
Enabling Next-Generation Parallel Circuit
Simulation with Trilinos

Chris Baker1, Erik Boman2, Mike Heroux2, Eric Keiter2, Siva Rajamanickam2,
Rich Schiek2, and Heidi Thornquist2

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2 Sandia National Laboratories, Albuquerque, NM 87185, USA ??

Abstract. The Xyce Parallel Circuit Simulator, which has demonstrated
scalable circuit simulation on hundreds of processors, heavily leverages
the high-performance scientific libraries provided by Trilinos. With the
move towards multi-core CPUs and GPU technology, retaining this scal-
ability on future parallel architectures will be a challenge. This paper
will discuss how Trilinos is an enabling technology that will optimize the
trade-off between effort and impact for application codes, like Xyce, in
their transition to becoming next-generation simulation tools.

Keywords: circuit simulation, parallel computing, hybrid computing,
preconditioned iterative methods, load balancing

1 Motivation

Traditional analog circuit simulation, originally made popular by the Berkeley
SPICE program [1], does not scale well beyond tens of thousands of devices,
due to the use of sparse direct matrix solvers [2]. Given the importance of this
simulation tool for circuit design verification, many attempts have been made to
allow for faster, larger-scale circuit simulation. Fast-SPICE tools use event-driven
simulation techniques and lookup tables for precomputed device evaluations,
while hierarchical simulators use circuit-level partitioning algorithms [4, 5] and
more efficient data structures to enable the simulation of much larger problems.
Unfortunately, the approximations inherent to these simulation approaches can
break down under some circumstances, rendering such tools unreliable.

The availability of inexpensive clusters, multi-core CPUs, and GPUs, has
resulted in significant interest for efficient parallel circuit simulation. Several
approaches have been investigated for enabling parallel SPICE-accurate simu-
lation. These generally involve a higher-level partitioning of the devices [6] or
lower-level partitioning of the linear system of equations [7] to facilitate the cre-
ation of a more efficient parallel matrix solver. Recently, GPUs have been used

?? Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.



to accelerate transistor model evaluation [8], which can dominate time-domain
circuit simulation. While these are examples of targeted improvements to paral-
lel performance, efficient circuit simulation on next-generation architectures will
require exploiting both coarse and fine-grained parallelism throughout the entire
simulation flow.

Xyce [9], is a simulator designed “from-the-ground-up” to be distributed
memory-parallel, and is intended for a spectrum of parallel platforms, from high-
end supercomputers to multi-core desktops. It relies primarily upon a message-
passing implementation (MPI) [10], but employs software abstractions that al-
low the simulator to adapt to other parallel paradigms. Xyce already leverages
many of the high-performance scientific libraries provided by Trilinos [11] for
its MPI-based implementation. This paper will present the enabling technolo-
gies provided by Trilinos that will allow Xyce to retain scalable performance on
next-generation architectures.

2 Background

Circuit simulation adheres to a general flow, as shown in Fig. 1. The circuit,
described by a netlist file, is transformed via modified nodal analysis (MNA)
into a set of nonlinear differential algebraic equations (DAEs)

dq(x(t))
dt

+ f(x(t)) = b(t), (1)

where x(t) ∈ IRN is the vector of circuit unknowns, q and f are functions rep-
resenting the dynamic and static circuit elements (respectively), and b(t) ∈ IRM

is the input vector. For any analysis type, the initial starting point is this set of
DAEs. The numerical approach employed to compute solutions to equation (1)
is predicated by the analysis type.

Transient and DC analysis are two commonly used simulation modes, in
which the set of equations (1), more generally expressed as F (x, x′) = 0, is
solved by numerical integration methods corresponding to the nested solver loop
in Fig. 1. Both analysis types require the solution to a sequence of nonlinear
equations, F (x) = 0. Typically, Newton’s method is used to solve these nonlinear
equations, resulting in a sequence of linear systems

Ax = b

that involve the conductance, G(t) = df
dx (x(t)), and capacitance, C(t) = dq

dx (x(t)),
matrices. For DC analysis, the q terms are not present in equation (1), so the
linear system only involves the conductance matrix.

The computational expense in circuit simulation is dominated by repeatedly
solving linear systems of equations, which are at the center of the nested solver
loop (Fig. 1). Solving these linear systems requires their assembly, which depends
upon device evaluations for the whole circuit. This means the computational
expense includes both the device evaluations and the numerical method used
to solve the linear systems. The linear systems solved during transient and DC



Fig. 1. General circuit simulation flow

analysis are typically sparse, have heterogeneous non-symmetric structure, and
are often ill-conditioned. Direct sparse solvers [2, 3] are the industry standard
approach because of their reliability and ease of use. However, direct solvers
scale poorly with problem size and become impractical when the linear system
has hundreds of thousands of unknowns or more.

3 Xyce-Trilinos Interface

Xyce is written in ANSI C++ and exploits modern software paradigms to en-
able the development of a production simulator as well as a testbed for parallel
algorithm research. Xyce uses abstract interfaces and runtime polymorphism
throughout the code, which facilitates code reuse and algorithmic flexibility.
Many of the higher-level abstractions, relating to the analysis type or time in-
tegration methods, have implementations that are contained in Xyce. However,
the lower-level numerical abstractions, related to the nested solver loop in Fig. 1,
have interfaces to the high-performance scientific libraries provided by Trilinos.
The current Trilinos software stack that is employed by Xyce is illustrated in
Fig. 2.



Fig. 2. Nested solver loop interface to Trilinos

Xyce employs these software abstractions to enable adaptation to future par-
allel paradigms and arithmetic precision strategies with minimal effort. Xyce
currently uses MPI with double precision arithmetic through essential Petra
(Epetra). However, future computational platforms may require the use of other
parallel paradigms, such as hybrid techniques that combine MPI with threads,
to achieve optimal performance. Furthermore, to address ill-conditioned matri-
ces, it may prove useful to use higher precision arithmetic in the linear solvers.
These next-generation computational strategies are the motivation for the newer
Trilinos linear algebra packages: templated Petra (Tpetra) and Kokkos. Tpetra
provides a templated interface to parallel linear algebra and Kokkos contains the
underlying computational kernels enabling platform-dependent optimizations.
Several pre-existing Trilinos packages can use Tpetra, like NOX, LOCA, Belos,
and Teuchos, and many other packages are under development to provide direct
solvers and preconditioners using Tpetra.

4 Next-Generation Circuit Simulation

Parallelism can be integrated into every step of the nested solver loop shown
in Fig. 1. Furthermore, parallelism can be achieved through both coarse-scale
(multi-processor) and fine-scale (multi-threaded) approaches. A composition of
these two approaches will provide circuit simulation with the best performance
impact on the widest variety of next-generation architectures. As discussed be-
fore, the majority of the computational time is spent in device evaluations and
linear solvers, so this paper will present some of Trilinos’ capabilities that will
improve the parallelism pertaining to those specific tasks. In particular, the focus
is on four packages that will enable more efficient circuit simulation in the mi-



gration to next-generation architectures: Epetra, ShyLU, and Zoltan. Numerical
results will be presented for Epetra and ShyLU.

4.1 Computational Setup

Results presented in this section are generated by using Xyce (post release 5.2.1)
and Trilinos release 10.8. The simulations are performed on a single node of a
small cluster, where each node has a dual-socket/quad-core Intel Xeon R© E5520
2.67 GHz processor and 36 GB of memory. Xyce and Trilinos are compiled using
Intel 11.1 compilers, and the MPI library is supplied by OpenMPI version 1.3.3.
Table 1 partially describes the circuits used in the numerical experiments. Two
of the circuits, ckt2 and ckt3, are from the freely available and well known test
suite CircuitSim90 [12], and respectively correspond to the chip2 and ram2k test
cases. The other three circuits are proprietary integrated circuits.

Table 1. Circuits: matrix size(N), capacitors(C), MOSFETs(M), resistors(R), voltage
sources(V), diodes (D).

Circuit N C M R V D

ckt1 63761 208236 11732 51947 56 0

ckt2 46850 21548 18816 0 21 0

ckt3 32632 156 13880 0 23 0

ckt4 25187 0 71097 0 264 0

ckt5 15622 7507 10173 11057 29 0

4.2 Epetra

Xyce currently uses Epetra underneath its abstract interface to provide se-
rial and distributed parallel linear algebra objects (Fig. 2). As of Trilinos re-
lease 10.4, several of the linear algebra objects that Xyce interfaces to provide
multi-threading capabilities via OpenMP to speed up basic computations. The
classes that have been decorated with “parallel for” pragmas are Epetra Vector,
Epetra MultiVector, Epetra CrsMatrix, and Epetra CrsGraph. Given that
Xyce uses Epetra by default, it requires no code modifications to evaluate these
hybrid (MPI with OpenMP) linear algebra computations. However, for Xyce,
iterative linear solvers exercise these computations the most, which makes them
necessary for illustrating the potential performance improvements.

For these numerical experiments, a preconditioned iterative solution strat-
egy is employed that consists of several steps including the removal of dense
rows or columns (singleton filtering), block triangular form (BTF) reordering,
and hypergraph partitioning [13] to generate a block Jacobi preconditioner. This
preconditioner, combined with AztecOO’s Generalized Minimal Residual (GM-
RES) method, has been shown to speed up the simulation time for ckt2, ckt3,
ckt4 and ckt5 [14]. For ckt1, this technique results in a large irreducible block,
making this preconditioner inefficient, so ckt1 will not be considered for this test.



Table 2. Comparison of Xyce simulation times using a non-threaded build of Epetra
(MPI only; 2 MPI processes) versus a hybrid build of Epetra (MPI w/ OpenMP; 2
MPI processes, 2 threads per process).

Linear Solver (sec.) Total Simulation (sec.)
Circuit

MPI only MPI w/OpenMP x Speedup MPI only MPI w/OpenMP x Speedup

ckt2 92.8 66.1 1.40 165.9 143.3 1.15

ckt3 246.7 101.2 2.43 351.0 198.4 1.76

ckt4 36.2 23.4 1.54 186.5 157.3 1.18

ckt5 92.9 46.3 2.00 239.5 181.3 1.32

The results from performing a full transient simulation of these four circuits
using Xyce compiled against a non-threaded (MPI only) and a hybrid (MPI w/
OpenMP) build of Trilinos is presented in Table 2. The simulations are performed
with 2 MPI processes and, additionally, 2 threads per process for the hybrid build
of Trilinos. The timings are averaged from three simulations of each scenario.
Table 2 shows the speedup that was achieved using the hybrid build of Trilinos
for both the linear solver, as well as for the whole simulation.

As previously mentioned, the potential performance improvements are con-
centrated in the linear solver, so the dramatic speedups achieved in that portion
of the simulation are tempered by the rest of the simulation cost. Performance
of the preconditioned iterative methods used in circuit simulation can degrade
with an increasing number of MPI processes, as the preconditioner becomes less
effective. Using hybrid techniques enable a performance improvement by lever-
aging shared memory techniques for fine-grained processes, like linear algebra,
while maintaining the robustness of the preconditioner by reducing the number
of distributed memory processes. The results presented in Table 2 indicate a
total simulation speedup between 1.15 and 1.76 by making this minor change.

4.3 ShyLU

ShyLU provides a “hybrid-hybrid” sparse linear solver framework, based on
Schur complements, that incorporates both direct and iterative methods, as well
as coarse-scale (multi-processor) and fine-scale (multi-threaded) parallelism. It
can serve as both a standalone black-box solver for medium-sized problems,
and a subdomain solver or preconditioner within a larger distributed-memory
framework. ShyLU is targeted towards next-generation architectures with many
CPU-like cores within a single compute node, is based on Trilinos, and is also
intended to become a Trilinos package.

The Schur complement approach solves the linear system Ax = b, by parti-
tioning it into

A =
[

D C
R G

]
, x =

[
x1

x2

]
, b =

[
b1

b2

]
, (2)

where D and G are square, D is non-singular, and x and b are conformally
partitioned to A. The Schur complement, after elimination of the top row, is
S = G−R ∗D−1C. Solving Ax = b then consists of the three steps:



Table 3. Comparison of average number of outer GMRES iterations using ShyLU as a
preconditioner with the BTF-based and block Jacobi preconditioner. A dash indicates
simulation failure.

Circuit ShyLU BTF Block Jacobi

ckt1 2 - 151

ckt2 1 4 1

ckt3 1 7 60

ckt4 1 6 6

ckt5 2 9 131

1. Solve Dz = b1.
2. Solve Sx2 = b2 −Rz.
3. Solve Dx1 = b1 − Cx2.

Iterative methods, based on Schur complement techniques, have proven effective
and robust enough for circuit simulation [15, 16]. In general, these approaches
partition A so that the first and third steps can be performed quickly using direct
methods, and the second step is performed inexactly by either approximating S
or using an iterative method to solve Sx2 = b2 −Rz.

For these numerical experiments, ShyLU is used to generate a preconditioner
for AztecOO’s GMRES method. The Schur complement is dense for these cir-
cuits, so an approximation S̃ ≈ S is constructed using value-based dropping with
a threshold relative to the diagonal entries (10−2). The approximation S̃ is used
as a preconditioner to iteratively solve the Schur complement system, with a rel-
ative residual tolerance of 10−10 in at most 30 iterations. The initial partitioning
of A is performed using the ParMETIS [18] graph partitioner through Zoltan.
The simulations are performed with 2 MPI processes without any threads, since
KLU [17] is used as the direct solver for the diagonal blocks of D.

The results from performing a full transient simulation of these five circuits
using Xyce with different preconditioners is presented in Table 3. The average
number of GMRES iterations needed to achieve convergence is reported for each
of the three preconditioners: ShyLU (as described above), BTF-based precondi-
tioning (described in Section 4.2), and block Jacobi preconditioning (KLU used
to factor the diagonal blocks). While the BTF preconditioner is effective on four
of the five circuits, ShyLU performs more consistently and robustly on all five
circuits. Alternatively, the block Jacobi preconditioner is sporadically effective
in solving these five circuits, performing well on ckt2 and ckt4, but poorly on
ckt1, ckt3, and ckt5.

4.4 Zoltan

In general, circuits of interest tend to be heterogeneous in structure, so the op-
timal parallel load balance for device evaluation (including matrix and residual
vector assembly) will likely be different than for solving the linear system. For
this reason, Xyce employs a different load balance for both these phases of the
simulation, as illustrated in Fig. 3. Zoltan [19] is the parallel partitioning and load



Fig. 3. Parallel load balance for device evaluation and matrix structure

balancing library that Xyce currently uses to compute an efficient distributed-
memory matrix partition. However, Zoltan can also be employed to develop a
device evaluation phase that more intelligently balances the fine-grained compu-
tations performed by individual devices.

Xyce currently uses a naive partitioning of devices across MPI processes
(Fig. 3), which has proven to be relatively well load balanced and reasonably
scalable on current architectures. During the device evaluation phase, on each
processor, devices are evaluated sequentially according to type. For example,
given a transmission line (RLC circuit), all the resistors will be evaluated and
loaded into the matrix and residual vector, then the capacitors, and finally the
inductors. These fine-scale sequential computations can be accelerated through
multi-threading techniques. However, to avoid race conditions, the static circuit
connectivity (graph) can be leveraged to determine in what order the devices
should be evaluated. Using the partitioning algorithms in Zoltan, a device order-
ing can be computed for each node that optimizes the thread-parallelism, and
minimizes thread conflicts, during the matrix and residual vector load.

5 Conclusion

Scientific libraries that enable scalable performance of application codes on a
wide variety of next-generation architectures are essential. Trilinos is one such
project that is attempting to mitigate the challenge of this transition for applica-
tion codes, like Xyce. This paper presents some enabling technologies delivered
through the Epetra, ShyLU, and Zoltan packages that will facilitate this transi-
tion for circuit simulation.

References

1. L.W. Nagel: SPICE 2, a Computer Program to Simulate Semiconductor Circuits,
Memorandum ERL-M250, University of California, Berkeley (1975)

2. T. A. Davis: Direct Methods for Sparse Linear Systems, SIAM (2006)



3. K.S. Kundert: Sparse Matrix Techniques, Circuit Analysis, Simulation and Design
(1987)

4. A.R. Newton and A.L. Sangiovanni-Vincentelli: Relaxation based electrical simula-
tion, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 4, 308–330 (1984)

5. J.K. White and A. Sangiovanni-Vincentelli: Relaxation techniques for the simulation
of VLSI circuits, Kluwer Academic Publishers (1987)

6. N. Fröhlich, B.M. Riess, U. Wever, and Q. Zheng: A New Approach for Parallel
Simulation of VLSI-Circuits on a Transistor Level, IEEE Transactions on Circuits
and Systems Part I, 45, 6, 601–613 (1998)

7. H. Peng and C.K. Cheng: Parallel transistor level circuit simulation using domain
decomposition methods, In Proceedings of ASP-DAC 2009, 397–402 (2009)

8. K. Gulati, J.F. Croix, S.P. Khatr, and R. Shastry: Fast circuit simulation on graphics
processing units, In Proceedings of ASP-DAC 2009, 403–408 (2009)

9. E.R. Keiter, H.K. Thornquist, R.J. Hoekstra, T.V. Russo, R.L. Schiek, and E.L.
Rankin: Parallel Transistor-Level Circuit Simulation, Advanced Simulation and Ver-
ification of Electronic and Biological Systems (2011)

10. W. Gropp, E. Lusk, N. Doss, and A. Skjellum: A high-performance, portable im-
plementation of the MPI message passing interface standard, Parallel Computing,
22, 6, 789–828 (1996)

11. M.A. Heroux et al.: An Overview of the Trilinos Project, ACM TOMS, 31, 397–423
(2005)

12. J.A. Barby and R. Guindi: CircuitSim93: A circuit simulator benchmarking
methodology case study, Proc. of Sixth Annual IEEE International ASIC Confer-
ence and Exhibit (1993)

13. K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek, Par-
allel Hypergraph Partitioning for Scientific Computing, Proc. of 20th International
Parallel and Distributed Processing Symposium (2006)

14. H.K. Thornquist et al.: A Parallel Preconditioning Strategy for Efficient Transistor-
Level Circuit Simulation, IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 410-417 (2009)

15. A. Basermann, U. Jaekel, and M. Nordhausen: Parallel iterative solvers for sparse
linear systems in circuit simulation, Fut. Gen. Comput. Sys., 21(8), 1275-1284 (2005)

16. C. Bomhof and H. vanderVorst: A parallel linear system solver for circuit simulation
problems, Num. Lin. Alg. Appl., 7, 649-665 (2000)

17. Ken Stanley and Tim Davis: KLU: a Clark Kent’ sparse LU factorization algorithm
for circuit matrices, SIAM Conference on Parallel Processing for Scientfic Computing
(2004)

18. G. Karypis and V. Kumar: ParMETIS: Parallel Graph Partition-
ing and Sparse Matrix Ordering Library, CS Dept., Univ. Minn.,
http://glaros.dtc.umn.edu/gkhome/views/metis (1997)

19. Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson, William F.
Mitchell, Matthew St. John, and Courtenay Vaughan, Zoltan: Data-Management
Services for Parallel Applications: User’s Guide, Sandia National Laboratories,
http://www.cs.sandia.gov/Zoltan/Zoltan.html, (2004)


