduce nomencla-
ture), and a single reducer can collect the output. If
the learned ensemble is large and/or the number of
data points to be evaluated is large, evaluation can
also be parallelized using MapReduce.

2. IVoting Random Forest: Each mapper runs a vari-
ant on Random Forests that replaces bagging with IV-
oting. The mapper builds an ensemble based on its
local block of data (assigned by MapReduce). IVoting
has the advantage that it gives more weight to difficult
examples. Unlike boosting [20], however, each model
in the ensemble votes with equal weight, allowing us
to trivially merge the ensembles from all mappers into
a single large ensemble.

3. Lazy Ensemble Evaluation: Many inputs are“easy”
and the vast majority of the ensemble members agree
on the classification. For these cases, querying a small
sample of the members is sufficient to determine the
ensemble’s prediction with high confidence. Lazy en-
semble evaluation significantly lowers the prediction
time for ensembles.

The rest of this section describes these three components in
more detail.

3.1 Distributed Learning via MapReduce
We take a coarse-grained approach to distributed learning

that minimizes communication and coordination between
compute nodes. We assume that the training data is parti-
tioned randomly into blocks in such a way that class distri-
butions are roughly the same across all blocks. Such shuf-
fling can be accomplished in a simple pre-processing step
that maps each data item to a random block.

In the learning phase, each mapper independently learns a
predictive model from an assigned data block. The learned
models are aggregated together into a final ensemble model
by a reducer. This is the only step that requires internode
communication, and only the final models are transmitted
(not the data). Thus, we only require a single MapReduce
pass for training. We call this distributed learning strategy
coarse-grained because the task of learning a model is broken
into large subtasks that are computed in parallel.

We implement the above strategy in the MapReduce frame-
work [16] because the framework’s abstractions match our
needs, although other parallel computing frameworks (e.g.,
MPI) could also be used. To use MapReduce, one loads the
input data into the framework’s distributed file system and
defines map and reduce functions to process key-value pair
data during Map and Reduce stages, respectively. Mappers
execute a map function on an assigned data block (usually
read from the node’s local file system). The map function
produces zero or more key-value pairs for each input; in our
case, the values correspond to learned trees (with random
keys). During the Reduce stage, all the pairs emitted dur-
ing the Map stage are grouped by key and passed to reducer
nodes that run the reduce function. The reduce function
receives one key and all the associated values produced by
the Map stage. Like the map function, the reduce function
can emit any number of key-value pairs. Resulting pairs
are written to the distributed file system. The MapReduce
framework manages data partitioning, task scheduling, data
replication, and handling failures. The reducer(s) can write
all the learned trees to a single output file or to multiple files
to be used later in a parallel evaluation MapReduce pass.

The map and reduce functions for distributed ensemble
learning are straightforward. The map function trains an
ensemble on its local data block and then emits the learned
trees. In this algorithm, we give each tree a random key
to partition the ensemble for a distributed evaluation phase.
The reduce function combines the trees for the key assigned
to it. Thus, if trees are emitted to a single partition (p =
1), all trees will be reduced to one output file. If p > 1,
each reducer will receive approximately 1/p of the randomly
assigned trees, and there will be p output files.

We describe the GLEE rule in Section 3.3, but here we
discuss how it can be parallelized with MapReduce. Each
mapper has a portion of the entire ensemble and executes
the GLEE routine locally. For each data point, we get a tally
of the votes for the different classes. In most cases, this will
require only a small portion of the entire ensemble, and we
will be able to output a decision. In the rare cases where
this portion of the ensemble is not sufficient to determine the
final evaluation, we can then process that data point further
(e.g., via another MapReduce pass or serial computations).
Note that further processing is never required if the ensemble
is small enough for every mapper to hold in memory.

In contrast to PLANET [29], as discussed previously, we
stress that the learning phase requires only one MapReduce

pass (two if you need a pre-processing pass to randomly
distribute the data). For PLANET, an entire MapReduce
pass is required to learn each level in each decision tree.

3.2 IVoting Random Forest
The key step in distributed learning above is constructing

an ensemble from the local data partition using IVoting.
IVoting (Importance-sampled Voting) [6] builds an ensemble
by repeatedly applying the base learning algorithm (e.g.,
decision tree induction [8, 30]) to small samples called bites.
Unlike bagging [4], examples are sampled with non-uniform
probability. Suppose that k IVoting iterations have been
run, producing ensemble Ek comprised of k base classifiers.
To form the k+ 1st bite, training examples (x, y) are drawn
randomly. If Ek incorrectly classifies x, (x, y) is added to
training set Bk+1. Otherwise (x, y) is added to Bk+1 with
probability e(k)/(1−e(k)), where e(k) is the error rate of Ek.
This process is repeated until |Bk+1| reaches the specified
bite size b. Out-of-bag (OOB) [5] predictions are used to
get unbiased estimates of e(k) and Ek’s accuracy on sampled
points x. The OOB prediction for x is made by voting only
the ensemble members that did not see x during training,
i.e., x was outside the base models’ training sets.

IVoting’s sequential and weighted sampling is reminiscent
of boosting [20]. Indeed, IVoting is similar to boosting in
terms of accuracy [6]. IVoting differs from boosting, how-
ever, in that each base model receives equal weight for decid-
ing the ensemble’s prediction. This property simplifies merg-
ing the multiple ensembles produced by independent IVoting
runs on disjoint data blocks. Finally, the base learning algo-
rithm constructs models more quickly from bites than from
the samples used in bagging or boosting because the bites
are generally a small subset of the available data.

Breiman [6] showed that IVoting sampling generates bites
containing roughly half correct and half incorrect examples.
Thus, we use a variation of IVoting which draws (with re-
placement) 50% of the bite from the examples Ek correctly
classifies and 50% from the examples Ek incorrectly classifies
(based on OOB predictions). This implementation avoids
the possibility of drawing and rejecting large numbers of
correct examples for ensembles with very high accuracy. Al-
gorithm 1 summarizes the IVoting algorithm.

Algorithm 1: Importance-sampled Voting (IVoting)

Input: Dataset D ∈ (X ,Y)∗; Ensemble size m; Bite size
b ∈ N; Base learner L : (X ,Y)∗ → (X → Y)

Output: Ensemble E
Initialize D+

0 = D, D−0 = D, Voob[·, ·] = 0, E = ∅;
for i ∈ [1,m] do

// Create the bite to train on.

B+
i = b/2 uniform random samples from D+

i−1;

B−i = b/2 uniform random samples from D−i−1;

Bi = B+
i +B−i ;

// Train a new ensemble member.
Ti = L(Bi);
Add Ti to E;
// Update running votes.
for (xj , yj) /∈ Bi do

Voob[j, Ti(xj)] += 1;

D+
i = {(xj , yj) ∈ D | yj = arg maxzVoob[j, z]};

D−i = {(xj , yj) ∈ D | yj 6= arg maxzVoob[j, z]};
return E;

Any classification learning algorithm can be used for the
base learner in IVoting. Our experiments use decision trees
[30, 31] because they generally form accurate ensembles [3].
The trees are grown to full size (i.e., each leaf is pure or
contains fewer than ten training examples) using informa-
tion gain as the splitting criterion. We use full-sized trees
because they generally yield slightly more accurate ensem-
bles [3]. To increase the diversity of trees and reduce train-
ing time for data sets with large numbers of features, only
a random subset of features are considered when choosing
the test predicate for each tree node. This attribute sub-
sampling is used in random forests and has been shown to
improve performance and decrease training time [7]. We em-
ploy the random forest heuristic for choosing the attribute
sample size d′ = b1+log2 dc, where d is the total number of
attributes. As a whole, the learning algorithm run on each
data block is a variant of Random Forests in which IVoting
generates the training samples instead of bagging.

3.3 Lazy Ensemble Evaluation
A major drawback to large ensembles is the cost of query-

ing all ensemble members for their predictions. In practice,
many data points are easy to classify: the vast majority of
the ensemble members agree on the classification. For these
cases, querying a small sample of the members is sufficient
to determine the ensemble’s prediction with high confidence.

We exploit this phenomena via lazy ensemble evaluation
where we decide if ensemble voting can be stopped early, on
a case by case basis for each data point, while guarantee-
ing with high probability that the “lazy” prediction is the
same as the prediction would be by using the entire ensem-
ble. The risk that lazy evaluation stops voting too early
(i.e., the probability that the early prediction is different
from what the full ensemble prediction would have been) is
bounded by a user-specified parameter α. Algorithm 2 lists
the lazy ensemble evaluation procedure. Let x be a data
point to classify using ensemble E, with E containing m
base models. Initially all m models are in the unqueried set
U . In each step, a model T is randomly chosen and removed
from U to vote on x; the vote is added to the running tallies
of how many votes each class has received. Based on the
accumulated tallies and how many ensemble members have
not yet voted, the stopping criterion decides if it is safe to
stop and return the classification receiving the most votes.
If it is not safe, a new ensemble member is drawn and the
process is repeated until it is safe to stop or all m ensemble
members have been queried.

In binary categorization, the vote of each base model can
be modeled as a Bernoulli random variable. Accordingly, the
distribution of votes for the full ensemble follows a binomial
distribution with proportion parameter p. Provided that the
number of members queried by the ith step in Algorithm 2 is
sufficiently large, we can invoke the Central Limit Theorem
and approximate the binomial distribution with a Gaussian
distribution.

We propose Gaussian Lazy Ensemble Evaluation (GLEE),
which uses the Gaussian distribution to infer a (1− α) con-
fidence interval around the observed mean p̂. The interval
is used to test the hypothesis that the unobserved propor-
tion of positive votes p falls on the same side of 0.5 as p̂
(and consequently, that the current estimated classification
agrees with the full ensemble’s classification). If 0.5 falls
outside the interval, GLEE rejects the null hypothesis that

Algorithm 2: Lazy Ensemble Evaluation

Input: Input x ∈ X
Input: Ensemble E with m members of f : X → {1, ..., c}
Input: α, max. disagreement freq. for lazy vs. full eval.
Input: Vote stopping criteria

Stop : (Nc0,N1,R ∈ [0, 1])→ {true, false}
Output: Approximate prediction from E for input x.
Set U = E, V = [0, ..., 0], |V | = c;
for i ∈ [1,m] do

Sample T uniformly from U ;
Remove T from U ;
Evaluate vi = T (x);
Increment V [vi];
if Stop(V,m, α) then

return argmaxi V [i];

return argmaxi V [i]

p and p̂ are on different sides of 0.5 and terminates voting
early. Formally, denote the interval bounds as p̂± ρδ, where

δ = zα/2
σ√
n

= zα/2

√
p̂(1− p̂)√

n

and

ρ =

{√
m−n
m−1

if n > 0.05m

1 otherwise.

The critical value zα/2 is the usual value from the standard
normal distribution. The finite population correction (FPC)
ρ accounts for the fact that base models are drawn from
a finite population (the ensemble). Intuitively, uncertainty
about p shrinks as the set U becomes small. To ensure
the Gaussian approximation is reasonable, GLEE only stops
evaluation if at least 15 models have voted. We found this
(somewhat arbitrary) threshold gave reasonable results.

The above hypothesis test only requires the lower bound
(if p̂ > 0.5) or the upper bound (if p̂ < 0.5). Consequently
we can improve GLEE’s statistical power by computing a
one-sided interval; i.e., use zα instead of zα/2. When the
GLEE stopping criteria is invoked, the leading class (the
class with the most votes so far) is treated as class 1, and
the runner-up class is treated as class 0.1 GLEE stops eval-
uation early if the lower bound p̂− δ is greater than 0.5.2

4. EXPLORATION OF LAZY ENSEMBLE
EVALUATION

This section explores the efficacy of the GLEE rule across
a wide range of ensemble sizes and for varying confidence
levels. We simulate votes from large ensembles to explore
the rule’s behavior and to compare it to the MLEE rule.

The stopping thresholds for both methods are pre-computed
for each ensemble size and stored in a table that is in-
dexed by the number of votes received by the leading class.

1This class relabeling trick also enables direct application of
GLEE to multiclass problems.
2This one-sided test is slightly biased because the procedure
effectively chooses to compute a lower or upper bound after
“peeking” at the data to determine which class is the current
majority class. When p̂ is close to 0.5 the bias results in
slightly inaccurate confidence intervals that do not contain
p with the specified (1−α) frequency. On average, however,
the impact of this bias on the accuracy of the lazy prediction
is only noticeable for very small α (see Section 4).

Pre-computing and caching the thresholds provides a minor
speed-up for GLEE, but is necessary to make MLEE prac-
tical for large ensembles. To avoid numerical overflows, we
compute the factorials required for MLEE in log-space.

Ensemble votes are simulated as follows. A uniform ran-
dom number p ∈ [0, 1] is generated to be the proportion of
ensemble members that vote for class 1. The correct label
for the example is 1 if p ≥ 0.5 and 0 otherwise. Each model
in the ensemble votes by sampling from a Bernoulli random
variable with probability Pr(x = 1) = p. The ensemble is
evaluated until the stopping criterion is satisfied or all m en-
semble members have voted. The lazy prediction, under the
different stopping rules, and the prediction from evaluating
the full ensemble are compared to the correct label to deter-
mine their relative accuracies. This process is repeated 5000
times to simulate making predictions for 5000 data points.

We report the results in terms of relative votes and relative
accuracy. Relative votes is the average fraction of ensemble
members evaluated before lazy evaluation stopped. Relative
accuracy is the accuracy of lazy evaluation (over the 5000
examples) divided by the accuracy of non-lazy evaluation.

Figure 1a compares five approaches to lazy ensemble eval-
uation. All five methods provide similar speed-ups, with
G1-FPC and G2-FPC requiring slightly fewer votes than the
others. More importantly, we see that there is a significant
benefit to applying these methods for ensembles with as few
as 100 members and that the benefit becomes greater as the
ensemble size grows.

In Figures 1b and 1c, we fix the ensemble size at m =
10000 and vary α. As we might expect, larger values of α
require evaluating a smaller subset of the ensemble. Fig-
ure 1c shows that we can still achieve 99% of the original
accuracy with a relatively large value of α = 0.01. This
requires as little as 2% of the ensemble, on average (Fig-
ure 1b). Finally, the G1-FPC rule is as good or better than
MLEE in terms of relative accuracy. In the rest of the paper
we use G1-FPC for lazy evaluation and will refer to it as the
GLEE rule. Section 5 presents results on real data.

5. EXPERIMENTS
To understand how well our COMET approach performs

we ran a set of experiments on two large real-world datasets.

5.1 Datasets
The data sets are described in detail below; the charac-

teristics are summarized in Table 1.

Table 1: Dataset Characteristics

Name Train Test Features % Positive
ClueWeb 200M 1M 63 48.4%
eBird 1M 400K 1143 31.8%

5.1.1 ClueWeb09 Dataset
ClueWeb09 [9] is a web crawl of over 1 billion web pages

(approximately 5TB compressed, 25TB uncompressed). For
this dataset we use language categorization as the prediction
task. Specifically, the task is to predict if a given web page’s
language is English or non-English. The features are counts
of alpha-numeric characters (0 − 9, a − z, A − Z) plus one
additional feature for any other character, for a total of 63
features. Counts are normalized to sum to 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

R
el

at
iv

e
vo

te
s

Ensemble size

Ensemble size vs. relative votes for stopping criteria

Madrid
G1
G2

G1-FPC
G2-FPC

(a) Relative Votes: Vary Ensemble Size

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

R
el

at
iv

e
vo

te
s

Alpha

Alpha vs. relative votes with different stopping criteria

Madrid
G1
G2

G1-FPC
G2-FPC

(b) Relative Votes: Vary α

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

R
el

at
iv

e
ac

cu
ra

cy

Alpha

Alpha vs. relative accuracy for different stopping criteria

Madrid
G1
G2

G1-FPC
G2-FPC

(c) Relative Accuracy: Vary α

Figure 1: Relative number of votes and accuracy for different stopping criteria on simulated ensembles. The five stopping
criteria are Madrid (MLEE), G1 (Gaussian one-tail), G2 (Gaussian two-tail), G1-FPC (G1 with finite population correction)
and G2-FPC (G2 with finite population correction). In (a), α = 0.0001. In (b) and (c), ensemble size is fixed to m = 10000.

We used MapReduce to extract features for each web page
and randomly divide the data into blocks (by mapping each
example to a random key). Preprocessing the full ClueWeb
dataset took approximately 2 hours on our Hadoop clus-
ter and created 1000 binary files totaling approximately 259
GB and containing nearly 1B examples. From this, we ran-
domly extracted 200M training and 1M testing examples.
The training data was divided into 200 blocks, each approx-
imately 1/4GB in size and containing 1M examples.

5.1.2 eBird
The second dataset we use to evaluate COMET is the

US48 eBird reference dataset [28]. Each record corresponds
to a checklist collected by a bird watcher and contains counts
of how many birds, broken down by species, were observed
at a given location and time. In addition to the count
data, each record includes attributes describing the envi-
ronment in which the checklist was collected (e.g., climate,
land cover), the time of year, and how much effort the ob-
server spent. The eBird data tests how well COMET scales
for problems with data having hundreds of attributes.

The prediction task in our experiment is to predict if an
American Goldfinch (Carduelis tristis) will be observed at a
given place and time based on the environmental and data
collection attributes. We chose American Goldfinches be-
cause they are widespread throughout the United States
(and thus, frequently observed) and exhibit complex migra-
tion patterns that vary from one region to another (making
the prediction task hard). We used the data from 1970–2008
for training and the data from 2009 for testing. All non-zero
counts were converted to 1 to create a binary prediction task.
There is a total of 1143 features; specifically, we used all at-
tributes except meta-data attributes intended for data filter-
ing (country, state province, sampling event id, lat-
itude, longitude, observer id, subnational2 code).

After pre-processing, the data set contains 1.4M examples
and requires 6.2GB of storage. We subdivided the data into
14 training and 6 testing blocks. Each block contains 70K
examples and requires 1/4 GB of storage.

5.2 Implementation Details
For our experiments, we used the open-source Hadoop

platform (version 0.21), which includes MapReduce and the
Hadoop distributed filesystem (HDFS). We used the ma-

Table 2: Accuracy for Different Bite Sizes

ClueWeb eBird
Bite Size Accuracy Accuracy

100 n/a 0.7265
500 n/a 0.7496
1K 0.8911 0.7614
5K 0.9089 0.7753
10K 0.9163 0.7755
50K 0.9316 0.7713

100K* 0.9359 0.7699
150K 0.9370 n/a
200K 0.9377 n/a

* eBird bite size was 70K (approx. data partition size).

chine learning algorithm implementations provided by the
Cognitive Foundry [2] (open-source software).

All experiments were run on a cluster with 65 worker
nodes. Each worker node has one quad-core Intel i-720 (2.66
Ghz) processor, 12 GB of memory, four 2 TB disk drives, and
1Gb Ethernet networking. Each worker node was configured
to execute up to four map or reduce tasks concurrently. To
make running times directly comparable, we ran the serial
algorithm on an individual worker node with a copy of the
training data sample on the local filesystem.

We loaded the data into HDFS with a big enough block
size to ensure each file was contained one block (i.e., 256MB,
vs. the default 64MB block size). Large block sizes improve
accuracy by allowing IVoting to sample from more diverse
examples, at the expense of spending more time per worker
node. Since each mapper produces relatively few outputs,
we reduced the size of Hadoop’s internal buffers to maximize
the memory available for the learning algorithm.

In GLEE, the straightforward way to sample models (with-
out replacement) from the ensemble is to generate a new ran-
dom number for each ensemble member that is evaluated. If
the cost of generating a random number is relatively expen-
sive, lazy evaluation may not provide enough of a speed-up
and may even slow down ensemble evaluation. To avoid
this, our GLEE implementation permutes the ensemble or-
der once at load time. Each ensemble evaluation is started
from a different random index in this order. Thus, only a
single random number is generated per ensemble prediction.

In all experiments the bite size b was set to 100K for
ClueWeb and 10K for eBird. These values were chosen
by running IVoting for 1000 iterations on one data block

 0.89

 0.895

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 100 1000 10000 100000 1e+06

A
c
c
u
ra

c
y

Total Ensemble Size

Distributed and serial accuracy (ClueWeb)

1

5

10

25

50
75

100
200

300

1000

serial
distributed

Equivalent
Accuracy

Trees per Mapper

(a) Accuracy Comparison

 0

 50

 100

 150

 200

 250

 300

 100 1000 10000 100000 1e+06

T
ra

in
in

g
 T

im
e
 (

m
in

)

Total Ensemble Size

Distributed and serial accuracy (ClueWeb)

serial
distributed

5X Speedup

(b) Training Time Comparison

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 1 10 100 1000

A
cc

ur
ac

y

Number of Training Blocks

Training size vs. accuracy for different ensemble sizes (ClueWeb)

1
5

10
50

100
500

1000

(c) Vary Training Data & Ensemble Size

Figure 2: COMET results on ClueWeb data. Figures (a) and (b) compare distributed learning (200M examples split into 200
blocks) to serial learning (1M examples). Circles highlight the distributed ensemble with similar accuracy to the best serial
ensemble. Figure (c) illustrates the effect of varying the number of training data blocks (1M examples per block). Different
lines correspond to varying size of local ensemble (IVoting iterations). Lines for ensemble sizes 500 and 1000 are superimposed.

 0.76

 0.765

 0.77

 0.775

 0.78

 0.785

 0.79

 0 2000 4000 6000 8000 10000 12000

A
c
c
u
ra

c
y

Total Ensemble Size

Distributed and serial accuracy (eBird)

serial
distributed

Similar Accuracy

750
500

100

150
250

50

25

Trees per Mapper

(a) Accuracy Comparison

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2000 4000 6000 8000 10000 12000

T
ra

in
in

g
 T

im
e
 (

m
in

)

Total Ensemble Size

Distributed and serial training time (eBird)

serial
distributed

10X Speedup

(b) Training Time Comparison

 0.77

 0.772

 0.774

 0.776

 0.778

 0.78

 0.782

 0.784

 0.786

 0.788

 0 2 4 6 8 10 12 14

A
c
c
u

ra
c
y

Number of Training Blocks

Training size vs. accuracy (eBird)

200

(c) Vary Training Data

Figure 3: COMET results on eBird data. Figures (a) and (b) compare distributed learning (1M examples split into 14 blocks)
to serial learning (70K examples). Circles highlight the distributed ensemble with similar accuracy to the best serial ensemble.
Figure (c) illustrates the effect of varying the number of training data blocks (70K examples per block) with 200 ensemble
members trained per block.

with different bite sizes and measuring the accuracy on the
test data. For eBird, accuracy peaked at 10K (Table 2),
possibly because larger bite sizes reduced the diversity of
the base models. For ClueWeb, accuracy started to plateau
around 100K (Table 2). While larger bite sizes yielded small
improvements, they also resulted in trees with big enough
memory footprints to significantly limit how many ensemble
members could be trained per core.

5.3 Results
Figure 2 compares COMET (distributed) with serial IV-

oting Random Forests for the ClueWeb09 data with full en-
semble evaluation (i.e., GLEE is not used). The serial code
trains on a single block (1M examples) using 9 different en-
semble sizes: 100, 250, 500, 750, 1000, 1250, 1500, 1750,
2000. The accuracy ranges from 91.8% (for the smallest en-
semble) up to 93.8% (for the largest ensemble time). The
training time ranges from 12min to 5hr. COMET trains on
200 blocks (200M examples), varying across 13 different val-
ues for the local ensemble size: 1, 5, 10, 25, 50, 75, 100, 200,
300, 400, 500, 750, 1000. The total ensemble size is 200 times
the local ensemble size; thus, the largest total ensemble has
200K members. The accuracy ranges from 89.5% (corre-
sponding to a local ensemble size of 1 and a total ensemble
size of 200) to 94.2% (corresponding to a local ensemble size
of 1000 and a total ensemble size of 200K) with time vary-

ing from less than 1min to 3hr, respectively. As a point of
comparison, the distributed model achieves an accuracy of
93.8% (the same as the best serial model) in only 60min,
corresponding to a total ensemble size of 60K (300 trees per
block). Thus, we achieve a 5X speed-up in training time
without sacrificing any accuracy.

Figure 3 compares COMET (distributed) with IVoting
Random Forests for the eBird data (again, without GLEE).
The serial code trains on a single block (70K examples)
using the same 9 different ensemble sizes as used for the
ClueWeb09 data. The accuracy ranges from 76.4% (for the
smallest ensemble) up to 77.6% (for the largest ensemble
time). The training time ranges from 1–20min. COMET
trains on 14 blocks (1M examples), varying across 8 differ-
ent values for the local ensemble size: 25, 50, 75, 100, 150,
250, 500, 750. The total ensemble size is 14 times the local
ensemble size; thus, the largest total ensemble has 10,500
members. The accuracy ranges from 77.7% (better than
the best serial accuracy) to 78.9% with time varying from
less than 2-9min. The best accuracy achieved by the serial
version is 77.5% with a total ensemble size of 2000 and a
training time of 21min; the distributed version improves on
this with an accuracy of 77.8% for a total ensemble size of
only 350 (local size of 25) and a training time of 2min. Thus,
we see a 10X speed-up in training time.

Figures 2c and 3c vary the number of data blocks used

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1000 10000 100000

R
el

at
iv

e
vo

te
s

Ensemble size

Ensemble size vs. relative votes for different alphas (ClueWeb)

1e-6
1e-5
1e-4
1e-3
1e-2
1e-1

(a) ClueWeb Relative Votes

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1000 10000 100000

R
el

at
iv

e
ac

cu
ra

cy

Ensemble size

Ensemble size vs. relative accuracy for different alphas (ClueWeb)

1e-6
1e-5
1e-4
1e-3
1e-2
1e-1

(b) ClueWeb Relative Accuracy

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000

F
ra

c
ti
o

n
 o

f
in

s
ta

n
c
e

s

Stopping point

Histogram of stopping points

(c) Histogram of ClueWeb Early Stop-
ping Points

Figure 4: GLEE results on ClueWeb data using one-tailed Gaussian with finite-population correction (G1-FPC) with a
minimum of 15 votes. (a) and (b) show the relative votes and accuracy for various ensemble sizes and values of α. Values are
calculated relative to using the entire ensemble. (c) Histogram of number of evaluations made (x-axis) for an ensemble of size
10000 and α = 0.01.

in the training. For ClueWeb, all parameters are the same
as above except for the following. The number of blocks
is varied from 1 to 200 (with 1M examples per block), and
the local ensemble size is varied from 1 to 1000. We clearly
see a flattening out as the number of blocks increases, es-
sentially flat-lining at 40. Likewise, the gain for increasing
the ensemble size becomes small (invisible in this graph) for
a local ensemble size of more than 250. For eBird, all pa-
rameters are the same as above except that we fix the local
ensemble size at 200 and vary the number of blocks between
1 and 14. The accuracy increases almost monotonically with
the number of blocks used.

Figure 4 shows the results of using GLEE (G1-FPC) with
ensembles of different sizes on the ClueWeb data (results on
eBird data are similar and are omitted for space reasons).
As expected, the results show that decreasing α increases the
average number of votes (Figure 4a) and the relative accu-
racy for any size ensemble (Figure 4b). For all ensemble sizes
and α values evaluated, using the early stopping criteria pro-
vides a significant speed-up over using the entire ensemble.
This speed-up increases as the ensemble size is increased,
even for small values of α. For the ClueWeb data, we can
achieve greater than 99% relative accuracy for α = 0.01.
For an ensemble of size 1K, fewer that 10% of the ensemble
needs to be evaluated, on average, and for an ensemble of
size 100K, that drops to less than 0.1%. Thus, the cost
of evaluating a large ensemble can be largely mitigated via
GLEE. Figure 4c shows a histogram of the number of eval-
uations needed by GLEE with α = 0.01, providing insight
into why the stopping method works — the vast majority of
instances require evaluating only a small proportion of the
ensemble.

6. CONCLUSION
We have presented COMET, our recipe for supervised

learning on massive, distributed data, which consists of us-
ing MapReduce for parallelization, using IVoting Random
Forests for the learning scheme, and using GLEE for lazy
ensemble evaluation. One of the key questions with large
datasets is whether it is necessary to actually use all of the
data or if a sample of the data would suffice. For both
ClueWeb and eBird, we saw increases in accuracy by using
more data. More significant, however, is the improvement
in training time, with up to a 10X improvement. Some pre-

vious works have not shown accuracy results as compared to
serial training [21, 29]; here we show that there is no detri-
ment and perhaps even some improvement in accuracy via
distributed learning.

The main issue with COMET is that we can easily cre-
ate extremely large ensembles by training in parallel. How-
ever, our results have demonstrated the effectiveness of using
lazy ensemble evaluation to efficiently make predictions with
large and small ensembles. Depending on the ensemble size,
the savings in evaluation cost can easily be 100X or better.
Moreover, the relative error from using lazy evaluation may
be lower than the jitter one would expect from different runs
of a randomized learning algorithm.

In future work, we seek to remove the need for the pre-
processing step of randomizing the distribution of the data
before the algorithm is used and instead leave as much data
in place as possible. Data shuffling can become a bottleneck
because it requires copying the entire data; this is especially
problematic if the data is spread across multiple data cen-
ters. One idea is to add additional MapReduce iterations
to share ensemble members and/or important examples be-
tween the different blocks in the hope that this will result in
less communication and data movement than moving all of
the data as a pre-processing step.

A lot of large datasets also have highly skewed class distri-
butions. We would like to extend this recipe to handle such
cases, perhaps by replicating data for minority classes to
make the data distribution in each block more even for train-
ing and by adopting different methodologies for the base
classifiers for the ensemble to make them more robust to
skew. While learning from skewed data may be more diffi-
cult, we expect that lazy ensemble evaluation will provide a
greater speed-up on skewed data (large ensembles will likely
be important for achieving high accuracy on skewed data).

Acknowledgments.
The authors thank David Gleich, Todd Plantenga, and Greg

Bayer for many helpful discussions. We are particularly grateful
to David for suggesting the learning task with the ClueWeb data.

Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S. Depart-

ment of Energy’s National Nuclear Security Administration under

contract DE-AC04-94AL85000.

7. REFERENCES
[1] N. K. Alham, M. Li, S. Hammoud, Y. Liu, and

M. Ponraj. A distributed SVM for image annotation.
In FSKD’10, vol. 6, pp. 2983–2987. IEEE, 2010.

[2] J. Basilico, Z. Benz, and K. R. Dixon. The cognitive
foundry: A flexible platform for intelligent agent
modeling. In BRIMS’08, 2008. Software available from
http://foundry.sandia.gov/.

[3] E. Bauer and R. Kohavi. An empirical comparison of
voting classification algorithms: Bagging, boosting,
and variants. Machine Learning, 36(1-2):105–139,
1999.

[4] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[5] L. Breiman. Out-of-bag estimation.
ftp://ftp.stat.berkeley.edu/pub/users/breiman/

OOBestimation.ps, 1996.

[6] L. Breiman. Pasting small votes for classification in
large databases and on-line. Machine Learning,
36(1):85–103, 1999.

[7] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[8] L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen. Classification and Regression Trees. Chapman
& Hall/CRC, 1984.

[9] J. Callan, M. Hoy, C. Yoo, and L. Zhao. The
ClueWeb09 dataset.
http://boston.lti.cs.cmu.edu/Data/clueweb09/,
2009.

[10] R. Caruana, N. Karampatziakis, and A. Yessenalina.
An empirical evaluation of supervised learning in high
dimensions. In ICML’08, pp. 96–103, 2008.

[11] R. Caruana and A. Niculescu-Mizil. An empirical
comparison of supervised learning algorithms. In
ICML’06, pp. 161–168, 2006.

[12] P. K. Chan and S. J. Stolfo. Learning arbiter and
combiner trees from partitioned data for scaling
machine learning. In KDD’95, pp. 39–44, 1995.

[13] E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu,
and H. Cui. Parallelizing support vector machines on
distributed computers. In NIPS 20, pp. 257–264, 2008.

[14] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P.
Kegelmeyer. Learning ensembles from bites: A
scalable and accurate approach. Journal of Machine
Learning Research, 5:421–451, 2004.

[15] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R.
Bradski, A. Y. Ng, and K. Olukotun. Map-Reduce for
machine learning on multicore. In NIPS 19, pp.
281–288, 2007.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[17] M. Deodhar, C. Jones, and J. Ghosh. Parallel
simultaneous co-clustering and learning with
map-reduce. In IEEE Intl. Conf. on Granular
Computing, pp. 149–154, 2010.

[18] P. Domingos. Using partitioning to speed up
specific-to-general rule induction. In AAAI-96
Workshop on Integrating Multiple Learned Models, pp.
29–34. AAAI Press, Menlo Park, CA, USA, 1996.

[19] W. Fan, F. Chu, H. Wang, and P. S. Yu. Pruning and

dynamic scheduling of cost-sensitive ensembles. In
AAAI’02, pp. 146–151, 2002.

[20] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In ICML’96, pp. 148–156,
1996.

[21] W. Gao, R. Grossman, P. Yu, and Y. Gu. Why naive
ensembles do not work in cloud computing. In
ICDM’09 Workshops, pp. 282–289, 2009.

[22] J. E. Gonzalez, Y. Low, and C. Guestrin. Residual
splash for optimally parallelizing belief propagation. In
AISTATS’09, pp. 177–184, 2009.

[23] D. Hernández-Lobato, G. Mart́ınez-Muñoz, and
A. Suárez. Statistical instance-based pruning in
ensembles of independent classifiers. IEEE Trans. on
Pattern Anal. and Mach. Intell., 31(2):364–369, 2009.

[24] Z. Liu, H. Li, and G. Miao. MapReduce-based
backpropagation neural network over large scale
mobile data. In ICNC’10, pp. 1726–1730, 2010.

[25] F. Markatopoulou, G. Tsoumakas, and I. Vlahavas.
Instance-based ensemble pruning via multi-label
classification. In ICTAI’10, 2010.

[26] G. Mart́ınez-Muñoz, D. Hernández-Lobato, and
A. Suárez. Statistical instance-based ensemble pruning
for multi-class problems. In ICANN’09, pp. 90–99,
2009.

[27] C. Moretti, K. Steinhaeuser, D. Thain, and N. V.
Chawla. Scaling up classifiers to cloud computers. In
ICDM’08, pp. 472–481, 2008.

[28] M. A. Munson, K. Webb, D. Sheldon, D. Fink, W. M.
Hochachka, M. Iliff, M. Riedewald, D. Sorokina,
B. Sullivan, C. Wood, and S. Kelling. The eBird
Reference Dataset, Version 2.0. Cornell Lab of
Ornithology and National Audubon Society, Ithaca,
NY, 2010.

[29] B. Panda, J. Herbach, S. Basu, and R. Bayardo.
PLANET: Massively Parallel Learning of Tree
Ensembles with MapReduce. Proc. VLDB
Endowment, 2(2):1426–1437, 2009.

[30] J. Quinlan. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

[31] J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[32] G. Tsoumakas, I. Partalas, and I. Vlahavas. An
ensemble pruning primer. In Applications of
Supervised and Unsupervised Ensemble Methods, pp.
1–13. Springer-Verlag, 2009.

[33] G. Wu, H. Li, X. Hu, Y. Bi, J. Zhang, and X. Wu.
MReC4.5: C4.5 ensemble classification with
MapReduce. In ChinaGrid ’09, pp. 249–255, 2009.

[34] R. Yan, M.-O. Fleury, M. Merler, A. Natsev, and J. R.
Smith. Large-scale multimedia semantic concept
modeling using robust subspace bagging and
MapReduce. In LS-MMRM’09, pp. 35–42, 2009.

[35] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic
gradient boosted distributed decision trees. In
CIKM’09, pp. 2061–2064, 2009.

http://foundry.sandia.gov/
ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps
ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps
http://boston.lti.cs.cmu.edu/Data/clueweb09/

	1 Introduction
	2 Related Work
	2.1 Supervised Learning on MapReduce
	2.2 Distributed Ensembles
	2.3 Lazy Ensemble Evaluation

	3 COMET Recipe
	3.1 Distributed Learning via MapReduce
	3.2 IVoting Random Forest
	3.3 Lazy Ensemble Evaluation

	4 Exploration of Lazy Ensemble Evaluation
	5 Experiments
	5.1 Datasets
	5.1.1 ClueWeb09 Dataset
	5.1.2 eBird

	5.2 Implementation Details
	5.3 Results

	6 Conclusion
	7 References

