
 Cray User Group 2011 Proceedings Page 1 of 5

Shared Libraries on a Capability Class Computer
Suzanne M. Kelly1, Ruth Klundt2 and James H. Laros III1

1Sandia National Laboratories*, 2Hewlett-Packard Company

smkelly@sandia.gov, rklundt@sandia.gov, jhlaros@sandia.gov

ABSTRACT
Popularity of dynamically linked executables
continues to grow within the scientific
computing community. The system software
implementation of shared libraries is non-trivial
and has significant implications on application
scalability. This paper will first provide some
background on the Linux implementation of
shared libraries, which was not designed for
distributed HPC platforms. This introductory
information will be used to identify the
scalability issues for massively parallel systems
such as the Cray XT/XE product lines. Lastly,
the presentation will describe the considerations
and lesson learned in file system placement of
the shared libraries on Cielo, a Cray XE6 system
with over 100,000 cores. Scaling results and
comparisons are included.

Keywords
Shared Libraries, Shared Objects, XE6, HPC,
MPP.

1.0 Problem Description

The Department of Energy’s National Nuclear
Security Administration (NNSA) has a long
history of simulating complex problems that
require massive amounts of memory and CPU
cycles. To solve these problems, the Advanced
Simulation and Computing (ASC) Program
within NNSA has provided capability-class
computers which are designed to support a single
job executing on all nodes, and all cores, of a
massively parallel processor (MPP)
supercomputer. Cielo, a Cray XE architecture
platform, is NNSA’s latest capability class
system. It contains 143,104 compute cores (8944
nodes x 16 cores per node) and almost 290
Terabytes of DDR3 memory.

* Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
United States Department of Energy's Nuclear Security
Administration under Contract DE-AC04-94AL85000.

Figure 1: Cielo is located at Los Alamos
National Laboratory and has 96 XE6
cabinets.

Historically, applications running in capability
mode are built statically. Increasingly,
application code groups are asking for the
flexibility provided by dynamic shared objects.
Dynamically linked executables have been
supported on desktop system for decades. More
recently, they have been successfully used on
cluster computers of considerable scale
(thousands of cores). When specifying the Cielo
system, the procurement team elected to specify
support for dynamically linked executables.
However, full scale testing was done with static
binaries.

Following the delivery of the system, the bring-
up team began assessing the options for
providing support for dynamic libraries. We
considered both hardware and software
alternatives to achieve as much scalability as
possible when using a dynamically linked
executable. One important aspect was that in
addition to system shared objects, the user
community wished to provide their own shared
libraries and other dynamic objects, such as
python modules.

Section 2 of this paper provides background
information on shared objects. We follow that
with a description of Cray CLE software support
and associated hardware solutions in Section 3.
Section 4 provides results on the final solution as

 Cray User Group 2011 Proceedings Page 2 of 5

well as some comparison results from
alternatives that had been considered.

2.0 Background on Shared Objects

2.1 Historical Drivers for Shared Objects

Support for shared objects began appearing in
Unix-based systems in the late 1980’s. There
were three primary motivators for their
introduction. 1) Shared libraries can save on
physical memory. Frequently used libraries, such
as the C standard library can be memory resident
and be executed by multiple, disparate processes
from the same memory space. 2) Libraries can be
updated and fixes applied without significant
disruption. It is no longer necessary for every
program to be relinked to take advantage of the
update. 3) With truly dynamic libraries, a
decision can be made at run time as to which
shared object is needed by the program.

For systems, such as Cielo, the first advantage is
moot. There is only one executable portion of the
application binary image on each compute node.
It is shared amongst the cores whether it is
statically or dynamically linked. The ability to
update shared libraries and put them in place
without a relink is a two-edged sword.
Application results may not be repeatable since
libraries may have changed since the last time
the application was run. This makes
configuration management for applications
considerably harder. On the plus side,
applications can immediately take advantage of
enhancements or bug fixes in a new version of
the shared library. The third motivator is very
compelling to the scientific community.
Applications are becoming very large and at
times, exceeding 1GB in size. Developers have
been forced to build multiple applications that
combine some subset of their total capability.
With the use of dlopen(), for example, the
application can dynamically determine which
functionality to load, based on the input provided
at run time.

2.2 Issues for High Performance Computing

One of the differentiators between capability
computing and the more ubiquitous capacity
cluster computing is the speed and mechanism
by which an application is launched on the nodes
assigned to the job. Run time software, such as
Cray’s Application Level Placement Scheduler

(ALPS), provides a hierarchical launch
distribution and execution of the application
binary. When the application is dynamically
linked, there is no way under the Linux
implementation to collectively, or hierarchically
distribute the shared objects to each node.
Instead, requests for shared objects must be
serviced individually. This can generate a
significant I/O metadata server load while the
linker searches for libraries. There can be tens of
thousands of simultaneous requests for the same
set of relatively small files.

As the application continues to run, there is
potential for subsequent demand paging of the
shared objects as they are utilized during the job.
This unpredictable load can have significant
impact on the run time of the job as it introduces
considerable noise into the completion rate of the
application on each processing element. This
consideration is particularly important given the
bulk synchronous nature of the typical jobs run
on MPP systems, such as Cielo.

If other jobs are running on the system at the
same time, their I/O performance may be
impacted by the random nature of the shared
library access. Parallel file systems are not
tuned for the sporadic bursts from mmap() calls.

3.0 Approaches for Shared Object
Support in CLE

3.1 System DSOs

Originally the Cray XT systems only supported
statically linked application binaries on compute
nodes. More recent versions of CLE have
leveraged the I/O forwarding layer, Data
Virtualization Service (DVS) [1], to provide
access to system shared objects. Instead of the
limited RAMFS-based root file system, each
compute node uses DVS to access the same
shared root file system as the service (e.g. login)
nodes. A pool of DVS nodes NFS-mount the
shared root in read-only mode and then project it
to the compute nodes in ‘loadbalance’ mode.
This mode allows each DVS node to service a
subset of compute nodes. There is no need for a
locking protocol since the files are assumed to
not change. Each I/O request goes to a DVS
server based on the compute node ID, which
distributes the load. Caching for data and
metadata is done on the client nodes after the
first request is satisfied locally. The second tier

 Cray User Group 2011 Proceedings Page 3 of 5

of caching is on the DVS servers. Caching is not
done by the DVS software, but relies on the
capabilities of the Linux kernel.

The number of DVS servers is site-configurable.
Starting with CLE 3.1, it is also possible for the
DVS servers to be repurposed compute nodes,
rather than service nodes [2]. The shared root is
NFS-mountable over the high speed network.
Figure 2 shows a generic configuration for
system shared library support to compute nodes.

Figure 2: Conceptual diagram of components
needed for system shared library access by
compute nodes on a CLE system.

3.2 User built DSOs

Cray’s solution using DVS for supporting system
shared libraries seemed like a very viable starting
point for user-built dynamic shared objects. For
security and stability reasons, storing application
Dynamic Shared Objects (DSO)s with system
files is not desirable. Other possible options are:
1) load shared objects from standard locations
such as /home or /projects, 2) load shared objects
from the parallel (e.g. scratch) file systems, or 3)
provide a separate file partition specifically for
shared libraries that could be mounted in
loadbalance mode.

The home, projects, and scratch file systems are
mounted read/write on Cielo. Read-write DVS
mounts use a client-server mapping based in part
on the file inode number and the offset within
the file. For a (typically small) DSO, these will
all translate to the same DVS server. On Cielo,
the home and projects file systems are only
served by eight DVS servers, which is unlikely
to be able to service over 8000 nodes for
concurrent access to shared libraries. The scratch
parallel file system has considerably more DVS
servers projecting it to compute nodes. However,
the impact of sharing the DVS node cache with

potentially heavy I/O traffic patterns from other
running jobs was unknown.

The current solution is to provide a dedicated
location on Cielo for user shared libraries. Due to
concerns of overloading the boot or sdb node, a
separate service node was connected to a RAID
to store a “/udsl” file system (udsl is an
abbreviation for user dynamic shared libraries).
This file system is mounted read-write to the
login nodes for compilation of the objects. Fifty
repurposed compute nodes project in loadbalance
(read only) mode the shared root and the /udsl
file system to the compute nodes. The number
fifty was selected somewhat arbitrary, but it was
based on an educated guess that one DVS node
could reasonably service 150-200 compute
nodes.

Since Cielo has four external login nodes, the
service nodes providing /udsl had to be
provisioned with two PCI slots—one for the
fiberchannel connection to the RAID and one for
the Ethernet to connect to the LAN between the
external logins and Cielo itself. The /udsl file
system is auto-mounted to the external login
nodes, so that “df” commands would not hang
when Cielo is down for maintenance. This final
configuration is shown in Figure 3.

Figure 3: Cielo’s file system configuration
with support for user dynamic shared
libraries.

4.0 Results

In Section 3.2, we presented the three options we
considered for supporting user-built shared
objects. We selected the third option, but
unfortunately they were presented in user
convenience order. Most codes are built in users’
/home or /project space. The second option of
using /scratch space would be somewhat familiar

 Cray User Group 2011 Proceedings Page 4 of 5

to the user community. They tend to manage
some project files, data bases, and input decks
from this area. The /udsl file system is a separate
and quite small area. It is less than 1TB in size
and must be shared by all users. Entire
applications cannot be built in this area. Instead,
applications must “install” their shared objects
here and ensure careful use of the –rpath option
during the link stage and proper setting of the
LD_LIBRARY_PATH environment variable.

Since no solution was ideal, we ran tests from
each of the alternatives to confirm the need for
the /udsl file system. We used the pynamic
benchmark [3] as our test case since one of the
applications targeted for Cielo has similar
characteristics. We did not use the production
/home or /projects file system since it is a shared
resource across numerous computers and our test
could have a very negative impact. Instead, we
used a similarly configured (netapp) scratch file
system. The results are shown in Figure 4.

Figure 4: Startup time of Pynamic benchmark
from network-attached NFS server.

We cancelled the test rather quickly when the
trend showed that the network attached NFS file
system would not scale adequately. The graph in
Figure 4 only reports the startup time. The actual
run time was approximately 2-3 times larger.

For the second test, we used an existing mount of
one of the scratch parallel file systems. This
would be familiar to the user community as they
store the bulk of the data from their current runs
in this file system. The /scratch file system is a
high end Panasas file system with 72 DVS
nodes. The results are shown in Figure 5. Like
the results from the network-attached NFS server
configuration, the slope of the run times over
processing elements was unacceptable.

Figure 5: Run time of pynamic benchmark
from a Panasas parallel file system.

It is theoretically possible to mount either the
network-attached NFS partition or the Panasas
file system partition in read-only mode using a
second, different, mount point. This would allow
the DVS servers to use loadbalance mode and
likely provide better and more scalable response
times. This option seemed operationally
confusing for the users and it was not clear that
the DVS has ever been exercised in this way.

Our /udsl results are promising. At 32K
processing elements, we can run the default
configuration of the pynamic benchmark in
about 30 minutes. We have identified some
performance/QOS issues in how the dlopen’s are
serviced on the individual cores of a compute
node and are hopeful that a subsequent release of
CLE will fix the issue. This should result in even
better performance of the pynamic benchmark.

Figure 6: Run time of pynamic benchmark
from a dedicated shared library file system.

 Cray User Group 2011 Proceedings Page 5 of 5

5.0 Conclusions and Future Work

Statically-linked binaries remain the most viable
choice for achieving highly scalable results.
When shared objects are mandated by other
technical needs, Cray’s shared library
implementation is a reasonable solution that can
be applied to user shared libraries. The use of a
separate file system added some operational
overhead but isolated the impact of shared
libraries to only the applications using them.

At least two outstanding questions remain
unanswered with the selected configuration. It is
not clear that 50 repurposed compute nodes were
required for the DVS shared library servers. The
CPU and memory utilization figures on the DVS
nodes are very low. Experimentation could
identify a more optimal number of DVS nodes.
Alternatively, the DVS nodes serving the parallel
scratch file system might be able to handle the
incremental load from the shared libraries. All of
the 50 compute nodes could be reclaimed, if the
impact was negligible. However, since parallel
file systems tend to be a fragile component of
most HPC systems, this option should be
carefully studied before being placed into a
production environment.

Another possible approach to the problem is to
develop a “from scratch” solution to dynamic
shared objects for high performance computing.
The Unix/Linux implementation was not
designed for MPP architectures.

Acknowledgement

The design and implementation of Cielo’s user
shared library support was accomplished after
discussion with colleagues at Cray (David
Hensler and Dean Roe), LANL (Parks Fields,
Brett Kettering, Jim Lujan, and Josip Loncaric),
NERSC (Jeff Broughton, Tina Butler, and Nick
Cardo), SNL (Bob Ballance and Doug Doerfler),
and ORNL (Don Maxwell). We appreciate their
thoughtful and helpful advice.

References

[1] Introduction to Cray Data

Virtualization Service, Cray Manual S-
0005-3102, January 2011.

[2] Repurposing Compute Nodes as Service
Nodes on Cray XE and Cray XT
Systems, Cray Manual S-0029-3101,
September 2010

[3] Lee, G.L.; Ahn, D.H.; de Supinski,

B.R.; Gyllenhaal, J.; Miller, P.,
"Pynamic: the Python Dynamic
Benchmark," IEEE 10th International
Symposium on Workload
Characterization, 2007. IISWC 2007.,
pp.101-106, 27-29 Sept. 2007.

