
1

Multi-Jagged: A Scalable Parallel Spatial
Partitioning Algorithm

Mehmet Deveci, Sivasankaran Rajamanickam, Member, IEEE ,
Karen D. Devine, and Ümit V. Çatalyürek, Senior Member, IEEE

Abstract—Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric
locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a
multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which
recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm
does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and
intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficient
implementations of recursive bisection. We demonstrate the algorithm’s scalability and quality relative to the RCB implementation in
Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in
terms of run-time without degrading the load balance. Our implementation partitions 24 billion points into 65,536 parts within a few
seconds and exhibits near perfect weak scaling up to 6K cores.

Index Terms—Geometric partitioning, spatial partitioning, recursive bisection, jagged partitioning, load balancing

F

1 INTRODUCTION

In many areas of science and engineering, problem and
dataset sizes are increasing rapidly due to technological
advances that enable generation and storage of such data.
This growth is fueled by our urge to better understand
more complex phenomena. Many of the datasets are ir-
regular, in the sense that no immediately observable or
predictable pattern exists among data elements. Lack of
such patterns makes it difficult to find simple, effective and
efficient mechanisms to partition data for scalable parallel
processing, as well as indexing and storage. While some
data, like interaction networks (e.g., gene/protein interac-
tion networks, social networks, task dependency networks)
are defined only by interactions among entities, a significant
amount of data includes spatial coordinates together with
rules about how the elements interact based on those spatial
coordinates. This paper deals with efficient partitioning of
the latter datasets for parallel processing.

With recent increases in computing-system sizes, scal-
able partitioning for distributing data and tasks to pro-
cessors has become critical to application performance.
Researchers have been developing partitioning techniques
for interaction-based datasets, in the form of graph and
hypergraph partitioning ([5], [8], [14], [15], [17], [18], [30])
and for spatial datasets ([3], [13], [24], [28], [29]) for more

• M. Deveci is with the Departments of Biomedical Informatics, and
Computer Science & Engineering, The Ohio State University, Columbus,
OH. E-mail: mdeveci@bmi.osu.edu

• S. Rajamanickam and K.D. Devine are with the Computer Science Re-
search Institute in the Center for Computing Research at Sandia National
Laboratories, Albuquerque, NM. E-mail: {srajama,kddevin}@sandia.gov

• Ü.V. Çatalyürek is with the Departments of Biomedical Informatics, Elec-
trical & Computer Engineering and Computer Science & Engineering,
The Ohio State University, Columbus, OH. E-mail: umit@bmi.osu.edu

Manuscript received July 2014; revised October 2014 and February 2015.

than four decades. Yet the complexity of the problems
(many are NP-hard) makes it challenging to develop both
effective and scalable solutions. For many applications for
which spatial information is available, spatial partitioning
is preferred over interaction-based (also called connectivity-
based) methods because of its speed, despite the fact that
spatial partitioners do not provide an exact model for the
communication cost of most applications. Scalability is cru-
cial especially when dataset sizes and architectural changes
require applications to use massively parallel machines to
obtain effective solutions. The scalability of the partitioner is
an important part of the applications’ scalability, especially
in applications needing dynamic load balancing; time to
partition should scale at the same rate as the application’s
computation time.

Partitioning in parallel is a chicken-and-egg problem.
We assume the data is already distributed in the memory
of the parallel machine by the application and there is no
replication. This initial data distribution directly affects at
least the execution time of the partitioner, and in some
implementations might affect the the partition quality. If the
initial data distribution is not load balanced, some of the
processors may have significantly more work than others,
leading to load imbalance while computing the partition.
Some successful parallel partitioners, such as the recursive
coordinate bisection (RCB) [3] implementation in Zoltan,
migrate data while partitioning, which improves both load
balance and data locality during partitioning. As its name
implies, RCB obtains a partition of a dataset by recursively
bisecting the domain into two parts with cutting planes
orthogonal to a coordinate axis, so that the weight of data on
each side of the cutting plane is equal. Migration happens
after each bisection, and hence, depending on the initial data
distribution, it could result in significant data movement
during partitioning.

2

In this paper, we propose an efficient parallel geomet-
ric partitioning algorithm for multi-dimensional datasets.
Our algorithm computes partitions by recursively multi-
sectioning the dataset. Hence, our algorithm, multi-jagged
(MJ), can be viewed as generalization of two-dimensional
jagged partitions (also called Semi-Generalized Block Dis-
tribution) [22], [27], [35] to multiple dimensions. There
are many efficient heuristics and optimal, sequential algo-
rithms [22], [27], [29] to compute two-dimensional partitions
of dense two-dimensional arrays, where each element rep-
resents the load of its respective object in two-dimensional
space. We aim to partition objects with real-valued coor-
dinate information given in multi-dimensional space. Our
algorithm can be also viewed as a generalization of RCB
in which we perform multi-sections instead of bisections in
each level of recursion; the number of sections can be given
by the user (or computed by us). Hence, one can use our
algorithm to perform RCB. However, as shown in [29], by
considering multiple cut-lines concurrently, heuristic jagged
partitioning generally yields better load balance (especially
for workloads with non-uniform weights) than greedy re-
cursive bisection algorithms that assume a good bisection at
each level yields a good final partition. As we will show, in
a parallel environment, our algorithm also scales better than
RCB due to reduced data movement.

We have implemented our algorithm in the Zoltan2 [4]
framework, which is a revision of the Zoltan library [10]
exploiting advances in compiler technology and software
design principles. We have experimentally evaluated our
implementation of the new algorithm against Zoltan’s ro-
bust RCB implementation, which is used successfully in
many large scale applications [31], [32], [11]. The experi-
ments on real and synthetic datasets show that the proposed
algorithm performs and scales better than the existing RCB
method in terms of run-time without degrading the load
balance. We also compare the communication patterns of
the resulting partitions, and show that, although multi-
sectioning has a larger theoretical upper-bound, the two
methods produce similar communication patterns in prac-
tice.

Our MJ algorithm is already in use in several scenar-
ios. For example, it repartitions coarsened matrix operators
in the multigrid solver MueLu [9], so that coarse-matrix
operations are both balanced and scalable. In this context,
MJ partitioned 22.3 million coordinates into 20,736 parts on
131K cores as part of a nine billion element simulation of
low Mach number fluid flow with unstructured meshes on
DOE’s Cielo Cray XE6 supercomputer [19]. In recent studies,
Lin et al. used MJ to partition 78.4 million coordinates into
78K parts on 524K cores of DOE’s Sequoia BlueGene/Q
supercomputer [20]. They demonstrate better application
performance and scaling using MJ in the second-generation
Trilinos stack, when compared to RCB in the first-generation
Trilinos stack. In addition, our new algorithm is used for
architecture-aware placement of MPI ranks onto allocated
cores of a supercomputer to reduce network congestion and
application communication costs. Our geometric partitioner
orders both allocated nodes and applications’ MPI ranks
in a consistent way that places interdependent ranks in
“nearby” cores. For a structured finite-difference proxy-
application [2], mapping with MJ reduced execution time

by 34% on average on 65,536 cores of Cielo [7].
The rest of the paper is organized as follows. Back-

ground and related work are presented in Section 2. Sec-
tion 3 includes the details of our proposed parallel multi-
dimensional jagged algorithm. Experimental evaluation is
presented in Section 4. We conclude in Section 5.

2 BACKGROUND

Spatial partitioners use only geometric information from the
application to compute partitions. They have several ad-
vantages over graph- or hypergraph-based methods. Spatial
partitioners typically have lower runtimes to compute parti-
tions. They assign physically close objects together within a
processor; this feature is important for applications such as
contact detection and particle methods for which geometric
locality of data is important. And they can be used in
applications where connectivity information is unavailable,
such as particle methods or visualization.

The input to spatial partitioners includes a set of physical
coordinates (e.g., (x, y, z) in 3D) and, optionally, weights as-
sociated with each point. Additionally, desired part sizes can
be provided; the algorithmic details of handling nonuniform
part sizes are straightforward and will not be presented in
this paper. The output of spatial partitioners is a list of part
numbers to which the input points are assigned.

Formally, given the coordinates Ci,j and weights Wj of
N data points in d dimensional space (0 ≤ i < d and
0 ≤ j < N), and the number of parts κ and maximum
allowed imbalance ratio ε, the spatial (coordinate) partition-
ing problem can be defined as finding κ non-overlapping
bounding boxes Bk = {b1−, b1+, b2−, b2+, . . . , bd−, bd+} for
all parts 1 ≤ k ≤ κ that cover all data points. A data point
j is said to be in part k, i.e., µj = k, if and only if it is inside
the bounding boxBk, i.e., bi− < Ci,j < bi+ for all 0 ≤ i < d.
The goal is to achieve balanced parts defined as:∑

j,0≤j<N∧k=µj

Wj ≤ (1 + ε)Wavg

for all parts 1 ≤ k ≤ κ, where ε is a user-specified imbal-
ance tolerance, and Wavg is the average weight defined as
Wavg =

P
j Wj

κ . In addition to achieving even load distribu-
tion, spatial partitioning aims to reduce the communication
overhead of the application. However, without precise con-
nectivity information, spatial partitioning implicitly reduces
communication by increasing geometric locality. Therefore,
communication can be estimated by metrics such as the
length of the bounding boxes (approximating total com-
munication volume), or the number of neighboring boxes
(approximating the total number of messages).

The complexity of spatial partitioning increases with the
number of dimensions in the data, the existence of weights
for the data, and the data’s density/sparsity. For dense
one-dimensional (1D) partitioning (also known as chains-
on-chains partitioning), Pınar and Aykanat [28] provide an
extensive theoretical and experimental comparison of 1D
algorithms. For dense two-dimensional partitioning (2D),
Saule et al. [29] present a survey of existing methods and
introduce new, more effective variants. For example, rectilin-
ear partitioning (also known as general block distribution [1])

3

partitions 2D space into a P × Q mesh with non-uniform
mesh spacing such that the load of each part is balanced.
This problem is NP-hard [12], and, hence, efficient heuristics
are proposed [24]. P ×Q jagged-partitioning [27], [35] relaxes
rectilinear partitioning such that space is first partitioned
into P row (or column) stripes, and then each stripe is
partitioned independently into Q parts. In another variant
called m-way Jagged partitioning [29], the number of parts
while partitioning P stripes is decided based on the load of
each stripe. Octrees [21], [23] and space-filling curves [25],
[26], [36] have been used for two- and three-dimensional
spatial partitioning; both produce partitions with similar
quality. Each point is assigned an octant or a space-filling
curve key, respectively, based on its position in space; a
1D traversal of the octree or space-filling curve is then
partitioned into equally weighted parts.

Fig. 1. A partition of size 16 using (left) RCB, (middle) MJ with no migra-
tion and a 4 × 4 configuration, and (right) MJ with migration. The order
of the cut computations and the number of processors participating are
indicated by colors (red first, then blue, green, pink, and orange) and
line thickness (thickest to thinnest for decreasing number of processors),
respectively. The two MJ variants produce identical partitions, as they
compute the same number of cuts in each dimension; they differ only in
the amount of concurrency during partitioning.

The most popular techniques for spatially partitioning
dense or sparse data arguably are variants of recursive bisec-
tion. In Recursive Coordinate Bisection (RCB) [3], a cutting
plane perpendicular to a coordinate axis is computed such
that the total weight of data on each side of the cutting plane
is equal; the resulting two subregions are then recursively
divided until the desired number of parts is obtained.
(When the number of desired parts is not a power of two,
parts can be obtained by simply adjusting split ratios in
each bisection.) Figure 1(left) shows an example using RCB
to find 16 parts. The thick, red line represents the initial
bisection; progressively thinner blue, green, and pink lines
represent subsequent cuts in the recursion. Several alterna-
tives for selecting the dimension (x, y, or z) of each cutting
plane [29] are possible, such as alternating dimension or
longest dimension. In most common implementations, the
longest dimension of the bounding box including the data
is chosen to be cut. The dimension is selected independently
for each bisection, with the intent that subdomains’ aspect
ratios approach one. Principal axes of the geometric data can
be used instead of the coordinate axes; this variant is called
Recursive Inertial Bisection [33], [34].

The main kernel of RCB is finding the cutting plane.
Zoltan’s parallel implementation uses a binary-search ap-
proach to finding the median. The minimum and maximum
data coordinates in the cut direction are found, and the
initial cutting plane is taken as the average of the minimum
and maximum. The weight of points to the left and right
of the cut is computed via a parallel reduction operation,

and the cut is moved left or right depending on whether the
left side’s load is heavier or lighter, respectively, than the
right’s. This process repeats until the left and right side are
equally weighted. Information about points closest to the
cut is included in the reduction operations to allow small
amounts of weight to be shifted between parts and, poten-
tially, avoid additional iterations by satisfying the balance
criterion immediately.

Once the median is found, data is reorganized into
left and right subgroups for recursion. The algorithm re-
cursively partitions the subgroups each with its own new
bounding box and a new cut dimension.

In the serial implementation, points are not moved when
the left and right subgroups are formed; instead, an index
array points to the data in each subgroup. But in parallel,
points are migrated into subgroups based on their positions
relative to the cutting plane. The processors are divided into
two sets; points to the left of the cut are sent to processors in
one set while points to the right are sent to processors in the
other. Only coordinate information is sent, not all applica-
tion data associated with the points. The amount of data sent
depends on the input distribution of the data. When doing
dynamic partitioning to correct small imbalances or changes
in locality, the migration cost is expected to be small. Static
partitioning with arbitrarily distributed data, however, can
result in significant migration costs.

Once the data is migrated, multiple cuts can be com-
puted independently and in parallel by using different sub-
communicators for the processors in different sets. Reduc-
tion operations to compute bounding boxes and accumulate
weights on each side of a cutting plane during the median-
finding routine are performed within the subcommunica-
tors. When the subcommunicator size is one, the imple-
mentation reverts to the serial algorithm. There are some
similarities between this implementation of RCB and our
Multi-Jagged implementation. The next section describes
our algorithm and the implementation details.

3 MULTI-JAGGED: MULTI-DIMENSIONAL JAGGED
PARTITIONING

The Multi-dimensional Jagged algorithm (MJ) is a geometric
partitioning method in which a Pl-way multi-sectioning is
applied recursively to partition a domain into κ =

∏d′−1
l=0 Pl

parts for a given recursion depth d′. Figure 1(middle) shows
a 16-part decomposition of a 2D domain generated by MJ
with d′ = 2 and P0 = P1 = 4. Red lines show the first
four-way multi-section; each of the four subdomains is then
divided into four, as shown by the horizontal lines.

The goal for MJ is to improve upon parallel RCB to make
a scalable algorithm for very large data sets and for large
numbers of parts. MJ has several key differences from RCB.

First, MJ reduces the depth of recursion by doing
multi-section instead of bisection. To multi-sect, say, the
x-dimension into Pl parts, the initial cut lines are spaced
evenly between the minimum and maximum x-coordinates
of the input data. The weight of points in the parts between
pairs of adjacent cut lines is computed, and the cut lines
are moved in order to adjust the weight in the parts. This
process iterates until the parts all have the same weight.

4

Second, to improve scalability, MJ has several options
that allow trade-offs between computation and data migra-
tion. MJ has the ability to avoid entirely the data migra-
tion costs that are inherent in parallel RCB. All processors
cooperate to compute cuts at all levels of the recursion;
subcommunicators are not used as in RCB. This mode is
illustrated in Figure 1(middle), where the horizontal cuts
in each subdomain are computed in sequence by all pro-
cessors. Alternatively, MJ can migrate data to intermediate
subdomains as in RCB to allow concurrent computation of
cuts during the recursion; in Figure 1(right), the horizontal
cuts are computed concurrently in subcommunicators. Each
mode has advantages, depending on the distribution of
the input. In addition, MJ can perform “smart” migration,
switching between modes based on the imbalance of the
partitioner, predictions of the number of global reductions
needed during partitioning, and estimates of the future
communication-computation bounds. For example, migra-
tion might be very expensive for datasets in which the
points are scattered randomly to the processors, while it
is expected to be less expensive for datasets with localized
points in processors. MJ favors migration for the latter, while
it avoids migration for the former. Details of this “smart”
migration heuristic are in Section 3.2.

Third, unlike Zoltan’s RCB which uses only MPI for par-
allelism, MJ is implemented using a hybrid MPI+OpenMP
paradigm. This implementation allows MJ to fully exploit
multicore architectures to provide dynamic load balancing
to applications running with MPI+threads. While the mul-
tithreaded implementation is not the focus of this paper, it
is critical for hybrid applications in which Zoltan’s single-
threaded RCB implementation would result in idle cores
during partitioning. Moreover, since MJ’s hybrid implemen-
tation uses fewer processes, it may reduce data movement
during partitioning.

3.1 The Basic MJ Algorithm

Algorithm 1 gives the overall description of MJ. The al-
gorithm takes a dataset of n d-dimensional coordinates C ,
computational weights W , and a vector P of size d′ which
is an array of the number of parts desired at each recursion
level. MJ computes a partition with maximum imbalance ε,
by partitioning the coordinates into κ =

∏d′−1
l=0 Pl parts in

d′ steps. In order to avoid data movement, MJ maintains a
permutation array (Permute) of length n. Coordinate data
is not rearranged during partitioning; instead, Permute
stores the indices of the coordinates, and part assignments
are made by reordering Permute. xPerm maintains the
beginning and end indices of each part in Permute. Ini-
tially, there is a single part with all coordinates. Then, P is
traversed, and the dimension on which the partitioning will
occur (i) is determined in a round-robin fashion. 1DPART
is then called for all available parts (i.e., for κ which is
initially 1), and partitioning information is stored in µ.
UPDATEPERM (not shown) updates the Permute array, and
stores the beginning indices of new parts in newxPerm
according to the part assignment information. Once all parts
are partitioned along a dimension, the number of parts
κ increases by factor of Pl. At this point, the algorithm
estimates whether migrating the coordinates is good for the

Algorithm 1: Parallel MULTI-JAGGED Algorithm (MJ)

Data: d, n, Cd,n,Wn, ε, d
′, Pd′

for j from 0 to n− 1 do
Permutej ← j; // Initialize permutation

κ← 1; // All of C is in one part
xPerm0 ← 0;
xPerm1 ← n;
for l from 0 to d′ − 1 do

i← l mod d; // Dimension to partition
// Compute Pl parts within each current

part
for p from 0 to κ− 1 do

pBegin← xPermp;
pEnd← xPermp+1;
µ←
1DPART(Ci,∗,W, Permute, pBegin, pEnd, ε, Pl);
newxPerm←
UPDATEPERM(Permute, pBegin, pEnd, µ);

κ← κ× Pl;
CHECKANDMIGRATE (n,C∗,∗,W, µ, newxPerm, κ);
xPerm← newxPerm;

execution time or not by using CHECKANDMIGRATE where,
if needed, the actual migration operation is also performed
and the subcommunicators are created. After this point, the
partitioning continues in the next dimension.

The pseudocode of 1DPART is given in algorithm 2.
1DPART finds Pl part assignments with ε imbalance for
the given single dimensional coordinates associated with
weights W . As the first step, GETINITIAL (not shown) finds
the minimum and maximum coordinate together with the
total weight of the part (Cmini , Cmaxi ,Wtot) by using a
single parallel reduction REDUCEALL. Initial cut coordinates
are assigned as uniform slices between Cmini and Cmaxi .
Moreover initial parts are assigned with following formula:

µj =
⌊
(Ci,j − Cmini)× Pl

Cmaxi − Cmini

⌋
1DPART maintains two arrays (hiBounds, loBounds) to

store the upper and lower coordinates bounds of each cut.
Flags indicating whether a cut position is finalized or not are
saved in the done array. After initialization, the iteration at
line A continues until all cut positions are finalized. In every
step, the part weights (pWeights) are calculated by calling
GETPARTWEIGHTS; then according to this part weight infor-
mation, GETNEWCUTS either finalizes a position of a cut, or
makes a new estimate for the new cut position.

The most computationally expensive portion of our algo-
rithm is deciding the part to which all coordinates belong.
This operation is O(n) in RCB. However, it is O(n log(Pl))
when using multi-section, as each point has to be placed in
one of the Pl parts, which can be done in a binary-search-like
fashion. Although computational cost is slightly increased,
finding multiple cuts in each iteration reduces the needed
communication cost, and, hence, yields faster execution.

Algorithm 3 outlines GETPARTWEIGHTS. GET-
PARTWEIGHTS initializes the part weights of non-finalized
parts to 0. It computes the part assignment for all
coordinates by traversing the coordinates and comparing
them to the cut lines. To reduce the computational cost, part
information from the previous iteration is used as initial

5

Algorithm 2: 1DPART

Data: Ci,W, Permute, pBegin, pEnd, ε, Pl

// Get initial weights, min, max across
all parts;

// requires one REDUCEALL operation
(cuts, µ,Wtot, C

min
i , Cmax

i)←
GETINITIAL(Ci,W, Permute, pBegin, pEnd, Pl);
cutCnt← Pl − 1;
for p from 0 to cutCnt do

hiBoundsp ← Cmax
i ;

loBoundsp ← Cmin
i ;

donep ← False;

leftCutCnt← cutCnt;
// Find Pl − 1 cut positions

A while leftCutCnt > 0 do
pWeights←GETPARTWEIGHTS(Ci,W, Permute,

pBegin, pEnd, cuts, cutCnt, µ);
(cuts, cutReduction)←
GETNEWCUTS(Wtot, pWeights, ε, cuts, cutCnt,

hiBounds, loBounds, done);
leftCutCnt← leftCutCnt− cutReduction;

return µ;

part estimates for the binary search. Once a coordinate’s
part is found, its part assignment and the part’s weight
are updated accordingly. If the left and right cut lines
of the part in which the coordinate lies are finalized, no
further calculation is done for the coordinate. During these
iterations, we also store the left and right closest coordinates
to each cut line. This detail is omitted in the psuedocode for
simplicity. This information is used later in GETNEWCUTS
to be able to skip any huge holes in the input domain. Once
the part weights are known in each process, a prefix-sum
operation is performed on the pWeights, and a single
REDUCEALL operation computes the global part weights.
MJ can then evaluate each cut position independently of
other cut positions; each cut can be evaluated by comparing
the weight on its left and right.

Once the global part weights are known, the GETNEW-
CUTS function (Algorithm 4) determines whether the cut
positions are final. If the cuts are to be moved, it makes
a new guess for the new cut coordinates. GETNEWCUTS
traverses all the cuts and skips the ones that are already
finalized. For each cut that is not finalized, it computes the
expected weight (ew) and the imbalances to the left and
right of the cut (li, ri). If they are both smaller than ε, the
position of the cut is finalized. Otherwise, a better upper
or lower bound is computed and the new cut position is
estimated using them.

In order to compute a better upper or lower bound, let
us assume without loss of generality that the weight on
the left side of a cut is less than the expected weight; the
operations are simply reversed when the weight on the right
side is less than its expected weight. When the weight on
the left side of a cut is less than the expected weight, the
lower bound for where the cut could be is set to the cut’s
position, as that position is our best estimate so far. In order
to compute a better position for the cut, the cuts on the right
side of the current cut are traversed in TIGHTENBOUNDS
(not shown). If a right-side cut (cutsp′) with an equal weight
to the expected weight is found, the new cut coordinate

Algorithm 3: GETPARTWEIGHTS

Data: Ci,W, Permute, pBegin, pEnd, cuts,
cutCnt, done, µ

for p from 0 to cutCnt do
if not(donep and donep−1) then

pWeightsp ← 0;

for j from pBegin to pEnd− 1 do
j ← Permutej ;
p← µj ;
// If the cuts on left and right are

finalized, skip part search;
if (donep and donep−1) then

continue;

// Perform binary search starting from
the previously assigned part index;

p← BINARYSEARCH (p, cuts, Ci,j);
pWeightsp ← pWeightsp +Wj ;
µj ← p;

// Prefix-sum;
for p from 1 to cutCnt do

pWeightsp ← pWeightsp−1 + pWeightsp;

REDUCEALL(pWeights);
return pWeights;

is set to cutsp′ . If the weight of a right-side cut is greater
than the expected weight and is less than the current upper
bound, the upper bound is tightened to this position. When
the weight of a right-side cut is lower than the expected
weight, it is a better lower bound than before.

After the new upper and lower bounds are determined,
the function estimates a new position for the cut. While
doing that, the weights of the upper and lower bounds
are used (omitted in the algorithm for simplicity), and an
estimate is computed by assuming uniform distribution
of weights between the upper and lower bounds. If the
new estimated cut position is the same as the previous cut
position, the imbalance tolerance cannot be achieved; there-
fore, the cut coordinate is finalized. This situation occurs
when there are coordinates with a total weight more than
unit weight exactly on the cut line position. To achieve a
balanced partition, some of the coordinates must be placed
on the left side of the cut, while the rest of the coordinates
must be placed on the right side.

3.2 Migration of the Coordinates
After a partition along a dimension is completed, the coor-
dinates in each part can be localized in a smaller number of
processors by performing migration. However, the volume
of the migration operation is linear with the total number
of coordinates; hence, migration might become a bottleneck
for the partitioning algorithm. Therefore, MJ tries to avoid
migration. When MJ does not migrate data, all MPI pro-
cesses participate in computing the position of each cut. This
requirement might reveal two problems.
Load Imbalance: MPI processes might have different num-
bers of coordinates in parts computed during the execution
of MJ. Therefore, the MPI processes will have different loads
in further partitioning of these parts. The worst case occurs
when an MPI process does not have any points in a part.
Even though the process does not have any points, it will

6

Algorithm 4: GETNEWCUTS

Data: Wtot, pWeights, ε, cuts, cutCnt,
hiBounds, loBounds, done

cutReduction← 0;
for p from 0 to cutCnt− 1 do

if donep then
continue;

ew ← (p+ 1) ∗Wtot/(cutCnt+ 1);
(li, ri)←IMBALANCEOF(pWeightsp, p,Wtot);
if li < ε and ri < ε then

donep ← True;
cutReduction← cutReduction+ 1;
continue;

else
if pWeightsp < ew then

loBoundsp ← cutsp;
(loBoundsp, hiBoundsp)←

TIGHTENBOUNDS (p+ 1, cutCnt);

else
hiBoundsp ← cutsp;
(loBoundsp, hiBoundsp)←

TIGHTENBOUNDS (0, p);
newCutsp ←GETNEWCUT(loBoundsp, hiBoundsp);

if newCutsp = cutsp then
donep ← True;
cutReduction← cutReduction+ 1;

return (newCuts, cutReduction);

participate in the computation and communication. Taking
such considerations into account, CHECKANDMIGRATE cal-
culates the imbalance of the processors in each part. The
function performs a single REDUCEALL to find the total
number of coordinates in each part (N∗,∗), and another
REDUCEALL to calculate the imbalance which is defined as:

imbalance =

∑ρ
i=0

∑κ
j=0

|Navg,j−Ni,j |
Navg,j

ρ× κ

where ρ is the number of processors, Navg,j = N∗,j
ρ is the

average number of coordinates over the processors in part j,
andNi,j is the number of local points of processor i in part j.
If MJ does not perform migration, all subsequent partitions
are computed one after the other, with each taking less time
if the work is balanced. As the imbalance increases, the
cost of subsequent partitioning also increases. On the other
hand, as imbalance increases, migration becomes cheaper, as
imbalance suggests that the data is already localized, which
reduces the volume of the migration. Therefore, MJ per-
forms migration when this imbalance value is greater than
a specified threshold. We choose this threshold empirically
as 30% as a result of our initial experiments.
High Number of Global Messages: In a single call of the
1DPART function, the number of global messages is m =
1 + it, where it is the iteration count of the loop in line A
of Algorithm 2. Assuming that it′ is the average iteration
count, and t is the total number of calls to 1DPART, the total
number of messages becomes t× (it′+1), in which t can be

computed as follows:

t = 1 +
d′−2∑
l=0

l∏
l′=0

Pl′

For example, with 32×32×32 = 32, 768 parts, t = 1057.
Although this t is small, the number of global messages
might become problematic as the number of processors and
partitioning dimensions d′ increases. Therefore, throughout
its execution, MJ limits the number of future REDUCEALL
operations redopt, and performs migration when redopt ∗ ρ
is greater than a specified value. We choose this threshold
empirically as 1.5M as a result of initial experiments.
Communication-Bounded Last-Dimension Partitioning:
Even if the processor imbalances are very low, migration
may improve the partitioner’s performance, since computa-
tion of cuts in the last dimensions may be communication
bounded. There are

∏d′−2
l=0 Pl parts at the beginning of the

last step. In the best case (when imbalance = 0), each
processor owns N ′ = NQd′−2

l=0 Pl

in each part. For all parts,

processors perform a REDUCEALL operation after compar-
ing N ′ coordinates against Pd′−1− 1 cuts. If N ′ is small, the
REDUCEALL among all processors dominates the execution
time. For example, when N = 500K and κ = 32× 32× 32,
each processor owns only ~500 coordinates in its parts at the
beginning of last dimension. Therefore, MJ forces migration
of coordinates if N ′ < 1000.

The CHECKANDMIGRATE function checks the above
three conditions, and decides whether or not to do migra-
tion. When doing the migration, two cases might occur.
When ρ ≤ κ, each processor can be given one or more
parts. To minimize migration volume, a part is greedily
assigned to the available processor with the largest number
of coordinates in that part. When ρ > κ, several processors
will be assigned to a single part. As before, the processors
are greedily chosen according to their availability and the
number of coordinates they have in that part. Since there are
several processors assigned to a single part, the processors
will perform communication operations in the further itera-
tions. Therefore, a second idea would be to assign a part to
the set of processors that are close to each other. Although
this assignment might increase the volume of the migra-
tion, it might decrease the cost of future communication
operations. However, the performance of these variants is
architecture-dependent. Although MJ supports both of these
processor-assignment heuristics, we use only the first one in
our experiments, since there was no significant execution-
time difference on the architecture we used.

After each processor determines to which processor it
should send its data, migration is performed. A part might
be assigned to a single processor, and the processors might
own more than one part. In this case, further partitions
of these parts are computed sequentially by the owner
processor. On the other hand, if a part is assigned to a set
of processors, a smaller subcommunicator is created, and
further partitioning of that part is performed in this smaller
subset of processors. Depending on the number of parts
assigned to the processor, CHECKANDMIGRATE updates
newxPerm, xPerm, and κ.

7

Fig. 2. MJ partition with part count κ = 23 and recursion depth d′ = 2.

3.3 Partitioning into Arbitrary Numbers of Parts

For simplicity, section 3.1 explains a limited partitioning into
κ = P0 × P1 × . . . × Pd′−1 parts. However, MJ does not
require κ to be a product of integers Pl. Instead, κ can be any
number, even a prime number. Therefore, MJ can be defined
in a more general way: MJ partitions the set of coordinates
into a desired number of parts κ in a given number of steps
(recursion depth d′). For example, Figure 1(left) can be viewed
as MJ partitioning into κ = 16 in d′ = 4 steps, while its other
two partitions use d′ = 2 steps.

When d′ and a prime κ are given, MJ tries to choose
multisection counts in each dimension that are as close as
possible. MJ partitions the data into P0 = dκ 1

d′ e along
the first dimension. Then, for each of the parts obtained
at the first level, its future number of parts is calculated
and used as the part’s expected weight. Figure 2 shows
an example of MJ used to partition a dataset (with total
weight 460 equal to its area) into κ = 23 parts in d′ = 2
steps. Initially, MJ determines the number of sections that
will partition the data along the first dimension; that is,
partArray0 = d231/2e = 5. Then, MJ determines how many
future parts will be obtained from each part. In this case, the
first three parts will be partitioned into 5, while the last two
parts will be partitioned into 4. The weights for the parts
are adjusted according to the future number of parts, and
MJ multisects the data that yields a partioning into 5 parts
with weights 100, 100, 100, 80 and 80, respectively. The first
three parts and the last two are partitioned into 5 and 4
parts, respectively, yielding 23 parts, each with weight 20.

3.4 Properties of partitions from Multi-Jagged

In this subsection, we use some definitions used to analyze
the properties of RCB [3]. The definitions are restated here
for clarity. Each partition line in Figure 1 is subdivided into
a number of segments by the incidence of other partition
lines. For example, the first (red) cut line using RCB in
Figure 1(left) is subdivided into seven segments. The graph
of a partition is the dual graph obtained by representing each
part by a vertex, and adding an edge between two nodes if
and only if the corresponding regions share a segment.

For the analysis of spatial partitions, assume that each
part is assigned to different processors. As a result, there
are two metrics to analyze the quality of the partition: the
maximum degree of a vertex in the partition graph and the
total number of edges in the partition graph. The analysis
in this section is restricted to partitioning in two dimensions
p × q, even though the multi-jagged algorithm works for
arbitrary number of dimensions. To simplify the discussion,
we say stripes are the regions corresponding to parts in
the first dimension. For example, Figure 1(middle) has four

vertical stripes. Each stripe is further partitioned into q parts
with q − 1 cut lines.

The upper bound for the maximum degree of a vertex
in the partition graph is 2 × q + 2. This bound arises when
any one part in stripe i (1 < i < p) shares its perimeter
with all the q parts of each of the two neighboring stripes
i− 1 and i+ 1. This upper bound was observed previously
in Manne [22]. If p = q = 2k/2 for computing 2k parts, the
upper bound for the maximum degree of a vertex in the
partition graph is 2× 2k/2 + 2; this bound is worse than the
upper bound for RCB which is 2k/2 + 2k/2−1 + 3 (when k is
even and k ≥ 4) [3]. The difference between the two upper
bounds is 2k/2−1 − 1; however, we will show that MJ and
RCB behave similarly in practice. When k is odd, MJ can
reach the same upper bound as RCB by using p = 2bk/2c+1

and q = 2bk/2c. Instead of using p = q, we can increase p to
obtain a better bound in practice.

The total number of edges in the partition graph can be
derived using a simple constructive argument. Within any
one stripe i, there are q regions (or q vertices in the partition
graph) and q − 1 cut lines (or q − 1 edges in the partition
graph). There are p such stripes, resulting in p×(q−1) edges
corresponding to the cut lines in the second dimension.

The number of edges corresponding to the cut lines in
the first dimension is the number of segments that could
be created by joining p stripes. Consider the case with two
stripes (p = 2). The least number of segments (q) on the
cut line between the two stripes is obtained when for any
j, 1 ≤ j ≤ q, the jth cut lines inside both stripes are collinear.
Moving any one of the cut lines in the second dimension
up/down increases the number of segments by at most two.
There are q−1 such cut lines, which gives us 2×(q−1) as the
maximum number of segments between two stripes. There
are p−1 such cut lines (or p stripes) giving us (p−1)× (2×
q − 1) segments. Adding the number of segments from the
second dimension, the upper bound for the total number of
edges in the partition graph is p×(q−1)+(p−1)×(2×q−1).
When p = q = 2k/2, the upper bound is 3× 2k− 2k/2+2 +1,
the same as the upper bound for RCB (when k is even).

4 EXPERIMENTAL RESULTS

We evaluated the performance of MJ on various real and
synthetically generated datasets. We compared MJ’s run-
time and partition quality with those of RCB. All exper-
iments were run on the Hopper supercomputer, a Cray
XE6 at the National Energy Research Scientific Computing
Center. Each compute node on Hopper has two twelve-
core AMD “MagnyCours” processors running at 2.1GHz,
with 32 GBs of memory (slightly more than 1 GB of memory
per core). Hopper has a Cray “Gemini” interconnect for
internode communication.

We used Zoltan and Zoltan2 [10] to test RCB and MJ, re-
spectively. Zoltan (hence, RCB) is implemented in C; Zoltan2
(hence, MJ) is in C++. We used the gcc compiler (version
4.7.1) with -O3 optimization flag, and the OpenMPI library
(version 1.4.5). For fair comparisons with RCB (which does
not have multithreading support), we ran all experiments
with one MPI rank per core.

Experiments were run on four synthetic and three real
datasets, whose properties are shown in Table 1. Uniform

8

and Normal are 2D datasets whose (x, y) coordinates are
randomly distributed with uniform and normal distribu-
tions, respectively. 2DANorm is generated by taking the
absolute values of (x, y) drawn from normal distributions;
a circular hole in the domain creates a large empty region
(see Figure 3), making this dataset challenging to find cut
positions with linear prediction methods. 3DANorm is the
three-dimensional analogue of 2DANorm. Two real datasets
(huge-bubbles and europe_osm) are from the University
of Florida sparse matrix collection [6]. The tetraMesh
dataset is a 3D mesh of the Greenland ice sheet [16].

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5000 10000 15000 20000 25000 30000

Fig. 3. An example of a 2DANorm dataset

TABLE 1
Properties of datasets for the experiments

Number Sequential
of RCB Time

Type Name Points d (seconds)
Weak Scaling

Synthetic Uniform 4M/proc 2 6.39
Normal 4M/proc 2 7.23
2DANorm 4M/proc 2 7.18
3DANorm 4M/proc 3 7.68

Strong Scaling
Synthetic Uniform 50M 2 96.0

Normal 50M 2 114.9
2DANorm 50M 2 114.3
3DANorm 50M 3 120.2

Real hugebubbles-00020 21.2M 2 35.7
europe osm 50.9M 2 96.8
tetraMesh 94.7M 3 102.0

The execution time of the partitioning algorithm de-
pends highly on the initial distribution of the data. Thus,
we studied scaling on datasets with different initial distri-
butions of the coordinates among the processors. For the
synthetic datasets, each processor generated points across
the entire domain according to the specified distribution.
Thus, in this default initial distribution, each processor had
points from across the entire domain. After partitioning
along a dimension, if further partitioning was localized
via migration, migration volume would be very large. On
the other hand, if localization was avoided and further
partitioning was done by all processors, the workloads of
the processors would be quite balanced, as all processors
would have roughly equal numbers of points in all regions
of the domain and, thus, in each part.

In our experiments, we compared this default initial dis-
tribution with data that was localized via pre-partitioning.
As before, the processors generated their coordinates ran-
domly. Then RCB was used to partition the datasets into the
given number of processors. All of the coordinates were then
migrated to their assigned processor in this pre-partition,

and the resulting localized data distribution was used as
the initial distribution for MJ and RCB. In this scenario,
MJ and RCB might still need to migrate data. For example,
MJ might require migration since pre-partitioning was done
with RCB, while RCB might require migration since the pre-
partition had ρ parts and the target partition had κ parts.

4.1 Partition Quality

We used two metrics to evaluate the quality of a partition:
load balance and communication costs for the application.

Load balance is the goal of both MJ and RCB, and both
did well in this metric. As the data used in the experiments
in this paper have unit weights, both algorithms found per-
fectly balanced partitions. Therefore, their partition quality
in terms of load balance was the same.

Neither RCB nor MJ minimize the application communi-
cation costs metric explicitly; instead, enforcing geometric
proximity of data within processors is meant to implic-
itly keep communication costs low. To estimate application
communication costs, we computed the maximum and total
number of messages induced by computed partitions. Since
each neighbor represents a communication message, we
counted the number of neighbors of each part and reported
the maximum number of messages per part, and the total
number of messages over the entire partition. In this exper-
iment, we ran MJ with d′ = d (denoted by MJ) and with
d′ = 2d (denoted by MJ’). 2D datasets are partitioned into
256 (16× 16 and 4× 4× 4× 4 for MJ and MJ’, respectively),
4,096 (64× 64 and 8× 8× 8× 8) and 65,536 (256× 256 and
16 × 16 × 16 × 16), while 3D datasets are partitioned into
512 (8× 8× 8 and 2× 2× 2× 4× 4× 4), 4,096 (16× 16× 16
and 4 × 4 × 4 × 4 × 4 × 4) and 32,768 (32 × 32 × 32 and
4× 4× 4× 8× 8× 8).

Figure 4 and Figure 5 give the results for 2D and
3D datasets, respectively. As seen in the figures, the total
number of messages is similar for RCB and MJ variants.
This result is supported by the theory in Section 3.4. Even
though the maximum number of messages is worse with MJ
than with RCB, it is much lower than the theoretical worst-
case bounds. For example, for 65,536 parts with 256 × 256
partitioning, the theoretical worst-case maximum number
of messages with MJ is 2 × 256 + 2 = 514, while the actual
number is 109 or less in all our experiments. Moreover, in
most of the cases, the maximum number of neighbors can be
reduced by increasing the recursion depth, as MJ’ generally
has lower maximum numbers of neighbors than MJ.

4.2 Weak Scaling

Weak scaling experiments were performed using the syn-
thetic datasets. Every processor was given 4M coordinates,
and the number of processors ranged from 1 to 6144. Since
the number of points per processor, and hence, the work,
was kept constant, the ideal result would be constant execu-
tion time as the number of processors increased. In practice,
however, we expect small increases in the execution time
as we increase the processor count because of increased
communication costs as the number of processors increases.
In this experiment, 2D datasets were partitioned into 65,536

9

8	
 8	
 8	
 11
	

9	
 1,
41
0	

1,
41
0	

1,
41
0	

1,
41
0	

1,
41
0	

8	
 8	
 8	
 17
	

15
	

24
,0
66
	

24
,0
66
	

24
,0
66
	

23
,7
46
	

24
,0
66
	

8	
 8	
 9	
 50
	

47
	

39
1,
16
6	

39
1,
16
8	

39
1,
16
4	

36
2,
45
6	

39
1,
13
6	

0.5	

1	

2	

4	

U
N
IF
O
RM

	

N
O
RM

AL
	

2D
AN

O
RM

	

bu
bb

le
s	

eu
ro
pe

_o
sm

	

U
N
IF
O
RM

	

N
O
RM

AL
	

2D
AN

O
RM

	

bu
bb

le
s	

eu
ro
pe

_o
sm

	

U
N
IF
O
RM

	

N
O
RM

AL
	

2D
AN

O
RM

	

bu
bb

le
s	

eu
ro
pe

_o
sm

	

U
N
IF
O
RM

	

N
O
RM

AL
	

2D
AN

O
RM

	

bu
bb

le
s	

eu
ro
pe

_o
sm

	

U
N
IF
O
RM

	

N
O
RM

AL
	

2D
AN

O
RM

	

bu
bb

le
s	

eu
ro
pe

_o
sm

	

U
N
IF
O
RM

	

N
O
RM

AL
	

2D
AN

O
RM

	

bu
bb

le
s	

eu
ro
pe

_o
sm

	

MAXIMUM	
 TOTAL	
 MAXIMUM	
 TOTAL	
 MAXIMUM	
 TOTAL	

Num	
 Parts	
 =	
 256	
 Num	
 Parts	
 =	
 4096	
 Num	
 Parts	
 =	
 65536	

N
or
m
al
iz
ed

	
 N
um

be
r	
 o

f	
 M
es
sa
ge
s	

MJ'	

MJ	

RCB	

Fig. 4. Normalized maximum and total number of messages in MJ, MJ’ and RCB partitions of 2D datasets. For each instance, the results with MJ
and MJ’ are normalized with respect to RCB’s results, which are listed next to the corresponding figure bars. (Lower values are better.)

20
	

20
	

5,
72

6	

5,
73

4	

24
	

23
	

51
,4
00

	

50
,6
06

	

26
	

44
	

43
4,
61

2	

41
5,
10

0	

0	

0.5	

1	

1.5	

2	

2.5	

3DANORM	
 tetraMesh	
 3DANORM	
 tetraMesh	
 3DANORM	
 tetraMesh	
 3DANORM	
 tetraMesh	
 3DANORM	
 tetraMesh	
 3DANORM	
 tetraMesh	

MAXIMUM	
 TOTAL	
 MAXIMUM	
 TOTAL	
 MAXIMUM	
 TOTAL	

Num	
 Parts	
 =	
 512	
 Num	
 Parts	
 =	
 4096	
 Num	
 Parts	
 =	
 32768	

N
or
m
al
iz
ed

	
 N
um

be
r	
 o

f	
 M
es
sa
ge
s	

MJ'	

MJ	

RCB	

Fig. 5. Normalized maximum and total number of messages in MJ, MJ’ and RCB partitions of 3D datasets. For each instance, the results with MJ
and MJ’ are normalized with respect to RCB’s results, which are listed next to the corresponding figure bars. (Lower values are better.)

0.
49
	
 1.

00
	

0.
55
	
 1.
00
	

0.
54
	
 1.
00
	

0.
97
	

1.
00
	

1.
15
	

1.
66
	

1.
24
	
 1.
93
	

1.
17
	
 2.
00
	

1.
43
	
 2.
11
	

1.
11
	
 2.
10
	

1.
27
	
 2.

60
	

1.
21
	
 2.

62
	

1.
47
	
 2.
64
	

1.
13
	

2.
93
	

1.
29
	

3.
78
	

1.
23
	

3.
24
	

1.
56
	

3.
54
	

1.
25
	

5.
92
	

1.
42
	

6.
19
	

1.
38
	

5.
56
	

1.
80
	

6.
76
	

2.
04
	

12
.6
2	

2.
03
	

11
.7
8	

2.
00
	

12
.4
0	

2.
79
	

13
.4
4	

0.3	

0.5	

1.0	

2.0	

4.0	

8.0	

16.0	

MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	

UNIFORM	
 NORMAL	
 2DANORM	
 3DANORM	

N
or
m
al
iz
ed

	
 E
xe
cu
Go

n	

Ti
m
e	

w
.r.
t.	

se
qu

en
Ga

l	

RC

B	

1	

24	

96	

384	

1536	

6144	

Fig. 6. Weak-scaling execution times of MJ and RCB (normalized with respect to sequential RCB’s time) on synthetic datasets with 4M points per
processor. For all processors, the points are randomly generated and scattered over the entire domain. (Lower values are better.)

parts; the 3D dataset was partitioned into 32,768. MJ parti-
tioned the space into 256 × 256 and 32 × 32 × 32 parts for
the 2D and 3D datasets, respectively.

Figure 6 shows the weak-scaling execution times of MJ
and RCB, normalized with respect to the sequential run-
time of RCB on the corresponding dataset. In Figure 6, the
default initial distribution was used, with each processor
owning coordinates across the entire domain. We see in the

figure that the execution time of RCB increased with the
number of processors due to the cost of migration. Since
the points owned by a processor can be from any region of
the domain, a significant portion of the data (roughly half)
needed to be migrated between subsets of processors after
each bisection. On the other hand, in most instances, MJ
avoided migration as it was predicted to be expensive. As
seen in the figure, MJ did not have perfect weak scaling,

10

but the increase in MJ’s parallel execution time was much
smaller than RCB’s. Even though the migration was expen-
sive in these experiments, MJ did perform migration starting
from 6144 (1536) processors to avoid 256 × it′ (1024 × it′)
REDUCEALL operations among large numbers of processors
for the 2D (3D) datasets. Although performing migration
in these cases reduced the performance of MJ, the cost of
the migration was lower than in RCB, since it was per-
formed only once. Even in the 3D datasets, migration was
performed only after partitioning along the first dimension,
which reduced the migration cost relative to RCB.

Figure 7 shows the weak-scaling execution times (again,
normalized to sequential RCB) using MJ and RCB with the
same datasets, but now with initial distributions localized
by RCB pre-partitioning. In this experiment, we also studied
the effect of perturbing the input after the pre-partitioning
step. Perturbing the data changes the execution time by
changing the migration volume and/or the number of it-
erations needed to compute cut positions. In the figure, the
Noise value refers to the fraction of points in each processor
whose coordinates have been regenerated using a uniform
distribution after pre-partitioning. Each processor chose the
interval for its uniform distribution by doubling the min-
imum and maximum coordinate distance to the processor
centroid. In Figure 7, Noise = 0 represents the normalized
execution time of MJ and RCB with pre-partitioning and
no perturbed points, while Noise = 0.05 represents the
increase in execution time when perturbations were applied
to 5% of the points.

Since the processors had localized data in this experi-
ment, we expected the total migration volume to be lower
than in the previous experiment. Also because of the local-
ization, the workloads of the processors among the parts
after the first partitioning in MJ were uneven. Therefore,
MJ chose to perform migration in all instances in this
experiment, including the ones with noise. As shown in
Figure 7, MJ performed better than RCB in most instances,
even though the pre-partitioning was done with RCB and
MJ’s migration volume was expected to be larger than that
of RCB. This result was mainly because MJ performed mi-
gration less frequently than RCB. For example, with the 2D
datasets, MJ migrated data only once after partitioning the
dataset into 256 parts, regardless of the number processors
used. The migration cost of MJ increased with the number of
processors, because the migration volume and the number
of processors participating in the migration increased. When
we added noise to the datasets, we observed that greater mi-
gration volume more significantly increased the execution
time at large core counts for RCB than for MJ. For example,
when 5% noise was added to the 3DANorm dataset on 6144
processors, the execution time of RCB increased to 92.08
seconds from 57.11 seconds, while the execution time of MJ
increased to 17.50 seconds from 13.42 seconds.

A surprising result in Figure 7 is that MJ’s execution time
decreased above 24 processors. On 24 processors, processor
workloads were imbalanced after the 2D (3D) datasets were
partitioned into 256 (32) along the first dimension. During
migration, 16 (8) processors received 11 (2) of the resulting
parts each, while 8 (16) processors received 10 (1) parts each.
Therefore, after partitioning along the first dimension, the
processors had imbalanced workloads, resulting in higher

execution times. For higher processor counts, processor
workloads were balanced after the first partition; if work-
loads became imbalanced, they did so at later steps.

In the weak scaling experiments, we observe that the
execution time of both MJ and RCB were smaller when the
data was pre-partitioned for almost all instances compared
to their counterparts in Figure 6. Localization via migration
makes the algorithms faster for subsequent steps, and with
pre-partitioning, the cost of each migration is lower. How-
ever, there were a few instances for which the algorithms
ran more slowly on the data with 5% noise than without
pre-partitioning (e.g., 6144-processor experiments with MJ
on 2DANorm and RCB on Normal). Even though the migra-
tion costs were lower with pre-partitioning, execution time
increased because, with noise, the global intervals in which
cuts were considered changed, resulting in increased time
to find cut positions.

4.3 Strong scaling

Strong scaling experiments were run up to 1536 processors
for all synthetic and real datasets in Table 1. The synthetic
dataset size was 50M points. As in the weak-scaling experi-
ments, 2D datasets were partitioned into 65,536 (256 × 256
for MJ) parts and 3D datasets were partitioned into 32,768
(32 × 32 × 32 for MJ). Figure 8 shows the strong-scaling
speedup with respect to sequential RCB for the generated
datasets with the default initial distribution (i.e., each pro-
cessor owning points from across the entire domain).

In all instances, MJ obtained higher speedups than RCB.
As in our weak-scaling experiments, this result was due
to differing migration costs in the two methods. In all
datasets, RCB scaled well up to 384 processors; starting at
1536 processors, RCB was communication bounded. With
the 2D datasets, MJ showed increasing speedups up to
96 processors; then the speedup dropped slightly for 384
processors, and increased again for 1536 processors. Increas-
ing the number of processors reduced the work of each
processor and made the partitioning more communication
bounded, causing MJ to switch from no-migration mode to
migration mode. For example, when partitioning Uniform
with 384 processors, each processors initially owned ~130K
coordinates. After partitioning into 256 parts along the first
dimension, each part in each processor had ~500 coordi-
nates, less than the threshold (1000) from Section 3.2. The
added migration lowered the speedup on 384 processors,
but the speedup was recovered at 1536 processors. The
switch between MJ’s no-migration and migration modes
occurred at 96 processors for 3D datasets.

We observed higher speedups for 3DANorm than for the
2D datasets. Since each recursion level found fewer parts for
3DANorm compared to the 2D datasets, less time was spent
in steps that were communication bounded. For example,
with 1536 processors, each processor initially owned only
~32.5K coordinates, so partitioning was communication
bounded in the first recursion level. In this level, MJ per-
formed more operations by finding 255 cuts in 2D datasets,
while for 3D datasets, MJ sought only 31 cuts. Data migra-
tion reduces this problem in subsequent recursion levels.

Figure 9 shows the strong scaling speedups with the
pre-partitioned initial distributions. As before, we add an

11

0.
49

	
 1.
04

	

0.
81

	

0.
85

	

0.
97

	

1.
26

	

1.
00

	

1.
20

	

1.
41

	

1.
54

	

2.
14

	
 4.
15

	

0.
55

	
 1.
04

	

0.
94

	

0.
93

	

1.
02

	

1.
50

	

1.
00

	

1.
50

	

1.
80

	

1.
96

	

2.
27

	
 4.
23

	

0.
54

	
 1.
01

	

0.
86

	

1.
03

	

1.
08

	

1.
50

	

1.
00

	

1.
55

	

1.
76

	

1.
97

	

2.
30

	
 4.
27

	

0.
97

	

1.
63

	

1.
19

	

1.
18

	

1.
31

	

1.
75

	

1.
00

	

1.
67

	

1.
91

	

2.
07

	

2.
70

	
 7.
43

	

0.
49

	

1.
12

	

0.
93

	

0.
96

	

1.
08

	
 1.
74

	

1.
00

	
 1.
32

	

1.
47

	
 2.
05

	
 2.
99

	

7.
78

	

0.
55

	

1.
05

	

0.
94

	

1.
05

	

1.
18

	
 1.
95

	

1.
00

	
 1.
63

	

1.
87

	

2.
09

	
 3.
50

	

16

.8
9	

0.
54

	

1.
11

	

1.
02

	

1.
29

	

1.
54

	
 2.
17

	

1.
00

	
 1.
55

	

1.
76

	

1.
97

	

3.
46

	
 5.
67

	

0.
97

	

1.
73

	

1.
33

	

1.
51

	

1.
93

	

2.
28

	

1.
00

	
 1.
67

	

1.
98

	
 2.
64

	
 4.
21

	

11

.9
9	

0.3	

0.5	

1.0	

2.0	

4.0	

8.0	

16.0	

32.0	

1	
 24
	

96
	

38
4	

15
36

	

61

44
	
 1	
 24
	

96
	

38
4	

15
36

	

61

44
	
 1	
 24
	

96
	

38
4	

15
36

	

61

44
	
 1	
 24
	

96
	

38
4	

15
36

	

61

44
	
 1	
 24
	

96
	

38
4	

15
36

	

61

44
	
 1	
 24
	

96
	

38
4	

15
36

	

61

44
	
 1	
 24
	

96
	

38
4	

15
36

	

61

44
	
 1	
 24
	

96
	

38
4	

15
36

	

61

44
	

MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	

UNIFORM	
 NORMAL	
 2DANORM	
 3DANORM	

N
or
m
al
iz
ed

	
 E
xe
cu
Go

n	

Ti
m
e	

w
.r.
t.	

se
qu

en
Ga

l	

RC

B	
 	

Noise=0.05	

Noise=0	

Fig. 7. Weak-scaling execution times of MJ and RCB (normalized by serial RCB’s time with Noise=0) on synthetic datasets with 4M points per
process. Points are randomly generated and prepartitioned using RCB so that each processor owns a unique region. (Lower values are better.)

1.
59
	

1.
00
	
 1.
54
	

1.
00
	
 1.
53
	

1.
00
	

1.
01
	

1.
00
	

39
.9
0	

18
.2
3	
 38
.4
7	

16
.3
7	
 39
.4
8	

16
.2
9	

21
.2
4	

15
.1
5	

11
7.
78
	

58
.9
3	

10
0.
94
	

52
.4
6	
 11
6.
04
	

49
.2
7	
 88
.6
8	

44
.6
6	
 79
.4
4	

59
.2
7	

87
.1
5	

61
.1
2	

88
.3
6	

61
.6
1	

34
9.
39
	

55
.0
9	

81
.3
9	

20
.7
4	

11
3.
17
	

24
.3
5	

11
2.
56
	

21
.7
8	

34
0.
67
	

21
.1
5	

1	

2	

4	

8	

16	

32	

64	

128	

256	

512	

MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	

UNIFORM	
 NORMAL	
 2DANORM	
 3DANORM	

Sp
ee
du

p	

w
.r.
t.	

se
qu

en
Ea

l	
 R
CB

	

1	
 24	
 96	
 384	
 1536	

Fig. 8. Strong-scaling speedups of MJ and RCB relative to serial RCB on synthetic data sets with 50M points. Each processor’s initial points are
randomly generated and scattered over the entire space. (Higher values are better.)

31
.1
5	
 17
5.
56

	

50

7.
37

	

69

6.
60

	

23
.0
2	
 11
4.
64

	

47

9.
22

	

17

79
.2
6	

27
.5
4	
 10
9.
96

	

37

8.
20

	

91

6.
46

	

25
.3
8	
 13
2.
47

	

34

7.
42

	

57

2.
54

	

16
.3
7	
 86

.3
7	
 34
0.
28

	

11

09
.9
9	

16
.7
7	
 59
.2
8	
 22
3.
71

	

80

8.
04

	

1.
53

	

29

.1
7	
 15
2.
54

	

52

2.
65

	

66

4.
64

	

17
.3
8	
 99

.6
1	
 39
8.
37

	

13

52
.7
4	

20
.9
1	
 80
.5
3	
 32
6.
68

	

84

9.
85

	

17
.7
4	
 10
3.
67

	

44

2.
23

	

0.
31

	

12

.2
0	
 56
.4
1	
 26
7.
96

	

10

21
.7
3	

18
.9
2	
 66
.3
1	

21
2.
72

	

63

4.
26

	

1.
54

	

33

.7
9	

18
8.
40

	
 61
5.
59

	

69

6.
60

	

0.
48

	

25

.0
2	

12
6.
49

	
 51
7.
19

	
 18
97

.4
1	

1.
00

	

28

.3
6	

10
9.
96

	
 38
6.
80

	
 13
06

.4
9	

1.
59

	

26

.0
6	

13
3.
29

	
 40
6.
60

	

58

9.
79

	

0.
38

	

16

.8
1	

87
.7
9	

36
4.
31

	
 11
19

.5
7	

1.
00

	

18

.4
0	

69
.6
0	

29
2.
45

	
 11
43

.4
2	

1.
53

	

31

.2
3	

15
4.
14

	
 53
8.
67

	

66

4.
64

	

0.
48

	

18

.2
6	

10
3.
58

	
 43
4.
25

	
 13
52

.7
4	

1.
00

	

20

.9
1	

80
.5
3	

32
6.
68

	
 12
80

.6
2	

1.
01

	

18

.6
0	

10
6.
33

	
 44
2.
23

	

10

53
.9
9	

12
.8
6	

56
.4
1	

29
2.
21

	
 10
89

.3
5	

1.
00

	

18

.9
2	

72
.5
9	

32
7.
72

	
 97
1.
00

	

0.3	

0.5	

1.0	

2.0	

4.0	

8.0	

16.0	

32.0	

64.0	

128.0	

256.0	

512.0	

1024.0	

2048.0	

4096.0	

8192.0	

1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	
 1	
 24
	

96
	

38
4	

15
36

	

MJ	
 MJ'	
 RCB	
 MJ	
 MJ'	
 RCB	
 MJ	
 MJ'	
 RCB	
 MJ	
 MJ'	
 RCB	

UNIFORM	
 NORMAL	
 2DANORM	
 3DANORM	

Sp
ee
du

p	

w
.r.
t.	

Se
qu

en
Ea

l	
 R
CB

	

Noise=0.05	

Noise=0	

Fig. 9. Strong-scaling speedups of MJ and RCB relative to serial RCB on synthetic datasets with 50M points. Points are randomly generated and
then prepartitioned using RCB so that each processor owns a unique area in the space. (Higher values are better.)

MJ variant MJ’ to the comparisons. In MJ’, the recursion
depth is doubled; that is, MJ’ partitions the 2D datasets into
16× 16× 16× 16, and 3D datasets into 4× 4× 4× 8× 8× 8
parts. Similar to the weak-scaling experiments in Figure 7,
we also study how speedups are affected by the addition
of 5% noise. In Figure 9, Noise=0.05 corresponds to the
speedups obtained for the datasets perturbed with 5% noise.
Noise=0 corresponds to the reduction in speedup when
noise is added. Thus, the speedup without noise is the sum
of the Noise = 0.05 and Noise = 0 values, which is printed
on the top of each bar in the chart.

We observe that all algorithms scaled up to 1536 pro-

cessors, and speedups were always higher than their coun-
terparts in Figure 8, thanks to the pre-partitioned data.
The addition of the noise does not affect performance as
significantly as in the weak-scaling experiments, since the
number of coordinates was fixed at 50M , resulting in fewer
perturbations and smaller effects on migration cost.

The speedups obtained by MJ are larger than RCB and
MJ’ up to 384 processors in all instances. However, when
the number of processors increases to 1536, MJ is outper-
formed by both RCB and MJ’. This result is, again, because
MJ seeks a larger number of cuts when the execution is
communication bounded. As in the experiments of Figure 8,

12

MJ computes 255 cuts in the first communication-bounded
recursion level, while RCB and MJ’ compute only 1 and
15 cuts, respectively. However, MJ’ outperformed RCB in
most instances with 1536 processors. These results suggest
that when the processor workloads are low, scalability is en-
hanced by increasing the recursion depth slightly, but multi-
sectioning still has performance benefits over bisection.

Figure 10 shows the strong scaling results for the real
datasets using MJ, MJ’ and RCB, with the same number of
parts and recursion depths as for the synthetic 2D and 3D
experiments. The real datasets were read from their input
files in the order they were stored. Each processor owned
a chunk of consecutive coordinates from the file. Because
of the order in which the coordinates were listed in the
files, the initial distribution of coordinates to processors was
somewhat localized. MJ and MJ’ performed migration for
all of the real datasets after the first step. However, when
the recursion depth was larger than two, some processor
groups performed migration in subsequent steps based on
the imbalance calculations, while others avoided migration.

Huge-bubbles is the smallest real dataset in this exper-
iment. None of the algorithms scaled after 96 processors.
In all instances with Huge-bubbles, MJ and MJ’ outper-
formed RCB. As expected, MJ’ outperformed MJ on 96
and 384 processors. However, MJ was faster than MJ’ on
1536, likely because MJ’ needed to perform more migration
because of its higher recursion depth. Similarly, for europe,
MJ and MJ’ outperformed RCB; MJ’ is faster than MJ only
on 384 processors. For tetraMesh, the largest real dataset,
all of the algorithms scaled up to 1536 processors, and MJ
obtained the best performance in all instances.

4.4 Dynamic Partitioning Simulation

In this experiment, we simulated the behavior of the al-
gorithms for dynamic partitioning. We used the synthetic
datasets with 4M coordinates per processor. As opposed to
the weak-scaling experiments where the target number of
parts was fixed, in these experiments, the target number of
parts is the number of processors used (i.e., κ = ρ). Thus,
although the number of points per processor is constant, the
target number of parts (and, therefore, the number of cuts to
be computed) increases. In the experiments, MJ was given
only the target number of parts and the recursion depth;
it determined the number of the cuts along the dimensions
automatically, as described in Section 3.3. To simulate pre-
distributed data for dynamic partitioning, we generated
each dataset and then pre-partitioned the data using MJ or
RCB, depending on which algorithm was to be tested. Since
data was pre-partitioned using the algorithms themselves,
migration volume was zero when no noise was added.
However, with noise, the migration volume increased.

Figure 11 shows the execution time of the algorithms,
normalized with respect to the execution time of RCB on
24 processors. Although the number of parts computed in-
creased with the number of processors, MJ’s execution time
was nearly unchanged when there was no noise; this result
was largely because the recursion depth was fixed to two
or three for 2D and 3D datasets, respectively, regardless of
the number of parts computed. In contrast, RCB’s recursion
depth (and, thus, execution time) grew with the number

of parts. For all instances, MJ was faster than RCB, and its
performance was affected by noise much less than RCB’s.

4.5 Multithreading

Almost all of today’s parallel systems contain CPUs with
multiple cores. To take advantage of these architectures,
many applications use hybrid programming models such
as MPI+OpenMP. Many studies show that using one MPI
process per NUMA node (usually one per socket), and one
thread per core of the NUMA node yields good perfor-
mance. When such a hybrid application calls a partitioning
library, the library has two options: either run an MPI-only
implementation of the partitioning algorithm, matching the
number of MPI processes in the application, or run a hybrid
implementation of the algorithm, again with same number
of MPI processes but with more flexibility in the number
of threads. Clearly, in the former case, the library does not
take advantage of all of the cores. But if only MPI-only
partitioners are available, this option is the only one that can
be used. To address this practical problem, we developed MJ
using a hybrid MPI+OpenMP programming model.

All results presented up to this point used one thread
per MPI process to fairly compare with Zoltan’s RCB. Here,
we run an experiment using the huge-bubbles dataset, as-
suming that the application calling the partitioning library
is hybrid. We present results on 1-64 nodes, using four MPI
processes per node (since each node in our test environment
has four NUMA nodes with six cores each). The partitioner
is run using 4-256 MPI processes, and the dataset is parti-
tioned into the same number of parts as MPI processes. The
results are given in Figure 12(a). In this figure, U-RCB and
U-MJ correspond to RCB’s and MJ’s under-utilized MPI-
only versions; H-MJ represents MJ’s hybrid version. As seen
in figure, H-MJ obtains speed-ups between 2 and 3 with
respect to U-MJ, which clearly highlights the importance of
having a partitioning technique that can match the environ-
ment in which the application is running.

On the other hand, in Figure 12(b), we compare H-MJ
with fully utilized versions of RCB and MJ for the same
problem. That is, RCB and MJ are run in the MPI-only mode
but using all the underlying cores (24-1536 MPI processes);
the data is still partitioned into 4-256 parts. Although H-
MJ is faster than RCB in most cases, MJ’s MPI-only version
is often faster than the hybrid version. This result occurs
because the MPI-only implementation has more localized
data storage; therefore, it is more cache-friendly than the
hybrid version. Hence, we envision H-MJ is needed only for
applications that use fewer MPI ranks than available cores.
For traditional applications, we recommend MPI-based MJ.

5 CONCLUSIONS

We have proposed a parallel multi-jagged coordinate parti-
tioning algorithm, MJ, that differs from RCB in its ability to
partition into multiple parts at once and its handling of data
during partitioning. We have presented experiments on var-
ious datasets, and compared the performance of MJ against
Zoltan’s RCB. Our weak scaling experiments demonstrated
that our MJ algorithm performs better than Zoltan’s RCB,
and scales up to 6144 processors. MJ scaled well up to 384

13

2.
17
	

1.
36
	

1.
00
	
 1.
75
	

0.
95
	

1.
00
	
 1.
90
	

1.
09
	

1.
00
	

28
.1
8	

21
.2
2	

13
.2
7	
 26
.6
6	

9.
93
	

12
.3
2	
 26

.6
4	

13
.2
0	

12
.8
1	

65
.6
0	

65
.6
5	

40
.2
2	
 77
.3
8	

43
.3
5	

41
.0
8	
 71
.5
3	

43
.9
9	

35
.5
5	

28
.3
6	
 51
.1
1	

36
.9
4	

53
.0
2	

60
.8
0	

46
.4
9	

14
4.
83
	

11
8.
90
	

96
.0
5	

24
.3
2	

15
.2
8	

11
.8
1	

62
.1
4	

41
.9
3	

43
.0
3	

23
6.
30
	

19
0.
81
	

11
1.
13
	

0.5	

1.0	

2.0	

4.0	

8.0	

16.0	

32.0	

64.0	

128.0	

256.0	

MJ	
 MJ'	
 RCB	
 MJ	
 MJ'	
 RCB	
 MJ	
 MJ'	
 RCB	

bubbles	
 europe_osm	
 tetraMesh	

Sp
ee
du

p	

w
.r.
t.	

se
qu

en
Ea

l	
 R
CB

	

1	
 24	
 96	
 384	
 1536	

Fig. 10. Strong-scaling speedups of MJ and RCB relative to serial RCB on real datasets. (Higher values are better.)

0.
97
	

1.
04
	

1.
02
	

1.
02
	

1.
84
	

1.
00
	

1.
40
	

1.
61
	

1.
99
	

2.
22
	

0.
81
	

0.
91
	

0.
91
	

0.
92
	

0.
98
	

1.
00
	

1.
47
	

2.
04
	

2.
44
	

2.
97
	

0.
66
	

0.
69
	

0.
67
	

0.
70
	

0.
91
	

1.
00
	

1.
41
	

1.
83
	

2.
21
	

2.
61
	

0.
97
	

0.
97
	

1.
18
	

0.
98
	

1.
18
	

1.
00
	

1.
33
	

1.
69
	

1.
95
	

2.
26
	

1.
35
	

1.
41
	

1.
50
	

1.
88
	

3.
98
	

2.
04
	
 2.

90
	

4.
97
	
 5.
44
	

10
.1
3	

0.
99
	

1.
12
	

1.
16
	

1.
47
	
 1.
94
	

1.
78
	
 2.
37
	
 3.
04
	

4.
78
	

7.
34
	

0.
92
	

0.
89
	

1.
22
	

1.
52
	
 2.
11
	

1.
53
	
 2.
18
	

2.
54
	

3.
52
	

5.
15
	

1.
09
	

1.
33
	

1.
39
	

1.
75
	
 2.

52
	

1.
73
	
 2.
18
	

3.
41
	

4.
95
	

8.
12
	

0	

2	

4	

6	

8	

10	

24
	

96
	

38
4	

15
36
	

61
44
	

24
	

96
	

38
4	

15
36
	

61
44
	

24
	

96
	

38
4	

15
36
	

61
44
	

24
	

96
	

38
4	

15
36
	

61
44
	

24
	

96
	

38
4	

15
36
	

61
44
	

24
	

96
	

38
4	

15
36
	

61
44
	

24
	

96
	

38
4	

15
36
	

61
44
	

24
	

96
	

38
4	

15
36
	

61
44
	

MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	
 MJ	
 RCB	

UNIFORM	
 NORMAL	
 2DANORM	
 3DANORM	

N
or
m
al
iz
ed

	
 E
xe
cu
Go

n	

Gm

e	

w
.r.
t.	

RC

B	

p=

24
	
 Noise=0.05	

Noise=0	

	
 	

Fig. 11. Execution times for MJ and RCB (normalized with respect to RCB’s time with Noise=0 on 24 processors) using synthetic data sets in a
dynamic partitioning scenario. (Lower values are better.)

1.
00
0	

0.
96
0	

0.
30
8	

0.
35
0	

0.
19
3	

0.
10
1	

0.
11
5	

0.
01
8	

0.
00
8	

0.
04
6	

0.
00
8	
 0.
00
3	

0.002	

0.004	

0.008	

0.016	

0.031	

0.063	

0.125	

0.250	

0.500	

1.000	

U-­‐RCB	
 U-­‐MJ	
 H-­‐MJ	
 U-­‐RCB	
 U-­‐MJ	
 H-­‐MJ	
 U-­‐RCB	
 U-­‐MJ	
 H-­‐MJ	
 U-­‐RCB	
 U-­‐MJ	
 H-­‐MJ	

4	
 16	
 64	
 256	

N
or
m
al
iz
ed

	
 e
xe
c.
	
 @
m
e	

w
.r.
t.	

RC

B	

w
ith

	

4	

M
PI
	

Migra@on	

Computa@on	

(a) Hybrid application scenario

0.
21
2	

0.
17
6	

0.
30
8	

0.
12
6	

0.
04
3	
 0.
10
1	

0.
10
5	

0.
00
4	
 0.
00
8	

0.
25
4	

0.
00
3	

0.
00
3	

0.002	

0.004	

0.008	

0.016	

0.031	

0.063	

0.125	

0.250	

0.500	

1.000	

RCB	
 MJ	
 H-­‐MJ	
 RCB	
 MJ	
 H-­‐MJ	
 RCB	
 MJ	
 H-­‐MJ	
 RCB	
 MJ	
 H-­‐MJ	

4	
 16	
 64	
 256	

N
or
m
al
iz
ed

	
 e
xe
c.
	
 ?
m
e	

w
.r.
t	
 R

CB
	
 w
ith

	

4	

M
PI
	

Migra?on	

Computa?on	

(b) MPI-only scenario

Fig. 12. Execution times of partitioning algorithms normalized with respect to U-RCB with 4 MPI processes. (Lower values are better.) In (a), U-RCB
and U-MJ are the under-utilized variants of MJ and RCB, while H-MJ is the hybrid (MPI+OpenMP) version of MJ. In (b), H-MJ is compared to the
fully utilized MPI-only versions of MJ and RCB.

processors in most of our strong scaling experiments. We
have also evaluated the quality of the RCB and MJ partitions
in terms of communication.

A significant difference between MJ and Zoltan’s RCB
is that RCB migrates the coordinates and weights of the
objects after each bisection. Migration allows RCB (and
MJ) to work with fewer processors at each recursion and

allows execution of subsequent bisections in parallel. Even
though the amount of data moved decreases with increasing
levels of recursion, all processors perform migration at each
recursion level. The worst case occurs when the data is
randomly distributed to all processors. In such a case, half
of the data will be moved at each recursion. In the ideal
case, the initial data is already partitioned, and RCB will not

14

migrate any data.
In contrast, at each recursion, MJ decides whether or

not to migrate based on three factors: the expected load
imbalance in subsequent partitioning steps, the estimated
cost of global reduction operations if no migration occurs,
and a threshold on the minimum amount of work allowed
per processor. We have shown that MJ makes reasonably
good migration decisions; however, the interplay of the data
size and system size to decide when migration will be most
beneficial can be investigated further. The effect of migra-
tion is visible from our experiments. In weak scaling tests,
RCB’s performance can be attributed to communication
costs due to migration. In the strong scaling results for real
datasets, the data was already well-localized in processors,
and hence, provided a more ideal case for RCB.

ACKNOWLEDGMENT

We thank Erik Boman for helpful discussions. Sandia Na-
tional Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Dept. of Energy’s National Nuclear Security Administra-
tion under contract DE-AC04-94AL85000. This work was
supported in part by the U.S. Dept. of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (Sci-
DAC) program (FASTMath and CSCAPES Institutes) and
by National Science Foundation grant OCI-0904809. This
research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Dept.
of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] B. Aspvall, M. M. Halldórsson, and F. Manne, “Approximations
for the general block distribution of a matrix,” Theor. Comput. Sci.,
vol. 262, no. 1-2, pp. 145–160, 2001.

[2] R. F. Barrett, C. T. Vaughan, and M. A. Heroux, “MiniGhost: a
miniapp for exploring boundary exchange strategies using stencil
computations in scientific parallel computing,” Sandia National
Labs., Albuquerque, NM, Tech. Rep. SAND2012-10431, 2012.

[3] M. Berger and S. Bokhari, “A partitioning strategy for nonuniform
problems on multiprocessors,” IEEE Trans. Comput., vol. C36, no. 5,
pp. 570–580, 1987.

[4] E. Boman, K. Devine, V. Leung, S. Rajamanickam, L. Riesen,
M. Deveci, and Ü. Çatalyürek, “Zoltan2: Next-generation combi-
natorial toolkit.” Sandia National Labs., Tech. Rep., 2012.

[5] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning based
decomposition for parallel sparse-matrix vector multiplication,”
IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673–693, 1999.

[6] T. A. Davis and Y. Hu, “The Univerity of Florida collection,” ACM
Trans. Math. Software, vol. 38, no. 1, pp. 1:1–1:25, 2011.

[7] M. Deveci, S. Rajamanickam, V. Leung, K. Pedretti, S. Olivier,
D. Bunde, Ü. V. Çatalyürek, and K. Devine, “Exploiting geometric
partitioning in task mapping for parallel computers,” in IEEE Int.
Parallel Distrib. Proc. Symp., 2014.

[8] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and
Ü. V. Çatalyürek, “Parallel hypergraph partitioning for scientific
computing,” in IEEE Int. Parallel Distrib. Proc. Symp., 2006.

[9] J. Gaidamour, J. Hu, C. Siefert, and R. Tuminaro, “Design con-
siderations for a flexible multigrid preconditioning library,” Sci.
Program., vol. 20, no. 3, pp. 223–239, Jul. 2012.

[10] E. G.Boman, Ü. V. Çatalyürek, C. Chevalier, and K. D. Devine,
“The Zoltan and Isorropia parallel toolkits for combinatorial
scientific computing: Partitioning, ordering, and coloring,” Sci.
Program., vol. 20, no. 2, pp. 129–150, 2012.

[11] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, “ML 5.0
smoothed aggregation user’s guide,” Sandia National Labs., Tech.
Rep. SAND2006-2649, 2006.

[12] M. Grigni and F. Manne, “On the complexity of the generalized
block distribution,” in IRREGULAR, 1996.

[13] Y. Han, B. Narahari, and H.-A. Choi, “Mapping a chain task to
chained processors,” Inform. Process Lett, vol. 44, pp. 141–148, 1992.

[14] B. Hendrickson and R. Leland, “A multilevel algorithm for parti-
tioning graphs,” in Supercomputing, 1995.

[15] B. Hendrickson and T. G. Kolda, “Graph partitioning models for
parallel computing,” Parallel Comput., vol. 26, pp. 1519–1534, 2000.

[16] I. Kalashnikova, M. Perego, A. G. Salinger, R. S. Tuminaro, and
S. F. Price, “Albany/FELIX: a parallel, scalable and robust, finite
element, first-order Stokes approximation ice sheet solver built for
advanced analysis,” Geosci. Model Develop. Discuss., vol. 7, no. 6,
pp. 8079–8149, 2014.

[17] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, 1998.

[18] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. Jrnl., vol. 49, no. 2, pp. 291–
307, 1970.

[19] P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu,
E. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, E. Cyr,
and S. Kennon, “Towards extreme-scale simulations with next-
generation Trilinos: a low mach fluid application case study,” in
Wksh. Large-Scale Parallel Processing, IEEE Int. Parallel Distrib. Proc.
Symp., 2014.

[20] P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu,
E. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, and S. Ken-
non, “Towards extreme-scale simulations with second-generation
Trilinos,” Parallel Processing Letters, vol. 24, no. 04, p. 1442005, 2014.

[21] R. M. Loy, “Adaptive local refinement with octree load-balancing
for the parallel solution of three-dimensional conservation laws,”
Ph.D. dissertation, Rensselaer Polytechnic Inst., 1998.

[22] F. Manne and T. Sørevik, “Partitioning an array onto a mesh of
processors,” in PARA, 1996.

[23] T. Minyard and Y. Kallinderis, “Octree partitioning of hybrid grids
for parallel adaptive viscous flow simulations,” Int. J. Numer. Meth.
Fluids, vol. 26, pp. 57–78, 1998.

[24] D. Nicol, “Rectilinear partitioning of irregular data parallel com-
putations,” J. Parallel Distrib. Comput., vol. 23, pp. 119–134, 1994.

[25] A. Patra and J. T. Oden, “Problem decomposition for adaptive hp
finite element methods,” J. Comput. Syst. Engg., vol. 6, no. 2, 1995.

[26] J. R. Pilkington and S. B. Baden, “Partitioning with spacefilling
curves,” U. of California, CSE Technical Report CS94–349, 1994.

[27] A. Pınar and C. Aykanat, “Sparse matrix decomposition with
optimal load balancing,” in HiPC, 1997.

[28] ——, “Fast optimal load balancing algorithms for 1D partition-
ing,” J. Parallel Distrib. Comput., vol. 64, pp. 974–996, 2004.

[29] E. Saule, E. Ö. Baş, and Ü. V. Çatalyürek, “Load-balancing spatially
located computations using rectangular partitions,” J. Parallel Dis-
trib. Comput., vol. 72, no. 10, pp. 1201 – 1214, 2012.

[30] D. G. Schweikert and B. W. Kernighan, “A proper model for the
partitioning of electrical circuits,” in Design Automation Conf., 1972.

[31] SIERRA Solid Mechanics Team, “Presto 4.16 user’s guide,” Sandia
National Labs., Tech. Rep. SAND2010-3112, 2010.

[32] ——, “SIERRA/Solid mechanics 4.22 user’s guide,” Sandia Na-
tional Labs., Tech. Rep. SAND2011-7597, 2011.

[33] H. Simon, “Partitioning of unstructured problems for parallel
processing,” Computing Systems in Engineering, vol. 2, no. 2/3, pp.
135 – 148, 1991.

[34] V. E. Taylor and B. Nour-Omid, “A study of the factorization fill-in
for a parallel implementation of the finite element method,” Int. J.
Numer. Meth. Engng., vol. 37, pp. 3809–3823, 1994.

[35] M. Ujaldon, S. Sharma, E. Zapata, and J. Saltz, “Experimental eval-
uation of efficient sparse matrix distributions,” in Supercomputing,
1996.

[36] M. S. Warren and J. K. Salmon, “A parallel hashed oct-tree n-body
algorithm,” in Supercomputing, 1993.

Mehmet Deveci is a PhD Student in the Department of Computer
Science & Engineering at Ohio State University. He received his B.S.
in Computer Engineering from Middle East Technical University, Turkey
in 2010.

15

Dr. Sivasankaran Rajamanickam (M’14) is a Senior Member of Tech-
nical Staff in the Computer Science Research Institute in the Center for
Computing Research at Sandia National Laboratories. He earned his
B.E. from Madurai Kamaraj University, India, and his Ph.D. in Computer
Engineering from University of Florida.

Dr. Karen Devine is a Principal Member of the Technical Staff in
the Computer Science Research Institute in the Center for Computing
Research at Sandia National Laboratories. She earned her B.S. from
Wilkes College, and her M.S. and Ph.D. in Computer Science from
Rensselaer Polytechnic Institute.

Dr. Ümit V. Çatalyürek (M’09-SM’10) is a Professor in the Depts. of
Biomedical Informatics, Electrical & Computer Engineering, and Com-
puter Science & Engineering at the Ohio State University. He received
his Ph.D., M.S. and B.S. in Computer Engineering and Information
Science from Bilkent University, Turkey, in 2000, 1994 and 1992, respec-
tively.

	Introduction
	Background
	Multi-Jagged: Multi-dimensional Jagged Partitioning
	The Basic MJ Algorithm
	Migration of the Coordinates
	Partitioning into Arbitrary Numbers of Parts
	Properties of partitions from Multi-Jagged

	Experimental results
	Partition Quality
	Weak Scaling
	Strong scaling
	Dynamic Partitioning Simulation
	Multithreading

	Conclusions
	References
	Biographies
	Mehmet Deveci
	Dr. Sivasankaran Rajamanickam
	Dr. Karen Devine
	Dr. Ümit V. Çatalyürek

