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EFFICIENTLY COMPUTING TENSOR EIGENVALUES ON A GPU

GREY BALLARD∗, TAMARA KOLDA†, AND TODD PLANTENGA‡

Abstract. The tensor eigenproblem has many important applications, and both mathematical and application-

specific communities have taken recent interest in the properties of tensor eigenpairs as well as methods for com-

puting them. In particular, Kolda and Mayo [3] present a generalization of the matrix power method for symmetric

tensors. We focus in this work on efficient implementation of their algorithm, known as the shifted symmetric

higher-order power method, and on how a GPU can be used to accelerate the computation up to 70× over a sequen-

tial implementation for an application involving many small tensor eigenproblems.

1. Introduction. The tensor eigenproblem has many important applications, and both

mathematical and application-specific communities have taken recent interest in the proper-

ties of tensor eigenpairs as well as methods for computing them. In particular, Kolda and

Mayo [3] present a generalization of the matrix power method for symmetric tensors. We

focus in this work on efficient implementation of their algorithm, known as the shifted sym-

metric higher-order power method (SS-HOPM).

The main motivating application for this work involves detection of nerve fibers in the

brain from diffusion-weighted magnetic resonance imaging data. In this application, data

is gathered for millions of cubic millimeter sized voxels. Determining the number and di-

rections of nerve fiber bundles within each voxel requires solving a small tensor eigenvalue

problem. Because each voxel can be resolved independently, the computations are amenable

to parallelism, and we focused our implementation on a graphics processing unit (GPU) using

the Compute Unified Device Architecture (CUDA) programming framework.

We review the definition of the tensor eigenproblem as well as the SS-HOPM algorithm

from [3] in Section 2. All of the tensors discussed here are symmetric, and exploiting symme-

try is the foremost sequential optimization we use to gain performance. Symmetric matrices

can be stored in half the space and symmetric matrix computations often require only half

the flops of their nonsymmetric counterparts; exploiting symmetry in tensors can save stor-

age and computation by much larger factors. In Section 3 we discuss a symmetric tensor

storage format and how this compressed format is used in the main computational kernels of

SS-HOPM.

Instead of attempting to write an algorithm that offers high parallel performance for com-

puting eigenpairs of tensors of general order and dimension, we focus the GPU implementa-

tion on small tensors, as in our motivating application. Because of the inherent parallelism

in the problem, we can run many independent threads concurrently on the hardware, and we

facilitate efficiency of each thread with careful memory management. We offer an overview

of GPU computing in Section 4, describe the motivating application in Section 5, and give

the details and results of our implementation in Section 6.

The main contributions of this work are (1) the introduction of a symmetric storage for-

mat and means of exploiting symmetry to avoid redundant computation, and (2) a parallel

implementation of SS-HOPM. While the implementation is tailored to a specific application,

we believe it will be widely applicable to high performance computations with symmetric

tensors.

2. Symmetric Tensors and Tensor Eigenpairs. We formally introduce the notion of a

symmetric tensor which is invariant under any permutation of its indices. Let R[m,n] be the set
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60 Efficiently Computing Tensor Eigenvalues on a GPU

of real-valued order-m tensors where each mode has dimension n.

Definition 2.1 (Symmetric tensor [1]). A tensor A ∈ R[m,n] is symmetric if

aiπ(1)···iπ(m)
= ai1···im for all i1, . . . , im ∈ {1, . . . , n} and π ∈ Πm

where Πm is the set of permutations of the set {1, . . . ,m}.
The main computational kernels in the shifted symmetric higher-order power method

will be instances of the following definition of symmetric tensor-vector multiply.

Definition 2.2 (Symmetric tensor-vector multiply [3]). Let A ∈ R[m,n] be symmetric and
x ∈ Rn. Then for 0 ≤ p ≤ m − 1, the (m − p)-times product of the tensor A with the vector x
is denoted by Axm−p ∈ R[p,n] and defined by

(Axm−p)i1···ip =
∑

ip+1,...,im

ai1···im xip+1
· · · xim for all 1 ≤ i1, . . . , ip ≤ n. (2.1)

Note that there is ambiguity in defining a tensor times the same vector in some subset of

modes, but due to symmetry the choice of indexing below yields the same result as any

other valid definition. Also note that the result of a symmetric tensor-vector multiply is also

a symmetric tensor, because any permutation of the indices of the result tensor (i1 · · · ip)

on the left hand side of Equation 2.1 corresponds to a permutation of the first p indices of

the symmetric input tensor entries in the summation on the right hand side which remains

invariant.

We recall the definition of a tensor eigenpair used in [3]. There are other definitions of

eigenvalues and eigenvectors in the literature, but the relationships between the definitions

and the many interesting properties of tensor eigenvalues are beyond the scope of this work.

Definition 2.3 (Symmetric tensor eigenpair [3]). Assume that A is a symmetric mth-order
n-dimensional real-valued tensor. Then λ ∈ C is an eigenvalue of A if there exists x ∈ Cn

such that

Axm−1 = λx and ‖x‖2 = 1. (2.2)

The vector x is the corresponding eigenvector, and (λ, x) is called an eigenpair.
Finally, we present the shifted symmetric higher-order power method (SS-HOPM) from

[3] as Algorithm 1. This algorithm is a generalization of the matrix power method where the

operation Axm−1 generalizes the matrix-vector product and Axm generalizes the Rayleigh

quotient for a unit vector. Algorithm 1 includes the shift parameter α which is chosen to force

the underlying function to be convex (α ≥ 0) or concave (α < 0).

The symmetric higher-order power method (with no shift) was introduced in [2, 4], and

convergence of the method was proved for certain types of tensors. While the symmetric

higher-order power method does not converge in general, choosing a sufficiently large (in

absolute value) shift α guarantees convergence of SS-HOPM. The convergence properties of

a given eigenpair are characterized in [3], but there are still many open problems regarding

choice of starting vector, choice of shift, and finding eigenpairs with certain properties.

3. Exploiting Symmetry.

3.1. Symmetric Tensor Storage. Let A ∈ R[m,n] be a symmetric tensor. In general, A

has nm entries, but since it is symmetric, many of the entry values are repeated and need not

be stored redundantly. We define an index as a number i ∈ {1, . . . , n}, we define a tensor index
as an array of m indices corresponding to one entry of the tensor, and we define an index class
as a set of tensor indices such that the corresponding tensor entries all share a value due to

symmetry. For example, for m = 3 and n = 2, the possible indices are 1 and 2, and the tensor

indices [1, 1, 2] and [1, 2, 1] are in the same index class since a112 = a121.
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Algorithm 1 Shifted Symmetric Higher-Order Power Method (SS-HOPM) [3]

Given a tensor A ∈ R[m,n].

Require: α ∈ R, x0 ∈ Rn with ‖x0‖ = 1. Let λ0 = Axm
0

.

1: for k = 0, 1, . . . do
2: if α ≥ 0 then
3: x̂k+1 ← Axm−1

k + αxk

4: else
5: x̂k+1 ← −(Axm−1

k + αxk)

6: end if
7: xk+1 ← x̂k+1/‖x̂k+1‖
8: λk+1 ← Axm

k+1

9: end for

We can find a unique representative of an index class by choosing the tensor index whose

indices are in nondecreasing order. We define this nondecreasing tensor index as the index
representation of the index class.

The index classes of A can also be characterized by the number of occurrences of each

index i ∈ {1, . . . , n} in the tensor indices of the index class. Thus, we can define the monomial
representation of an index class as an array of n integers where the ith entry in the array corre-

sponds to the number of occurences of the index i in the index class. Following the example

given above, the index class that includes [1, 1, 2] and [1, 2, 1] has monomial representation

[2, 1] since there are two 1’s and one 2 in every tensor index in the class.

In order to avoid redundant storage, we store only the unique values of the tensor (i.e.

one value per index class). The following property gives the number of unique values of a

dense symmetric tensor.

Property 3.1. The number of unique values of a symmetric tensor A ∈ R[m,n] is given by
the binomial coefficient (

m + n − 1

m

)
=

nm

m!
+ O(nm−1).

Proof. Each index class corresponds to a unique value. Counting the number of possible

monomial representations of length m with n possible values is equivalent to counting the

number of ways to distribute m indistinguishable balls into n distinguishable buckets, where

the balls correspond to the indices of the tensor index and the buckets correspond to the

possible index values. By a “stars and bars” argument,1 this number is(
m + n − 1

m

)
=

(n + m − 1) · · · (n + 1)n
m!

=
nm

m!
+ O(nm−1)

as claimed.

Assuming A is dense, we can impose an ordering on the unique entries and avoid storing

any index information. We choose to use a lexicographic order of the index classes, increas-

ing with respect to the index representation and decreasing with respect to the monomial

representation. That is, the index class with index representation [i1, i2, . . . , im] is listed be-

fore [ j1, j2, . . . , jm] if i1 < j1 or if i1 = j1 and i2 < j2, and so on. Equivalently, the index

class with monomial representation [k1, k2, . . . , kn] is listed before [l1, l2, . . . , ln] if k1 > l1 or

1See Theorem 2 in Section 4.6 of [9], for example.
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index monomial

1 1 1 1 3 0 0 0

2 1 1 2 2 1 0 0

3 1 1 3 2 0 1 0

4 1 1 4 2 0 0 1

5 1 2 2 1 2 0 0

6 1 2 3 1 1 1 0

7 1 2 4 1 1 0 1

8 1 3 3 1 0 2 0

9 1 3 4 1 0 1 1

10 1 4 4 1 0 0 2

11 2 2 2 0 3 0 0

12 2 2 3 0 2 1 0

13 2 2 4 0 2 0 1

14 2 3 3 0 1 2 0

15 2 3 4 0 1 1 1

16 2 4 4 0 1 0 2

17 3 3 3 0 0 3 0

18 3 3 4 0 0 2 1

19 3 4 4 0 0 1 2

20 4 4 4 0 0 0 3

Table 3.1

Set of index classes I[3,4] in lexicographic order.

if k1 = l1 and k2 > l2, and so on. This corresponds to an ordering on monomials in a given

polynomial ring (the origin of the terminology). In this case, the index classes correspond

to monomials which all have total degree m. See Table 3.1 for an example of lexicographic

ordering for both representations in the case m = 3 and n = 4.

While the lexicographic ordering makes storing index information for every unique value

unnecessary, it will be important to compute index information during computations. Since

the index representation requires m integers and the monomial representation requires n inte-

gers and we expect n � m for most problems, we store the index representation and compute

monomial representation values implicitly. Note that while the monomial representation will

be sparse when n � m, even a compressed format would require at least m integers.

3.2. Computational Kernels. The two most computationally intensive kernels in Algo-

rithm 1 are computing the scalar Axm and the vector Axm−1, where A ∈ R[m,n] is symmetric

and x ∈ Rn. Both of these are instances of the symmetric tensor-vector multiply given in

Definition 2.2, with p = 0 and p = 1, respectively.

3.2.1. Tensor times same vector in all modes. Consider the case p = 0:

Axm =

n∑
i1=1

· · ·
n∑

im=1

ai1···im xi1 · · · xim (3.1)

For a nonsymmetric tensor, this summation requires at least one multiplication for each term

(corresponding to each entry of A), yielding at least nm flops. However, we can exploit

symmetry to reduce the computational complexity. Note that the tensor index matches the

indices of the x vector entries for each term in the summation. Since the product of a set of

numbers is also invariant under permutation, all of the terms in the summation corresponding

to the same index class will have the same value.

For example, for m = 3 and n = 2, the term in the summation corresponding to the

tensor index [1, 1, 2] is given by a112 · x1 · x1 · x2 = a112x2
1x2, and the term in the summation
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corresponding to the tensor index [1, 2, 1] is given by a121 · x1 · x2 · x1 = a121x2
1x2. Any tensor

index with monomial representation [2, 1] will yield this value.

We can avoid recomputing the redundant value by instead computing the number of times

each unique term appears in the summation, which is given by the following property.

Property 3.2. The number of tensor indices of a symmetric tensor A ∈ R[m,n] in the index
class with monomial representation [k1, k2, . . . , kn] is given by the multinomial coefficient(

m
k1, k2, . . . , kn

)
=

m!

k1! k2! · · · kn!
.

Proof. Consider the monomial representation [k1, k2, . . . , kn]. Counting the number of

tensor indices in this class is equivalent to counting the number of ways one can distribute m
distinct balls into n distinct bins such that the ith bin has ki balls. Here the balls correspond to

the (ordered) indices of the tensor index and the bins correspond to the possible index values.

One way to solve this problem is to count the number of ways of filling the first bin (given by

the binomial coefficient
(

m
k1

)
), followed by the number of ways of filling the second bin (given

by
(

m−k1

k2

)
), and so on. Using the product rule and after much cancellation, we have(

m
k1

)
·
(
m − k1

k2

)
· · ·

(
m − (k1 + k2 + · · · + kn−1)

kn

)
=

m!

k1! k2! · · · kn!

as claimed.

We can thus rewrite Equation 3.1 as

Axm =
∑

I∈I[m,n]

(
m

k1, k2, . . . , kn

)
ai1···im xk1

1
· · · xkn

n , (3.2)

where I[m,n] is the set of index classes for a symmetric tensor in R[m,n], and [k1, . . . , kn] and

[i1, . . . , im] are the monomial and index representations of the index class I, respectively.

Equation 3.2 yields Algorithm 2, which assumes the unique values of A are stored in lex-

icographic order. For each unique value, the algorithm computes the monomial coefficient

and index array associated with the tensor entry and adds the contribution of that term to the

accumulating result.

3.2.2. Tensor times same vector in all modes but one. Now consider computing the

vector Axm−1, the case p = 1 in Definition 2.2:

(
Axm−1

)
i1
=

n∑
i2=1

· · ·
n∑

im=1

ai1···im xi2 · · · xim (3.3)

Note that the jth component of Axm−1 does not depend on every tensor entry, only those tensor

entries whose index representation starts with index j. Because of symmetry, Equation 3.3

can be rewritten with i1 appearing as any index in the tensor index of the tensor value.

As in the case of computing Axm, we can exploit symmetry to avoid performing the more

than nm multiplications required to compute all entries of the output vector if we followed

Equation 3.3. As before, if a tensor value contributes to the summation for index k of the

output vector, its symmetric counterparts will contribute the same value to the sum. Following

the example given before, where m = 3 and n = 2, both a112 and a121 will contribute to the

computation of
(
Axm−1

)
1
, and each will contribute the value a112 · x1 · x2. Note that a211 will

not contribute to the summation for
(
Axm−1

)
1
, because its first index is not 1.
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Algorithm 2 Compute y = Axm via Equation 3.2, where A ∈ R[m,n] is symmetric, x ∈ Rn,

and y ∈ R
Require: A stores the unique entries of A in lexicographic order

1: function y = SymmetricTensorVectorMultiply0(A, x)

2: y = 0

3: I = [1, . . . , 1] � use index representation (length m)

4: for j = 1 to
(

m+n−1
m

)
do � iterate over unique entries

5: x̂ = xI1
· xI2

· · · xIm � compute monomial value

6: C = NumOcc0(I) � compute number of occurrences

7: y = y +C · Aj · x̂ � accumulate sum

8: I = UpdateIndex(I) � See Algorithm 4

9: end for
10: end function

Require: I has length m with entries in nondecreasing order

11: function C = NumOcc0(I)

12: div = 1 � divisor of
(

m
k1,...,kn

)
13: curr = −1 � current index value

14: mult = −1 � multiplicity of current index value

15: for j = 1 to m do
16: if I j � curr then
17: mult = 1

18: curr = I j

19: else � repeated index

20: mult = mult + 1

21: div = div · mult � only update divisor if mult > 1

22: end if
23: end for
24: C = m! / div � set C =

(
m

k1,...,kn

)
25: end function

Computing the number of tensor indices in an index class that will contribute to a given

entry of the output vector is a variation on Property 3.2. Consider an index class that con-

tributes to the jth entry of the output vector (i.e., an index class whose index representation

includes an index j). Let [k1, k2, . . . , kn] be the monomial representation, so that k j > 0. In

the context of assigning m balls to n bins with appriopriate multiplicities, we can assign the

first ball to the jth bin (enforcing that the tensor index starts with j). Then we have m − 1

more balls to assign to the n bins, but only k j − 1 more will be assigned to the jth bin. Using

the approach given in the proof of Property 3.2, we see that the number of tensor indices that

will contribute the same value to the jth element is given by the multinomial coefficient(
m − 1

k1, . . . , k j − 1, . . . , kn

)
.

Now we can rewrite Equation 3.3 as

(
Axm−1

)
j
=

∑
I∈I[m,n]

k j>0

(
m − 1

k1, . . . , k j − 1, . . . , kn

)
ai1···im xk1

1
· · · xkj−1

j · · · xkn
n (3.4)
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where I[m,n] is the set of index classes for a symmetric tensor in R[m,n], and [k1, . . . , kn] and

[i1, . . . , im] are the monomial and index representations of the index class I, respectively.

Equation 3.4 yields Algorithm 3.

Algorithm 3 Compute y = Axm−1 via Equation 3.4, where A ∈ R[m,n] is symmetric, and

x, y ∈ Rn

Require: A stores the unique entries of symmetric tensor A in lexicographic order

1: function y = SymmetricTensorVectorMultiply1(A, x)

2: y = 0

3: I = [1, . . . , 1] � use index representation (length m)

4: for j = 1 to
(

m+n−1
m

)
do � iterate over unique tensor entries

5: for unique i ∈ I do � skip repeated indices in I
6: x̂ = xI1

· xI2
· · · xIm / xi � compute monomial value (excluding xi)

7: C = NumOcc1(I, i) � compute number of occurrences

8: yi = yi +C · Aj · x̂ � accumulate sum

9: end for
10: I = UpdateIndex(I) � See Algorithm 4

11: end for
12: end function

Require: I has length m with entries in nondecreasing order

13: function C = NumOcc1(I, i)
14: div = 1 � divisor of

(
m−1

k1,...,ki−1,...,kn

)
15: curr = −1 � current index value

16: mult = −1 � multiplicity of current index value

17: for j = 1 to m do
18: if j � first index of i in I then � ignore one occurence of i
19: if I j � curr then
20: mult = 1

21: curr = I j

22: else � repeated index

23: mult = mult + 1

24: div = div · mult � only update divisor if mult > 1

25: end if
26: end if
27: end for
28: C = (m − 1)! / div � set C =

(
m−1

k1,...,ki−1,...,kn

)
29: end function

3.2.3. Index array calculations. We can compute the index representation of an index

class quickly by exploiting the lexicographic ordering and computing each index represen-

tation from the previous one. That is, given any index representation we want to compute

the next larger index representation in the lexicographic order, under the conditions that the

indices within the index representation are nondecreasing and range between 1 and n.

To find the next representation, we seek to increment the least significant possible index

(i.e., the rightmost index not equal to n). In the example given in Table 3.1, the successor of

[1, 1, 1] is [1, 1, 2] (the last index is incremented). More generally, suppose the kth index is



66 Efficiently Computing Tensor Eigenvalues on a GPU

the least significant index not equal to n, so that the index class is [i1, . . . , ik, n, . . . , n]2. Thus,

this is the largest representation with prefix [i1, . . . , ik, . . . ], so the successor must have prefix

[i1, . . . , ik+1, . . . ]. The smallest such representation that satisfies the nondecreasing condition

is

[i1, . . . , ik + 1, ik + 1, . . . , ik + 1].

For example, again from Table 3.1, the successor of [2, 4, 4] is [3, 3, 3]. See Algorithm 4 for

the implementation. In this way, we can store index information in an array of m integers,

and under the lexicographic ordering, and updating the index information for each term in the

summation requires O(m) operations.

Algorithm 4 Update index representation of unique entry in symmetric tensor A ∈ R[m,n]

Require: I has length m with entries in nondecreasing order

1: function UpdateIndex(I)

2: j = m
3: while I j == n do � find least significant index � n
4: j = j − 1

5: end while
6: I j = I j + 1 � increment least significant index � n
7: for k = j + 1 to m do � update less significant indices

8: Ik = I j

9: end for
10: end function
Ensure: I is the successor in lexicographic ordering (restricted to nondecreasing)

3.2.4. Computing number of occurrences. The number of occurrences of each index

class is given by a multinomial coefficient in terms of the monomial representation of the

index class. Since we store the index representation and not the monomial representation, we

compute the multinomial coefficient implicitly. We can do this by computing the denominator

with one pass over the array storing the index representation. The numerator is constant over

all index classes and can be precomputed (either m! or (m − 1)! for the two computational

kernels).

In the case of computing Axm, the task is to compute for each index class the product

k1! · · · kn!, where [k1, . . . , kn] is the monomial representation which is not stored explicitly.

Note that ki is the number of occurrences of index i in the index representation which is

stored in memory. Since the index representation is nondecreasing, repeated occurrences of

an index will be contiguous. Thus, as we pass over the index array, we can multiply the

accumulated product by 1 for the first occurrence of an index, by 2 for the second occurrence,

and so on. For example, given the index representation [1, 2, 2, 5, 5, 5, 5], the accumulated

product will be 1 · 1 · 2 · 1 · 2 · 3 · 4 = 1! · 2! · 4!. This approach yields the function NumOcc0

in Algorithm 2.

In the case of computing Axm−1, we take the same approach to compute the denominator,

but we ignore one occurrence of the index corresponding to the entry of the output vector

being computed. Following the preceding example, in the case of computing the 5th element

of Axm−1, the index representation [1, 2, 2, 5, 5, 5, 5] would yield to the accumulated product

1 · 1 · 2 · 1 · 2 · 3 = 1! · 2! · 3!. This approach yields the function NumOcc1 in Algorithm 3.

2Note that there may be no instances of index n in the index class, in which case k = m, the index class is

[i1, . . . , ik], and the successor is [i1, . . . , ik + 1].
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In order to avoid redundant computation (at the expense of extra storage), we can pre-

compute the multinomial coefficient
(

m
k1,k2,...,kn

)
for each index class. This is the coefficient

used in the computation of Axm, and the coefficients needed in the computation of Axm−1

can be obtained by dividing the stored value by m and multiplying by k j for appropriate j.

3.2.5. Computational costs. All the computations in the main loop of Algorithm 2 are

done in O(m) operations (floating point and otherwise). Thus, the computational complexity

of computing Axm is O
(
m · nm

m!

)
= O

(
nm

(m−1)!

)
.

There are nested loops in Algorithm 3, and the inner loop requires m iterations in the

worst case. All the computations in the inner loop are done in O(m) operations (floating

point and otherwise), so the computational complexity of computing Axm−1 is O
(
m2 · nm

m!

)
=

O
(

mnm

(m−1)!

)
.

4. GPU Computing Overview. Graphics processing units (GPUs) were originally de-

veloped and optimized to offload and accelerate graphics rendering computations from the

more general purpose microprocessor or “central processing unit” (CPU) on a host computer.

Graphics processing consists largely of data parallel computations, and GPU hardware is

designed to exploit this data parallelism via single instruction/multiple data (SIMD) instruc-

tions. GPUs also exploit instruction level parallelism: instruction streams for several threads

of execution are pipelined in order to hide the latency of memory operations for each thread

(this requires that the threads be mutually independent).

GPU architecture is rapidly developing to meet the demands of new applications and

users. Many of these applications require high graphics rendering performance, but a grow-

ing number of users are interested in exploiting the computing power of GPUs for many other

purposes including scientific computing. To this end, nVidia has invested in the development

of Compute Unified Device Architecture (CUDA) which is used for general purpose pro-

gramming of GPUs. Most programmers use CUDA as an extension of the C language which

gives access to a set of virtual instructions for accessing the memory spaces and functional

units on a GPU.

Along with making CUDA freely available, nVidia also offers a software development

kit including programming guides, example programs, and other documentation for program-

mers. Much of the information in the following sections is available in more detail in the

CUDA documentation, particularly [5, 6].

4.1. Physical Hardware Model. Both the computational units and the memory hier-

archy on GPUs are fundamentally different from CPU architectures. See Figure 4.1 for a

graphical representation of the physical hardware model.

Computational Units. The functional units on a GPU are organized into groups which

concurrently execute SIMD instructions. In nVidia terminology, each functional unit is

known as a “processor” or “core”, and each group of processors resides on a “streaming

multiprocessor.” On the GeForce 9800 GT used in our experiments, there are 14 multipro-

cessors (see Figure 4.1(a)), each with 8 processors (see Figure 4.1(b)). Thus eight operations

can simultaneously execute the same instruction on different data on a multiprocessor. The

GPU we used is capable of only single precision floating point operations, but newer models

can execute double precision operations.

Memory Hierarchy. GPUs have a complicated memory hierarchy with several differ-

ent physical and logical memory spaces. Note that the memory hierarchy discussed here is

only representative of nVidia GPUs of Compute Capability 1.x; newer architectures of Com-

pute Capability 2.x have fundamental differences. The largest memory is known as “device

memory” and is accessible to all multiprocessors on the GPU (see Figure 4.1(a)). It is also
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(a) GPU card with device memory and set of stream-

ing multiprocessors (SM). Memory on each SM shown

in (b).

(b) Streaming multiprocessor with on-chip mem-

ories and SIMD functional units (P). Each SM has

access to device memory as shown in (a).

Fig. 4.1. GPU Hardware Model

accessible from the host device (CPU) and is the means through which the CPU and GPU

communicate data. Except for “integrated” cards, this memory resides on the graphics card

itself. The memory access latency for device memory to one of the GPU’s computational

units is two orders of magnitude greater than the latency of the on-chip memory.

There are four types of on-chip memory: registers, shared memory, constant cache, and

texture cache (see Figure 4.1(b)). The set of registers, or “register file,” is relatively large

but must be divided up among all threads resident on the multiprocessor; it has the smallest

memory access latency (one or two cycles). The shared memory is the next fastest mem-

ory. It is smaller than the register file but can be shared among threads in a thread block.

Shared memory can be dynamically allocated and can be used as a local store (i.e. there is no

hardware-managed caching system).

Some of device memory can be statically allocated as “constant” memory, and accesses

to constant memory will be cached by the hardware. Constant memory is read-only for a

given GPU kernel function but can be written by the host CPU between kernel calls. A

“texture” can be bound to an array in device memory such that the result of a texture “fetch”

will be cached. The texture caches on a GPU are shared by two or three multiprocessors. The

texture caching system is designed to exploit 2D spatial locality, and texture fetches include

other features designed to improve the performance of certain relevant graphics operations.

See Table 4.1 for the sizes of the on-chip memory for the GeForce 9800 GT card.

4.2. CUDA Programming Model. The simplest CUDA programming model treats the

GPU as a coprocessor to the host CPU. That is, a single thread of execution works on the CPU

sequentially until it calls a “kernel” function on the GPU which is run by many CUDA threads

in parallel, and after the kernel returns, the single CPU thread resumes execution until it calls

another kernel or terminates. Multiple CPU threads can be used in order to overlap CPU
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Register file 8192 registers

Shared memory 16 KB

Texture cache 6-8 KB

Constant cache 8 KB

Table 4.1

On-chip memory sizes per multiprocessor for GeForce 9800 GT (Compute Capability 1.1)

and GPU computation, but we only consider one CPU thread in this work. Kernel functions

may call other functions to be run on the GPU (which will also run in parallel); these other

functions cannot be called from host code. When a kernel function is launched from the host

code, the host specifies the number of thread blocks, the number of threads per block, and

optionally the amount of shared memory to allocate to each thread block (all of which can be

determined at run time).

Thread blocks are groups of threads which are all run on the same multiprocessor. They

have a common memory space residing in the physical shared memory through which the

threads can communicate and synchronize. Thread blocks are logical entities and the number

of threads per block is unrestricted up to a certain maximum; however, threads are physically

grouped into warps (the physical unit of SIMD instructions) during execution, so the number

of threads per block should be a multiple of the warp size (typically 32).

The logical memory hierarchy is tightly coupled to the physical memory. Registers are

local to threads, shared memory is restricted to threads within a thread block, and global

memory (which resides in “device” memory) is accessible by all threads and by the host

code. Communication between thread blocks using global memory is possible but rare be-

cause thread blocks may be scheduled on any multiprocessor in any order. Textures and

constant memory are also globally accessible and are read-only; textures are accessed via

special texture fetches. Another memory space known as “local” memory is logically local

to each thread, but the name is misleading because local memory physically resides in device

memory. In general, local memory is used to handle register spilling.

5. Detecting Nerve Fiber Direction in the Brain. We next discuss an application well-

suited for computation on a GPU. It involves many independent problems that can be solved

in parallel, and each problem involves an amount of data that is small enough to reside in the

on-chip memories of the multiprocessors.

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a tool used to detect nerve

fibers in the brain. It is a non-invasive procedure that uses magnetic resonance to measure

how quickly water diffuses in a certain direction. Water diffuses more quickly along the

longitudinal axis of nerve fiber bundles than in any transverse or axial direction. DW-MRI

measurements are taken from many different orientations for a discrete set of voxels in the

brain. For each voxel, a diffusion function D : Σ→ R which maps an orientation to its rate of

diffusion (here Σ denotes the unit sphere in R3) is approximated using the measurement data.

For a unit vector g, D(g) is known as the “apparent diffusion coefficient” (ADC) [10].

When a voxel includes only one fiber orientation, the longitudinal direction should (glob-

ally) maximize D (it will exhibit the largest ADC). When a voxel includes more than one fiber

orientation (in the case of crossing fibers), each fiber orientation should correspond to a local

maximum of D.

According to [7, 8, 10], a common way to approximate the diffusion function is as a finite

sum of spherical harmonic functions (which form a basis for complex functions on the unit

sphere). The 2nd order series (with 6 terms) corresponds to a quadratic form

D(g) ≈ gT Mg
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where M is a symmetric positive definite 3× 3 matrix. In this case, at least six measurements

are required to determine the unique entries in the matrix M (or the six coefficients of the

first spherical harmonic functions). In the case of a voxel with one principal fiber orienta-

tion, this approach is usually sufficient for resolving the correct orientation. However, in the

case of fiber crossings or other complications such as bending or fanning fiber bundles, the

approximation is often unable to resolve the fiber directions.

In order to handle such cases, more accurate measurements and approximations are nec-

essary. The approach is to use higher order spherical harmonic series approximations which

can be represented not as quadratic forms, but more generally as homogeneous forms. The

homogeneous forms correspond to higher order tensors:

D(g) ≈ Agm

for some symmetric tensor A ∈ R[m,3]. Note that m must be even since D(g) is a positive

physical quantity for all g (if m is odd then A(−g)m = −Agm). More DW-MRI measure-

ments are required to determine the greater degrees of freedom in tensors of order m > 2, and

the higher order polynomial can better approximate the true diffusion function. Orders m = 4

and m = 6 are most commonly used (m = 8 requires 120 measurements). The correspon-

dence between coefficients of spherical harmonic functions with the entries in the associated

symmetric tensor are given in [10].

As described in [3], the critical points of the function f (x) = Axm and their function

values are exactly the eigenpairs of the tensor A (satisfying Equation 2.2). Thus, in order

to determine the principal fiber orientations in a given voxel, we can compute the principal

eigenvectors of the associated tensor.

Note that specific instances of Properties 3.1 and 3.2 for n = 3 appear in the DW-MRI

literature. See Equations 17 and 19 in [7], for example.

6. Implementation Details. The computation problem for the nerve fiber data is to take

as input a three dimensional array of symmetric tensors and output one or more eigenpairs

for each tensor. The three dimensional array corresponds to the set of voxels which discretize

the volume of a brain. The entries of each tensor correspond to the coefficients of the ho-

mogeneous polynomial which approximates the diffusion function for a given voxel. The

eigenpairs which define local maxima of the approximate diffusion function correspond to

principal nerve fiber directions within the voxel.

In order to find multiple eigenpairs, Algorithm 1 must be executed with different start-

ing vectors. Because there is not much theory to direct the choice of starting vectors to find

all eigenpairs corresponding to local maxima, we use many randomly chosen starting vec-

tors in order to get reasonable coverage of the unit sphere. We choose random vectors by

independently selecting each vector entry uniformly from [−1, 1] and then normalizing. Al-

ternatively, one could use a deterministic approach and pick starting vectors evenly spaced

about the sphere.

The computational problem consists of executing Algorithm 1 with many different ten-

sors and many different starting vectors each. Since the voxel size for DW-MRI is on the

order of one cubic millimeter, the number of voxels in a data set for a human brain can be

in the millions. In order to cover the sphere, we use somewhere between 32 and 128 starting

vectors for each tensor. With this much inherent parallelism in the problem, we can easily

saturate the computational units on a GPU. The main data structures involved in the com-

putation include the unique entries of each tensor, an array of randomly generated starting

vectors, an array of output eigenvectors, and an array of output eigenvalues.

6.1. Synthetic Test Set. We experimented with a synthetic test set provided by the Sci-

entific Computing and Imaging Institute at the University of Utah. It consists of 1024 tensors
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corresponding to a 2D array of voxels which includes some with one and some with two

principal fiber directions Each tensor is 4th order, so each has 81 total entries with 15 unique

values. We chose to use 128 starting vectors for each tensor in the hope of reasonably cov-

ering the sphere in R3 and also because it is a multiple of 32, the physical warp size on the

GPU. We used a shift of α = 0 as it yielded correct results for the tensors in this synthetic

set. Note that α = 0 implies that SS-HOPM is the same algorithm as the one given in [2, 4].

Although the performance of the implementation will not vary much with α, choosing an

appropriate shift for real data will balance a tradeoff between guarantees of convergence and

time-to-completion. To find local maxima, a nonnegative shift must be used.

6.2. Thread Organization. Because of the number of independent problems, we are

able to map the computation to the GPU in a straightforward way with minimal synchroniza-

tion. We organize the CUDA threads in the following way: assign a thread block to each

tensor and assign each thread in a thread block to a different starting vector. Since the number

of starting vectors is greater than the warp size, each thread block will utilize all the proces-

sors on its multiprocessor. Similarly, as long as the number of tensors is at least 50 or so, all

of the multiprocessors will be utilized with three or four thread blocks each (multiple thread

blocks are necessary to fill the instruction pipelines).

6.3. Data Structures. Because of the small size of the tensors and vectors in this prob-

lem, we can fit all the data for each thread block in the on-chip memory and minimize the

accesses to device memory. Let T be the number of tensors, U be the number of unique

entries in each tensor, and V be the number of starting vectors. Recall that for this problem,

m = 4, n = 3, T = 1024, U = 15, and V = 128. For real data, we expect T to grow into

the millions but the rest of the parameters will remain constant, though V could be varied

experimentally. The tensor data is of size T ·U, the array of starting vectors is n×V , the array

of output eigenvectors is n× (T ·V), and the array of output eigenvalues is of size T ·V . Note

that every thread block can use the same set of starting vectors, but each has its own set of

output vectors.

In addition to the main data structures, we pre-compute and store the index and multino-

mial coefficient information required in Algorithms 2 and 3. The index information is stored

as an array of size m×U and can be shared by all threads. We store the multinomial coefficient(
m

k1,...,kn

)
for each unique tensor value, where [k1, . . . , kn] is the monomial representation of the

index class of the unique entry. In this way, finding the number of occurrences of an entry

in Algorithm 2 is just a look-up, and computing the related multinomial coefficients used in

Algorithm 3, which are of the form
(

m−1
k1,...,ki−1,...,kn

)
for some i, can be done by reading the stored

value, multiplying by ki and dividing by m.3 Thus the array of multinomial coefficients is of

size U. All threads can share this information.

6.4. Memory Management. We use both the shared memory and constant cache to

minimize the memory accesses to device memory. Because the index array and multinomial

coefficients are read only and can be shared by all the threads in the computation, we designate

them as constant memory which resides in global (device) memory. However, because that

information can fit into the constant cache of each multiprocessor, they will be read from

device memory to the cache only once per multiprocessor for the entire computation. Because

the tensor entries can be shared by the threads within one thread block, we store them in the

shared memory. In this way, the tensor entries are read from device memory to the on-chip

shared memory only once per thread block.

3One might consider storing the “coefficient”
(

m−1
k1 ,...,kn

)
so that only one multiply is needed to update the stored

value for each kernel, but note that this value is not an integer in general.
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y1 = Avals[0] * x1 * x1 * x1 + \

Avals[1] * 3 * x1 * x1 * x2 + \

Avals[2] * 3 * x1 * x1 * x3 + \

Avals[3] * 3 * x1 * x2 * x2 + \

Avals[4] * 6 * x1 * x2 * x3 + \

Avals[5] * 3 * x1 * x3 * x3 + \

Avals[6] * x2 * x2 * x2 + \

Avals[7] * 3 * x2 * x2 * x3 + \

Avals[8] * 3 * x2 * x3 * x3 + \

Avals[9] * x3 * x3 * x3;

Fig. 6.1. Unrolled computation of the first entry of the vector Axm−1, for A ∈ R[4,3]. The variables x1, x2, x3
are register variables which store the input vector and the Avals array is in shared memory.

Finally, we store the input and output vectors, which are private to each thread, in shared

memory. Although this data will not be shared with other threads in the thread block, we use

the shared memory because it is the only on-chip memory that can be dynamically allocated

and overwritten. There are two main drawbacks from using shared memory this way. First,

allocating 2n words of shared memory per thread requires a lot of memory per thread block,

and since the physical shared memory is shared by all thread blocks on a multiprocessor,

fewer thread blocks can be scheduled simultaneously on each multiprocessor. The amount

of oversubscription (known as “occupancy” in nVidia’s terminology) allows for pipelining

instruction streams and hiding memory latency. Second, the register file is faster to access

than shared memory. Since the number of thread blocks per multiprocessor is limited by the

shared memory requirements, the size of the register file is not being exploited.

6.5. Loop Unrolling. For a given order and dimension, we can unroll the loops within

the two main computational kernels. This enables us to exploit the register file for storing the

input and output vectors by statically allocating register variables corresponding to input and

output vector entries. Not only does this expose instruction-level parallelism to the compiler,

it also removes the indirection in accessing input and output vector entries. This is possible

for small problems, but to scale to larger problems we would need a blocked approach. See

Figure 6.1 for an example of an unrolled loop in the case m = 4 and n = 3. The Avals array

stores the unique tensor entries in lexicographic order, the input vector entries are stored in

static variables, and the multinomial coefficients are stored as constants in the instruction

stream. In this case, the number of terms in the summation for Axm is 15, and each of the

three summations for the entries of the output vector Axm−1 have 10 terms.

Without unrolling the loops, each access to an input or output vector requires two mem-

ory operations. For example, if the index information is stored in an array called index, then

accessing entries to the input vector x take the form x[index[k]]. This indirection prevents

the compiler from pipelining instructions within one thread and degrades performance even

if index and x are both on-chip (see Section 6.6).

Note that the arithmetic intensity (ratio of flops to bytes involved in the computations) is

high for both kernels. In the case m = 4 and n = 3, there are 15 unique tensor entries and

two vectors each with three entries, so the number of bytes in single precision is 84 while

the number of flops in computing Axm−1 is 140. Another possible optimization would be to

use common subexpression elimination on the unrolled summations. For example, the code

shown in Figure 6.1 computes x2
1 three times.

6.6. Results. The processor used for these results is a quad-core Intel Bloomfield (Core

i7). The GPU used is an nVidia GeForce 9800 GT which nVidia classifies as Compute Capa-
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(a) Flop rates in Gflops/s and speedup of loop unrolling

General Unrolled Unrolled speedup

CPU seq 0.24 1.86 7.86

CPU par 0.92 6.85 7.41

GPU 5.95 131.73 22.15

(b) Relative performance, normalized to se-

quential implementations

General Unrolled

CPU seq 1.00 1.00

CPU par 3.90 3.67

GPU 25.08 70.66

Table 6.1

Performance results for six different implementations on all 1024 tensors

bility 1.1. The parallel CPU code was run with four threads using OpenMP. All computations

were done in single precision (the only precision available on GPUs of Compute Capability

1.1), and we use 128 starting vectors in all cases.

We report on six different implementations. We benchmarked a completely sequential

implementation, using one core on the quad-core CPU; a parallel CPU implementation, using

all four cores of the processor; and our GPU implementation. In each case, we benchmarked

both the general version of the code and the loop-unrolled version which is specialized to

tensors of order 4 and dimension 3. Note that no memory hierarchy optimizations were used

in the CPU implementations.

Table 6.1 shows the performance results for all six implementations computing the eigen-

pairs for all 1024 tensors. Table 6.1(a) shows the absolute performance and gives the speedup

observed for each implementation by unrolling the loops. Comparing the unrolled code to

the general implementations, we see that unrolling yields over 7× speedup for both CPU im-

plementations and a 22× speedup for the GPU implementation. In Table 6.1(b) the relative

performance values are normalized to the sequential CPU implementations to show parallel

speedups. We observe that the GPU implementation achieves a speedup of 20× over the par-

allelized CPU implementation. Although the CPU implementation was not optimized for the

memory hierarchy, we believe that because of the large number of independent problems in

this application, the GPU implementation will outperform the best multi-core implementation

for this test set. Future research will explore which architecture is better suited for computing

eigenpairs of larger tensors or tensor applications with less inherent parallelism. In either

case, developing high performing code for general orders and dimensions will require an

efficient blocking strategy to allow for loop unrolling and the use of register variables.

Figure 6.2 shows performance results for four different implementations for subsets of

the 1024 tensors in our test set. Note that the loop unrolling makes a significant difference

in the GPU performance for all problem sizes. Because of the independence of the tensor

eigenproblems, the parallel CPU implementation requires only a slight modification of the

sequential code using OpenMP pragmas and we observe close to perfect parallel scaling for

sufficiently large problems.

7. Conclusions. In this paper we present an implementation of SS-HOPM targeted for a

GPU. We describe how to save both storage and computation in the two main computational

kernels of the algorithm, and for the case of solving many small tensor eigenproblems we

show how to map the computation onto a GPU. For our experimental data set, we achieved
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Fig. 6.2. Performance results for running SS-HOPM on sets of 4th order 3-dimensional tensors with 128

starting vectors each. Note the y-axis is a log scale.

parallel speedups of up to 70× over a sequential code using the same low-level optimizations

(but no memory hierarchy optimizations).

We believe that the techniques for exploiting symmetry may be extended to other com-

putations involving symmetric tensors, but many open questions remain about how to write

sequential or parallel implementations of the computational kernels that scale to higher or-

der and higher dimension tensors. We are also interested in how to map these computations

onto different computing platforms, including more recent GPUs which offer fundamentally

different hardware features.
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[7] E. Özarslan and T. H. Mareci, Generalized diffusion tensor imaging and analytical relationships between dif-
fusion tensor imaging and high angular resolution diffusion imaging, Magnetic Resonance in Medicine,

50 (2003), pp. 955–965.

[8] , Generalized scalar measures for diffusion mri using trace, variance, and entropy, Magnetic Reso-

nance in Medicine, 53 (2005), pp. 866–876.



G. Ballard, T. Kolda, and T. Plantenga 75

[9] K. H. Rosen, Discrete mathematics and its applications (2nd ed.), McGraw-Hill, Inc., New York, NY, USA,

1991.

[10] T. Schultz andH.-P. Seidel, Estimating crossing fibers: A tensor decomposition approach, IEEE Transactions

on Visualization and Computer Graphics, 14 (2008), pp. 1635–1642.




