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Abstract. Network data is ubiquitous and growing, yet we lack realistic generative models
that can be calibrated to match real-world data. The recently proposed Block Two-Level Erdős-
Rényi (BTER) model can be tuned to capture two fundamental properties: degree distribution and
clustering coefficients. The latter is particularly important for reproducing graphs with community
structure, such as social networks. In this paper, we compare BTER to other scalable models and
show that it gives a better fit to real data. We provide a scalable implementation that requires only
O(dmax) storage where dmax is the maximum number of neighbors for a single node. The generator
is trivially parallelizable, and we show results for a Hadoop implementation for a modeling a real-
world web graph with over 4.6 billion edges. We propose that the BTER model can be used as a
graph generator for benchmarking purposes and provide idealized degree distributions and clustering
coefficient profiles that can be tuned for user specifications.

Key words. graph generator, network data, block two-level Erdős-Rényi (BTER) model, large-
scale graph benchmarks

1. Introduction. Unprecedented amounts of network interaction data are now
available from online social networks (FaceBook, Twitter), massive multi-player on-
line games (World of Warcraft, Everquest), computer-to-computer communications,
financial transactions, instant messaging, and more. As a result, models, algorithms,
software, and hardware for large-scale graph analysis are struggling to keep pace with
increasing demands for scalability and relevance. For instance, we lack models that
provide a realistic baseline for statistical analysis such as anomaly detection. Addi-
tionally, a major obstacle to working in the field of network analysis is that data is
naturally restricted due to a combination or security and privacy concerns. For these
reasons, we need scalable generative models for networks.

Ideally, a generative model can be calibrated to match real world data. For the
purposes of this paper, we consider the two most fundamental properties of graphs:
the degree distribution and the clustering coefficients [39]. For the purposes of this
paper, let G = (V,E) be an undirected, unweighted graph on vertices V defined by
edges in E, let n = |V | denote the number of nodes, and let m = |E| denote the
number of vertices.

In most real-world networks representing interaction data, there are a few nodes
with high degree and many nodes with low degree, with a smooth transition between.
In other words, the degree distribution is heavy-tailed [2, 12, 34]. A realistic generative
model should be able to reproduce the degree distribution, which specifies the number
of nodes of each degree {nd }.

However, the structure proscribed by by the degree distribution is only part of
the story; real-world graphs have an over-abundance of triangles. In social networks,
triangles indicate social cohesion, and it is likely that two people with a common
friend are much more likely to themselves be friends. Triangles are at the heart of
community structure. The simplest community is a clique, and a clique on k nodes
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is made up of
(
k
3

)
triangles. Even a clique with missing edges has many triangles.

Figure 1.1 shows a wedge centered at node 1, i.e., the path 2-1-3 is a wedge. If edge

1

2

3

Fig. 1.1: Wedge centered at node 1.

2-3 exists, then the wedge is closed (forms a triangle); otherwise it is open. Note that
every triangle corresponds to three closed wedges, so the number of triangles is three
times the number of closed wedges. To measure this, we define the global clustering
coefficient (GCC) [40, 3] as

c =
# of closed wedges

# wedges
.

We are specifically interested in clustering coefficient per degree [40], defined as

cd =
# of closed wedges centered at a node of degree d

# wedges centered at a node of degree d
.

The clustering coefficients of real-world graphs are much higher than for random
graphs with the same degree distribution [17]. Though it is known that real-world
graphs have significant clustering coefficients and that these are important to com-
munity structure, most generative models usually fail matching the clustering coeffi-
cient [33]

1.1. Contributions. The Block Two-Level Erdős–Rényi (BTER) [35] is pro-
posed as a model that can be tuned to capture both the degree distribution and
degree-wise clustering coefficients for real-world networks. The goal of this paper
is to focus on the implementation and scalability of this model, demonstrating its
capabilities at scale. Hence, this paper makes the following contributions:
• We describe a scalable implementation of the BTER generative graph model

that uses efficient data structures. Our reference implementation requires working
storage of at most 10 · dmax values where dmax � n is the largest degree and the
cost per edge is O(log dmax). Our implementation has the feature that all edges are
generated independently and so can be easily parallelized. Moreover, the edges can
be generated in an arbitrary order, so the BTER generative model can also be used
in streaming scenarios.
• We demonstrate that BTER can be used to accurately recreate the degree

distributions and triangle behavior of large real-world graphs. We show results for
several example graphs from the Laboratory for Web Algorithms [42], including a
graph with over 130 million nodes and 4.6 billion edges. We also compare BTER to
competing methods on a pair of smaller graphs.
• Finally, we propose BTER as a standard graph generator for benchmarking

purposes. Since the BTER degree distribution is arbitrary, we propose an “ideal”
degree distribution: discrete generalized log-normal (DGLN). This is a two-parameter
model that can be easily fit to a desired maximum possible degree (an absolute bound)
and a desired average degree. We also propose a simple semilog-linear model for
clustering coefficients.
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We note that there is no fitting step for BTER — it takes the target degree
distribution and clustering coefficients per degree directly as input. The clustering
coefficients can be expensive to compute, but we have recently proposed a sampling
method that scales to very large graphs [37, 20].

1.2. Related Work. Since the goal of this paper is to focus on the implemen-
tation and scalability of BTER, we limit our discussion of related models to those
that are most salient. A more thorough discussion of related work can be found in
the original paper on BTER [35].

The majority of graph models add edges one at a time in a way that each random
edge influences the formation of future edges, making them inherently unscalable.
The classic example is Preferential Attachment [2], but there are a variety of related
models, e.g., [21, 24]. These models are more focused on capturing qualitative prop-
erties of graphs and typically are difficult to match to real-world data [33]. Perhaps
the most relevant is [19] which creates a power law graph and then “rewires” it to
improve the clustering coefficients.

A widely used model for modeling large-scale graphs is the Stochastic Kronecker
Graph (SKG) model, also known as R-MAT [8, 23]. The generation process is easily
parallelized and can scale to very large graphs. Notably, SKG has been selected as
the generator for the Graph 500 Supercomputer Benchmark [41] and has been used
in a variety of other studies [13, 26, 29, 28, 18, 14, 27]. Unfortunately, SKG has some
drawbacks. (1) SKG can be extremely expensive to fit to real data (using KronFit),
and even then the fit is imperfect [23]. (2) It can generate only lognormal tails (after
suitable addition of random noise) [38, 36], limiting the degree distributions that it can
capture. (3) Most importantly, SKG rarely closes wedges so the clustering coefficients
are much smaller than what is produced in real data [33, 20].

Another model of relevance is the Chung-Lu (CL) model [10, 11, 1]. It is very
similar to the edge-configuration model of Newman et al. [30]. Let di denote the
desired degree for node i. In the CL model, the probability of an edge is proportional
to the degrees of its endpoints, i.e., the probability of edge (i, j) is ∝ didj . Edges
can be generated independently by picking endpoints proportional to their desired
degrees. If all degrees are constant, CL reduces to the well-known Erdős–Rényi (ER)
model [15]. The CL model is often used as a null model; for example, it is the basis
of the modularity metric [31]. The CL model and the SKG model are, in fact, very
similar [32]. The advantage of the CL model is that it can be better tuned to real-
world degree distributions. The disadvantage of the model is that, like SKG, it rarely
closes wedges. CL is a special case of BTER that skips Phase 1 (see §2).

2. BTER Generative Graph Model.

2.1. The BTER Model. The core idea of the BTER model [35] is to organize
the nodes into affinity blocks such that nodes within the same affinity block have a
much higher chance of being connected than nodes at random.

The BTER model has two phases, plus preprocessing, as illustrated in Figure 2.1.
The preprocessing phase creates the affinity blocks using the degree distribution and
clustering coefficients by degree as inputs. Phase 1 connects nodes within the same
affinity block using an Erdős–Rényi (ER) model with a user-specified level of connec-
tivity. Phase 2 connects nodes according to a CL model on the excess degree after
completion of Phase 1. Parallel edge generate is enabled by using the expected excess
degree in Phase 2; in this way, both Phases 1 and 2 can run simultaneously.

A detailed algorithm specification is provided in the appendix and in the reference
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(a) Preprocessing:
Distribution of nodes into

affinity blocks

(b) Phase 1: Local links
within each affinity block

(c) Phase 2: Global links
across affinity blocks

Fig. 2.1: BTER model phases.

source code. In this section, we give a high-level overview of how BTER can be
implemented in a scalable fashion.

2.2. Model Inputs and Preprocessing. The BTER model requires two user-
specified inputs, as follows: (1) desired degree distribution, denoted by {nd} where nd
is the number of nodes of degree d; and (2) clustering coefficient by degree, denoted
by {cd} where cd is the mean clustering coefficient for nodes of degree d. We let dmax

denote the maximum degree. The desired number of nodes and edges are n =
∑
d nd

and m = 1
2

∑
d d · nd, respectively. We let di denote the (desired) degree of vertex i.

We assume nodes are indexed by increasing degree except for degree-1 nodes, which
are indexed last. Hence, if di, dj ≥ 2 and i < j, then di ≤ dj . As an example, see the
numbering in Figure 2.2.

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 · · · 73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40

41 42 43

44 45

46

47

Degree 1

Degree 2

Degree 3

Degree 4

Degree 5

Degree 6

Degree 7

Degree 8

Degree 9

Fig. 2.2: Example of affinity blocks and groups.

In the preprocessing phase, we assign nodes to affinity blocks. For the assignment
to affinity blocks, degree-1 nodes are ignored. The remaining nodes are assigned to
affinity blocks in order (of degree). A homogeneous affinity block has d + 1 nodes of
degree d. In Figure 2.2, the blocks are denoted by colored ovals, and 4-5-6 is a homo-
geneous block. The vast majority of (low-degree) nodes are assigned to homogeneous
affinity blocks. However, there are not always enough nodes of degree d to fill in a
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homogeneous block; therefore, we also have a few (at most dmax) heterogeneous affin-
ity blocks with nodes of different degrees. In Figure 2.2, 19-20-21 is a heterogeneous
block.

Phase 1 requires a mapping of nodes to affinity blocks. A näıve assignment would
require O(n) information, which is prohibitive for very large graphs. Instead, observe
that storing a single block requires only three pieces of information: the starting
index, the block size, and the block weight (related to its desired connectivity, which
is a function of block size and clustering coefficient for the minimum degree in the
block). However, note further that all affinity blocks of the same size and minimum
degree can be grouped together into an affinity group — all blocks in the same group
share the same block size and weight. In Figure 2.2, all nodes with the same color
are in the same affinity group, e.g., 1-21 are in the same affinity group, likewise nodes
22-33, etc. The information needed to store an affinity group boils down to 4 items of
information: the starting index of the group, the number of blocks in the group, the
size of each block, and the weight of each block. The maximum number of groups is
bounded by dmax, so we need store at most 4 · dmax values.

Phase 2 needs to know the expected excess degree of all nodes, which is the
difference between the desired degree and the number of expected links from Phase
1. Again, a näıve implementation would require O(n) information, but most nodes
of the same degree behave the same. In a block where all nodes are the same degree,
we say the nodes are bulk nodes. In a block with nodes of differing degrees, all nodes
with degree equal to the minimum degree are still bulk nodes. The remaining nodes
are called filler nodes. In Figure 2.2, nodes 1-20 are degree-2 bulk nodes, nodes 22-30
are degree-3 bulk nodes, nodes 34-36 are degree-3 bulk nodes, and so on. Node 21 is
a degree-3 fill node, nodes 31-33 are degree-4 filler nodes, etc. It is possible to have
either no bulk nodes or no filler nodes for a given degree. In Figure 2.2, there are no
filler degree-2 nodes and no bulk degree-6 nodes. Observe all bulk nodes of degree d
(for any d) are in blocks of the same size and connectivity; therefore, they all have
the same excess degree. The filler nodes of degree d (for any d) participate in at
most one block and so all have the same excess degree. This means that there are
two possible values for excess degree for the set of nodes with desired degree d. For
each degree d, Phase 2 needs just 5 values: the number of filler and nodes, the excess
degree for filler nodes and for bulks nodes, and the starting index. (Technically, the
starting index can be recomputed from nd, but it reduces the work to store these
indices explicitly. Likewise, we need not store both the bulk and filler counts so long
as we keep the total number of nodes per degree.) Hence, the total working storage
for Phase 2 information is 5 · dmax values.

See the algorithm in Appendix A for details. The total storage (including inputs)
needed by the generation routine is 10 · dmax values.

2.3. Phase 1. Phase 1 creates within-block links. Each affinity block is modeled
as an Erdős–Rényi graph. For block b, the connectivity is ρb = 3

√
cdb where db denotes

the minimum degree in the block.

The difficulty in phase 1 is that we expect a preponderance of repeat edges in
the case where edges are generated independently with replacement. Consider affinity
block b with nb nodes and connectivity ρb, meaning that each node in block b wants
internal degree ρb ·db. BTER wants approximately mb = ρb

(
nb

2

)
unique edges in block

b. Determining the number of draws with replacement to get a desired number of
unique items is known as the coupon collector’s problem. We can show that a good
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approximation for the expected number of edges that need to be inserted is

wb =

(
nb
2

)
ln(1/(1− ρb)).

The proof is provided in Appendix B.
We illustrate this formula with an example with nb = 10 nodes and connectivity

ρb = 0.5, corresponding to mb = 22.5 edges, on average. We do 10000 random
experiments as follows. For i = 1, . . . , 10000, the random variable Xi ∼ Poisson(wb)
is the number of items drawn from the

(
nb

2

)
= 45 possible edges, and Yi is the number

of those items that is unique. A histogram of the Yi values is shown in Figure 2.3.

Fig. 2.3: Distribution of the number of unique edges on 10,000 random trials.

Hence, we have to insert many extra edges in Phase 1. Specifically, we insert
w(1) =

∑
b wb edges to get a total of m(1) =

∑
bmb unique “Phase 1” edges. Given

that we are generating a Phase 1 edge, the process proceeds as follows:
1. Pick an affinity group according to the total weight of its constituent blocks.
2. Pick a block within the affinity group uniformly at random (all blocks within

the same group have the same weight).
3. Pick two nodes without replacement uniformly at random from the selected

block — these two nodes form an edge.
The first step is a weighted sampling step and requires O(log gmax) work, where gmax ≤
dmax is the total number of affinity groups. The other 2 steps are constant time.

2.4. Phase 2. Phase 2 is simply a Chung-Lu model on the expected excess
degrees. In creating an edge, we choose two nodes independently. Those nodes are
chosen proportional to their excess degree. For node i in group b, let wi = 1

2 [di− (ρb ·
db)] denote half its excess degree. The total number of edges that should be inserted
in Phase 2 is w(2) =

∑
i wi. Duplicate edges are fairly rare, so we expect m(2) ≈ w(2)

“Phase 2” edges.
Let nfill

d and nbulk
d be the number of filler and bulk nodes of degree d, let wd =∑

i∈Vd
wi be the weight of all degree-d nodes, and let rd be the proportion that are

filler nodes. Inserting a Phase 2 edge proceeds as follows:
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1. Pick degree d proportional to wd.
2. Pick between filler and bulk nodes, according to rd.
3. Pick a filler or bulk node (depending on the outcome of Step 2) of degree d,

uniformly at random.

The first step is a weighted sampling step and required O(log(dmax)) work.

One complication in Phase 2 is that getting the correct number of degree-1 nodes
poses a problem — approximately 36% of the pool of potential degree-1 nodes will
not be selected and another 28% will have degree 2 or larger. A fix for this problem
has been proposed in [14], which involves increasing the pool of degree-1 nodes using
a “blowup factor,” denoted by β ≥ 1. This is included in the algorithm described in
Appendix A.

2.5. Independent Edge Generation. Lastly, we pull everything together to
explain the independent edge generation. We insert a total of w = w(1) +w(2) edges,
flipping a weighted coin for each edge to determine if it is Phase 1 or Phase 2. We
expect to generate a total of m = m(1) +m(2) edges.

Generating the edges is extremely inexpensive: O(log(dmax)) per edge. The ex-
pensive step is de-duplication. The same difficulty exists for the current Graph 500
(SKG) benchmark. Some may argue that duplicate edges are a useful feature since
real data also has duplicates, but it is not clear that the duplication rates are similar
to those observed in real data.

2.6. Implementations. We provide the algorithm in Appendix A. We have a
reference implementation in MATLAB that will be made available in the future. We
have also implemented the method in Hadoop and use this in some of our experiments.
The implementation is straightforward — we divide evenly the work of creating the
w edges between a user-specified number of mappers. Each edge is hashed, and that
hash is the key for the reduce phase. The reducers remove any duplicate edges and
emit a final list of all edges.

3. Numerical Comparisons.

3.1. Small data. In Figure 3.1, we present comparisons to the state-of-the-art
in scalable generative models: SKG (current Graph 500 generator) [8, 23, 41] and
CL [10, 11, 1] on two small data sets available from SNAP [43]. The parameters of
SKG are from [23], which used KronFit to optimize them. The input to CL is the
degree distribution of the real graph and a blowup factor of 10 (for better matching
degree-1 vertices [14]). The inputs to BTER are the degree distribution and clustering
coefficients per degree (computed exactly) of the real graph and a blowup factor of
10. Timings are not reported as they are trivial for all three methods.

Degree distribution. SKG is known to have oscillations in the degree distribution
[38, 36], and these oscillations are apparent in Figure 3.1d. The oscillations are
correctable with appropriate addition of noise [38, 36] (not shown), but even then it
tends to over estimate the low degree nodes and miss the highest degree nodes. In
contract, both CL and BTER closely match the real data.

Clustering coefficients. The SKG graph model has no inherent mechanism for
closing triangles and creating community structure. Though a few triangles may close
at random, they are insufficient for the SKG-generated graph to match the clustering
coefficients in the real data. The situation for CL is similar to that for SKG — there
is no reason for wedges to close. BTER, on the other hand, provides a much closer
match to the read data.
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(a) Degree distribution for
ca-HepTh

(b) Clustering coefficients for
ca-HepTh

(c) Leading adjacency matrix
eigenvalues for ca-HepTh

(d) Degree distribution for
soc-Epinions1

(e) Clustering coefficients for
soc-Epinions1

(f) Leading adjacency matrix
eigenvalues for soc-Epinions1

Fig. 3.1: Comparison of CL, SKG, and BTER on small graphs.

Eigenvalues of adjacency matrix. We consider the top 50 leading eigenvalues (in
magnitude) of the adjacency matrix. BTER is a much closer match to the real data —
especially the first few eigenvalues. Under certain circumstances, matching the degree
distribution should produce a match in eigenvalues [25]. However, we conjecture that
graphs with community structure require that this also be matched to obtain a good
fit for the eigenvalues.

3.2. Large data. We demonstrate that BTER is able to fit large-scale real-world
data. We do not compare to SKG because it is not possible to fit the parameters for
such large graphs. We do not compare to the CL model because we can easily explain
the performance: its match in terms of the degree distribution is nearly identical to
that of BTER, and its clustering coefficients are close to zero, as for the small data.

The data sets are described in Table 3.1a. We treat all edges as undirected and
remove any duplicate edges and loops. We obtained real-world graphs from the Lab-
oratory for Web Algorithms [42], which were compressed using LLP and WebGraph
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Graph |V | |E| dmax davg GCC

amazon-2008 1M 4M 1,077 10 0.260

ljournal-2008 5M 50M 19,432 18 0.124

hollywood-2011 2M 114M 13,107 115 0.175

twitter-2010 40M 1,202M 2,997,487 60 0.001

uk-union 122M 4,659M 6,366,528 76 0.007

(a) Large data set properties.

Graph |V | |E| dmax davg GCC Gen. Dedup.

amazon-2008 1M 4M 1,052 10 0.253 2.27s 9.25s

ljournal-2008 5M 49M 18,510 19 0.127 33.81s 126.40s

hollywood-2011 2M 114M 11,676 115 0.180 88.54s 362.25s

twitter-2010 38M 1,133M 1,635,823 59 0.004 222.87s

uk-union 120M 4,399M 1,497,950 73 0.111 1638.28s

(b) Properties of BTER-generated graphs, including generation and edge deduplication time.

Table 3.1: Network characteristics of original and BTER-generated graphs.

[7, 5] Briefly, the networks are described as follows. (1) amazon-2008 [7, 5]: A graph
describing similarity among books as reported by the Amazon store. (2) ljournal-2008
[9, 7, 5]: Nodes represent users on LiveJournal. Node x connects to node y if x regis-
tered y as a friend. (3) hollywood-2011 [7, 5]: This is a graph of actors. Two actors
are joined by an edge whenever they appear in a movie together. (4) twitter-2010
[22, 7, 5]: Nodes are Twitter users, and node x links to node y if y follows x. (5) uk-
union-2006-06-2007-05 (shorted to uk-union) [6, 7, 5]: Links between web pages on
the .uk domain. We ignore the time labeling on the links.

The smaller graphs (amazon-2008, ljournal-2008, hollywood-2011) are those with
up to roughly 100M edges. There can be easily processed using MATLAB on an SGI
Altix UV 10 with 32 cores (4 Xeon 8-core 2.0GHz processors) and 512 GB DDR3
memory. None of the parallel capabilities of MATLAB are enabled for these studies.
To give a sense of the memory requirements, storing the hollywood-2011 graph as a
sparse matrix in MATLAB requires 3.4GB of storage. The larger graphs (twitter-
2010, uk-union) each have over 1B edges. These are processed on a Hadoop cluster
with 32 compute nodes. Each compute node has an Intel i7 930 CPU at 2.8GHz (4
physical cores, HyperThreading enabled), 12 GB of memory, and 4 2TB SATA disks.
All experiments were run using Hadoop version 0.20.203.0.

The inputs to BTER are the degree distribution and clustering coefficients by
degree. The degree distribution calculation is straightforward. However, for the
clustering coefficients calculations, we used the sampling approach as implemented in
[20] with 2000 samples per degree, so the expected error is ε = 0.05 at a confidence
level of 99.9%. Sampling was not required for the smaller graphs, but we have used
it in all experiments for consistency.

BTER Timing. Table 3.1b shows the details and timings for the graphs produced
by BTER. Observe the close match in the characteristics of the graphs in terms of
number of nodes, number of edges, maximum degree, average degree, and global clus-
tering coefficient. For the smaller graphs, we are able to separate the edge generation
and deduplication time. The generation time is not strictly proportion to the number
of desired edges because we have to generate extra edges for Phase 1 to account for
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possible duplicates (see §2.3). The parallelism of Hadoop yields a large advantage in
terms of time. The twitter-2010 graph has 10 times more edges than hollywood-2011,
but it takes less than half the time to do the computation on the 32-node Hadoop
cluster.

Degree Distribution. Figure 3.2 illustrates the match between the real data and
the BTER graph. BTER cannot easily match discontinuities in the degree distribution
because of the random process of creating edges. The issue is that nodes generally
do not get exactly the desired degree—it may be one or two more or less. For a
smooth degree distribution, neighboring degrees cancel the effect on one another. For
discontinuous distributions, the BTER degree distribution is a “smoothed” version.
This is evident, for instance, in the amazon-2008 data where we can see a smoothing
effect on the sharp discontinuity near degree 10.

(a) amazon-2008 (b) ljournal-2008 (c) hollywood-2011

(d) twitter-2010 (e) uk-union

Fig. 3.2: Degree Distributions of original and BTER-generated graphs.

Clustering Coefficients. BTER’s strength is its ability to match clustering co-
efficients and therefore community structure. Most degree distributions are heavy
tailed and have a relatively consistent structure. The same is not true for clustering
coefficients. Different profiles can potentially lead to graphs with fundamentally dif-
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ferent structures. Figure 3.3 shows the clustering coefficients of the real data and the
BTER-generated graphs. There is a very close match.

(a) amazon-2008 (b) ljournal-2008 (c) hollywood-2011

(d) twitter-2010 (e) uk-union

Fig. 3.3: Clustering coefficients of original and BTER-generated graphs.

4. Proposed Benchmark. BTER can be used to match real-world data, as
shown in §3. For benchmark purposes, however reasonable “ideal” profiles for degree
distribution and clustering coefficient by degree are required. In this section, we pro-
pose some possibilities, noting that these can easily be changed for whatever scenario
a user may encounter.

4.1. Idealized Degree Distribution. It has been hypothesized that degree
distribution of real-world networks follow a power law (PL) degree distribution, i.e.,

nd ∝ d−γ ,

for some parameter γ [2]. However, our observation is that power law distributions
are difficult to use as a model — a point that is discussed in more detail below. It has
been suggested that power laws are not necessarily the best descriptor for real-world
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networks [34, 4]. Finally, proving (in a statistical sense) that a single observed degree
distribution is power law is difficult [12].

For benchmark purposes, our goal is to specify an average degree, davg, and a
maximum degree, dmax. Let f(d) define the desired proportionality of degree d. We
then create a discrete distribution on d = 1, . . . , dmax as

Pr (D = d) =
f(d)∑dmax

d′=1 f(d′)
.

Ideally, the average degree is equal to davg and the probability drops off sufficiently
by degree dmax, i.e.,

davg =

dmax∑
d=1

d · f(d) and Pr (D = dmax) < εtol,

where εtol is small enough such that m · εtol � 1 (where m is the number of edges).
For the power law distribution, it can be difficult to find a value for γ that yields a
high enough average degree and a low enough probability of choosing dmax. Hence,
we propose instead a generalized log-normal (GLN) distribution, i.e.,

nd ∝ exp

[
−
(

log x

α

)β]
,

for some parameters α and β. Additionally, the slight curve in the distribution is
typical of the real-world graphs shown in §3.

We consider two scenarios, both with n = 107 nodes. We do a simple parameter
search (fminsearch in MATLAB) to locate the optimal parameters. A function for
finding the optimal parameters for either DGLN or DPL for user-specified values of
davg and dmax is included in the reference code.

Scenario 1 for Degree Distribution Fitting. In the first scenario, the targets are
davg = 32 and dmax = 106. For DPL, the optimal parameter is γ = 1.911 with
davg = 16 and Pr (D = dmax) = 1.97 × 10−12. For DGLN, the optimal parameters
are α = 1.988 and β = 2.079 with davg = 16 and Pr (D = dmax) = 4.14 × 10−26.
Realizations of the two distributions are pictured in Figure 4.1a. For this scenario,
both degree distributions are reasonable in that there is no sharp drop off as we get
close to the maximum degree.

Scenario 2 for Degree Distribution Fitting. In the second scenario, the targets are
davg = 64 and dmax = 105. For PL, the optimal parameter is γ = 1.668 with davg = 64
and Pr (D = dmax) = 2.16 × 10−9. For DGN, the optimal parameters are α = 2.171
and β = 1.877 with davg = 64 and Pr (D = dmax) = 8.35× 10−12. Realizations of the
two distributions are pictures in Figure 4.1b. In this scenario, the problem with power
law becomes apparent — near dmax, there are still many degrees with multiple nodes
so that the cutoff is extremely abrupt. In comparison, DGLN fades more naturally
to the desired maximum degree.

4.2. Idealized Clustering Coefficients. As there no definitive structure to
clustering coefficients, we propose a simple parameterized curve that nevertheless has
some similarity to real data observations.

Let {nd } define the specified degree distribution and dmax be the maximum
degree such that nd > 0. We define a mean value for cd as c̄d which is defined by

c̄d = cmax exp(−(d− 1)ξ) for d ≥ 2,
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(a) Scenario 1: davg = 32 and
dmax = 106

(b) Scenario 2: davg = 64 and
dmax = 105

Fig. 4.1: Example degree distributions from discrete power law (DPL) and discrete
generalized log normal (DGLN) for n = 107 nodes.

where cmax and ξ are parameters. If cmax is specified, then a simple parameter search
can be used to fit ξ to a target global clustering coefficient; code to fit the data is
included in the reference code. The final values are for { cd } are selected as

cd ∼ N (c̄d,min{10−2, c̄d/2}).

The randomness could, of course, be omitted.

4.3. Example Graphs. We generate two example graphs per the scenarios be-
low. Table 4.1 lists the network characteristics and Figure 4.2 shows the target and
BTER-generated degree distributions and clustering coefficients.

Graph |V | |E| dmax davg GCC Gen. Dedup.

Ideal 1 1M 35M 28,643 72 0.406 35.11s 117.18s

Ideal 2 1M 8M 2,594 17 0.104 5.07s 20.66s

Table 4.1: Network characteristics of BTER-generated graphs for benchmarking.

Scenario 1. For the second set-up, we selected davg = 75 and dmax = 100, 000 to
define the degree distribution. The parameter search selected α = 2.14 and β = 1.83.
For the clustering coefficients, we set cmax = 0.9 and targets a GCC of 0.15. The
parameter search selected ξ = 3.59×10−4 for defining the clustering coefficient profile.

Scenario 2. For the second set-up, we selected davg = 16 and dmax = 10, 000 to
define the degree distribution. The parameter search selected α = 1.98 and β = 2.08.
For the clustering coefficients, we set cmax = 0.5 and targets a GCC of 0.10. The
parameter search selected ξ = 0.01 for defining the clustering coefficient profile.

5. Conclusions. This paper demonstrates that the BTER generative model is
appropriate for modeling massive networks. We provide a detailed algorithm along
with analysis explaining the workings of the method. The original paper on BTER
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(a) Degree distribution for
Scenario 1

(b) Degree distribution for
Scenario 2

(c) Clustering coefficients for
Scenario 1

(d) Clustering coefficients for
Scenario 2

Fig. 4.2: Target distributions and results of BTER-generated graphs.

[35] provided none of the implementation details and, in fact, did not directly use the
clustering coefficient data but rather estimated it via a function. Here we give precise
details on the implementations, which is nontrivial due to issues such as repeat edges.
We are able to build a model of a graph with 120M nodes and 4.7M edges in less than
30 minutes on a 32-node Hadoop cluster.

The development of a realistic graph model is an important step in developing
effective “null” models that nonetheless share the properties of real-world networks.
Such models will be useful in detecting anomalies, statistical sampling, and community
detection. For example, the BTER model does not have larger communities beyond
the affinity blocks, whereas we might expect that real-world graphs have a richer
structure such as a hierarchy or other complex behavior.

Of course, we only consider the case of a static, unattributed, undirected network.
Future work will be aimed at developing models that capture these properties, but
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even capturing the degree distribution in a directed graph poses challenges [14].

Appendix A. BTER algorithm details.

A.1. Preprocessing. The BTER Setup is described in Algorithm 1. The inputs
are the degree distribution, {nd }; the clustering coefficients per degree, { cd }; and
the blowup factor for degree-1 nodes, β.

The method precomputes the index for the first node of each degree, { id }, and
the number of nodes with degree greater the degree d, {n′d }. The latter is not saved.

The degree-1 nodes are handled specially. All degree-1 nodes are arbitrarily as-
signed to be “fill” nodes. The number of degree-1 nodes may be increased using
the blowup factor, β. However, if the blowup is used, the majority of the (desired)
degree-1 nodes will ultimately have degree 0 and can be removed in post-processing.

The main loop walks through each degree, determining the information for Phases
1 and 2.

It first allocates degree-d nodes to be fill nodes for the last incomplete block, if
needed. The number of nodes need to complete the last incomplete block is denoted
by nfill

∗ . The excess degree of any fill nodes depends on the internal degree of the last
incomplete block, denoted by d∗. The excess degree is used to determine the weight
of the degree-d fill nodes for phase 2, wfill

d .

If more nodes of degree d remain, these are allocated as bulk nodes and a new
group is formed. The number of bulk nodes of degree d is denoted by nbulk

d . For the
new group, we determine the index of the first node, the number of blocks, and the
size of each block. The very last block of the very last group is special because there
may not enough nodes remaining to fill it. For simplicity and because it is often the
case for heavy-tailed networks, we assume the last group contains only a one block.
This makes handling it as a special case simpler. We compute excess degree for these
bulk nodes and then the corresponding weight of degree-d bulk nodes for phase 2,
wbulk
d . We also compute the weight of the group, wg, using the coupon collector over-

sampling weight described in §2.3. Finally, we compute the number of nodes needed
to fill out the last block, nfill

∗ .

Rather than return wfill
d and wbulk

d directly, it is easier (for the edge generation
phase) to have their sum, wd, and the ratio of fill nodes, rd. Likewise, we do not
return nbulk

d since it can be easily recomputed using nd and nfill
d . We do return id,

but this could be omitted and recomputed if that were more efficient (e.g., reduc-
ing communication to workers). Finally, we no longer need to keep { cd } after the
preprocessing is complete.

A.2. Generating Edges. BTER edge generation is shown in Algorithm 2. The
procedure Random Sample does a weighted sampling according to a specified dis-
crete distribution. For p bins, the cost is O(log(p)). For each edge, we randomly
select between the phases using a weighted coin. A Phase 1 edge requires one sample
from a discrete distribution of size gmax and three additional random values drawn
uniformly from [0, 1]. A Phase 2 edges requires two samples from a discrete distribu-
tion of size dmax and four additional random values drawn uniformly from [0, 1]. Since
gmax ≤ dmax, an upper bound on the cost per edge is the cost of one discrete random
sample on a distribution of size dmax plus four random values drawn uniformly from
[0, 1].

In Algorithm 2, we generate each edge completely independently. It may also be
possible to “bulk” the computations by first determining the total number of edges
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Algorithm 1 BTER Setup

1: procedure bter setup({nd }, { cd }, β)

Number nodes from least degree to greatest, except degree-1 nodes are last
2: i2 ← 1
3: for d = 3, . . . , dmax do
4: id ← id−1 + nd−1

5: end for
6: i1 ← idmax + ndmax

Compute number of nodes with degree greater than d
7: for d = 1, . . . , dmax do
8: n′d =

∑
d′>d n

′
d

9: end for

Handle degree-1 nodes
10: nfill

1 ← β · n1, w1 ← 1
2
n1, rfill

1 ← 1

Main loop
11: g ← 0, nfill

∗ ← 0, d∗ ← 0
12: for d = 2, . . . , dmax do
13: if nfill

∗ > 0 then . Try to fill incomplete block from current group
14: nfill

d ← min(nfill
∗ , nd)

15: nfill
∗ ← nfill

∗ − nfill
d

16: wfill
d ← 1

2
nfill
d (d− d∗)

17: else
18: nfill

d ← 0, wfill
d ← 0

19: end if
20: nbulk

d ← nd − nfill
d

21: if nbulk
d > 0 then . Create a new group for degree-d bulk nodes

22: g ← g + 1
23: ig ← id + nfill

d

24: bg ← dnbulk
d /(d+ 1)e

25: ng ← d+ 1
26: if bg · (d+ 1) > (n′d + nbulk

d ) then . Special handing of last group
27: if bg 6= 1 then throw error
28: ng ← (n′d + nbulk

d )
29: end if
30: ρ∗ ← 3

√
cd

31: d∗ ← (ng − 1) · ρ∗
32: wbulk

d ← 1
2
nbulk
d · (d− d∗)

33: wg ← bg · 1
2
ng(ng − 1) · log(1/1− ρ∗)

34: nfill
∗ ← (bg · ng)− nbulk

d

35: else
36: wbulk

d ← 0
37: end if
38: wd ← wfill

d + wbulk
d , rd ← wfill

d /wd

39: end for

40: return { id } , {wd } , { rd } , {nfill
d } , {wg } , { ig } , { bg } , {ng }
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Algorithm 2 BTER Sample

1: procedure bter sample({nd } , { id } , {wd } , { rd } , {nfill
d } , {wg } , { ig } , { bg } , {ng })

2: w(1) ←
∑

g wg, w(2) ←
∑
wd, w ← w(1) + w(2)

3: E(1) ← ∅, E(2) ← ∅
4: for j = 1, . . . , w do
5: r ∼ U [0, 1]
6: if r < w(1)/w then
7: E(1) ← E(1)∪ bter sample phase1({wg } , { ig } , { bg } , {ng })
8: else
9: E(1) ← E(1)∪ bter sample phase2({wd } , { rd } , {nd } , {nfill

d } , { id })
10: end if
11: end for
12: return E(1), E(2)

13: procedure bter sample phase1({wg } , { ig } , { bg } , {ng })
14: g ← random sample({wg }) . Choose group
15: r1 ∼ U [0, 1], δ = ig + br1 · bgc · ng . Choose block and compute its offset
16: r2 ∼ U [0, 1], i← br2 · ngc+ δ . Choose 1st node
17: r3 ∼ U [0, 1], j ← br3 · (ng − 1)c+ δ . Choose 2nd node
18: if j ≥ i then
19: j ← j + 1
20: end if
21: return (i, j)

22: procedure bter sample phase2({wd } , { rd } , {nd } , {nfill
d } , { id })

23: i← bter sample phase2 node({wd } , { rd } , {nd } , {nfill
d } , { id })

24: j ← bter sample phase2 node({wd } , { rd } , {nd } , {nfill
d } , { id })

25: return (i, j)

26: procedure bter sample phase2 node({wd } , { rd } , {nd } , {nfill
d } , { id })

27: d← random sample({wd }) . Choose degree
28: r1 ∼ U [0, 1], r2 ∼ U [0, 1]
29: if r1 < rfill

d then
30: i← br2 · nfill

d c+ id . Fill node
31: else
32: i← br2 · (nd − nfill

d )c+ (id + nfill
d ) . Bulk node

33: end if
34: return i

for each phase and performs the computation for each phase separately. Within each
phase, the procedure itself can be easily vectorized, which is useful, e.g., for MATLAB.

A.3. Edge Deduplication. Any method can be used for deduplication. In
general, the simplest procedure is to hash the edges in such a way that (i, j) and
(j, i) hash to the same key. Then its easy enough to sort each bucket to remove
duplicates. In a parallel environment, since we are hashing by edge and not vertex,
there should not be load balancing problems. In fact, hashing by a single endpoint is
not recommended because of the heavy-tailed nature of the graph.

Appendix B. Coupon Collector Derivation.
Consider a universe of U of coupons, and suppose we pick objects uniformly at

random with replacement from U . The following theorem proves the desired bound,
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when U is the set of possible pairs in an affinity block (so |U | =
(
nb

2

)
).

Theorem B.1. Let ρ ∈ (0, 1) be fixed. The expected number of independent draws
required to select ρ|U | distinct coupons from U is |U | ln(1/(1− ρ)) +O(1).

Proof. For convenience, we assume ρ|U | is an integer. Consider a sequence of
draws. Let Xi (for integer 0 ≤ i < ρ|U |) be the random variable denoting the number
of draws required to get one more (distinct) coupon after i distinct coupons have been
collected. Observe that the quantity of interest is E[

∑
i<ρ|U |Xi], which by linearity

of expectation is
∑
i<ρ|U | E[Xi].

When i distinct coupons have already been collected, the probability that a single
draw gives a new coupon is exactly 1 − i/|U |. Think of this as probability of “fail-
ure”. The number of draws required for a success (new coupon) follows a geometric
distribution (Chap VI.8 of [16]) and the mean of this is 1/(1− i/|U |) = |U |/(|U | − i).
Using this bound, the expected total number of draws can be expressed as follows:∑
i<ρ|U |

E[Xi] =
∑
i<ρ|U |

|U |
|U | − i

= |U |
[ ∑
i≤|U |

1

i
−

∑
i≤(1−ρ)|U |

1

i

]
= |U |

[
ln |U | − ln((1− ρ)|U |) +O(1/|U |)

]
= |U | ln(1/(1− ρ)) +O(1)

(We use the standard bound for the Harmonic sum:
∑
i≤r 1/i = ln r + γ + O(1/r),

where γ is Euler-Mascheroni constant.)
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