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Abstract

We describe a parallel library written with message-passing (MPI) calls that allows algo-
rithms to be expressed in the MapReduce paradigm. This means the calling program does
not need to include explicit parallel code, but instead provides “map” and “reduce” functions
that operate independently on elements of a data set distributed across processors. The library
performs needed data movement between processors. We describe how typical MapReduce
functionality can be implemented in an MPI context, and also in an out-of-core manner for
data sets that do not fit within the aggregate memory of a parallel machine. Our motivation
for creating this library was to enable graph algorithms to be written as MapReduce opera-
tions, allowing processing of terabyte-scale data sets on traditional MPI-based clusters. We
outline MapReduce versions of several such algorithms: vertex ranking via PageRank, triangle
finding, connected component identification, Luby’s algorithm for maximally independent sets,
and single-source shortest-path calculation. To test the algorithms on arbitrarily large artifi-
cial graphs we generate randomized R-MAT matrices in parallel; a MapReduce version of this
operation is also described. Performance and scalability results for the various algorithms are
presented for varying size graphs on a distributed-memory cluster. For some cases, we com-
pare the results with non-MapReduce algorithms, different machines, and different MapReduce
software, namely Hadoop. Our open-source library is written in C++, is callable from C++,
C, Fortran, or scripting languages such as Python, and can run on any parallel platform that
supports MPI.
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1 Introduction

MapReduce is the programming paradigm popularized by Google researchers Dean and Ghe-
mawat [9]. Their motivation was to enable rapid development and deployment of analysis programs
to operate on massive data sets residing on Google’s large distributed clusters. They introduced
a novel way of thinking about certain kinds of large-scale computations as a “map” operation
followed by a “reduce” operation. The power of the paradigm is that when cast in this way, a
nominally serial algorithm now becomes two highly parallel operations working on data local to
each processor, sandwiched around an intermediate data-shuffling operation that requires inter-
processor communication. The user need only write serial code for the application-specific map
and reduce functions; the parallel data shuffle can be encapsulated in a library since its operation
is independent of the application.

The Google implementation of MapReduce is a C++ library with communication between net-
worked machines via remote procedure calls. It allows for fault tolerance when large numbers of
machines are used, and can use disks as out-of-core memory to process petabyte-scale data sets.
Tens of thousands of MapReduce programs have since been written by Google researchers and are
a significant part of the daily compute tasks run by the company [10].

Similarly, the open-source Hadoop implementation of MapReduce [1], has become widely popular
in the past few years for parallel analysis of large-scale data sets at Yahoo and other data-centric
companies, as well as in university and laboratory research groups, due to its free availability.
MapReduce programs in Hadoop are typically written in Java, although it also supports use of
stand-alone map and reduce kernels, which can be written as shell scripts or in other languages.

More recently, MapReduce formulations of traditional number-crunching kinds of scientific com-
putational tasks have been described, such as post-processing analysis of simulation data [20], graph
algorithmics [8], and linear algebra operations [11]. The paper by Tu et al. [20] was particularly
insightful to us, because it described how MapReduce could be implemented on top of the ubiqui-
tous distributed-memory message-passing interface (MPI), and how the intermediate data-shuffle
operation is conceptually identical to the familiar MPI_Alltoall operation. Their implementation
of MapReduce was within a Python wrapper to simplify the writing of user programs. The paper
motivated us to develop our own C++ library built on top of MPI for use in graph analytics, which
we initially released as open-source software in mid-2009. We have since worked to optimize several
of the library’s underlying algorithms and to enable its operation in out-of-core mode for larger
data sets. These algorithmic improvements are described in this paper and are part of the current
downloadable version; see Section 7 for details.

The MapReduce-MPI (MR-MPI) library described in this paper is a simple, lightweight imple-
mentation of basic MapReduce functionality, with the following features and limitations:

o C++ library using MPI for inter-processor communication: The user writes a (typically)
simple main program which runs on each processor of a parallel machine, making calls to
the MR-MPI library. For map and reduce operations, the library calls back to user-provided
map() and reduce() functions. The use of C++ allows precise control over the memory and
format of data allocated by each processor during a MapReduce. Library calls for performing
a map, reduce, or data shuffle, are synchronous, meaning all the processors participate and
finish the operation before proceeding. Similarly, the use of MPI within the library is the
traditional mode of MPI_Send and MPI_Recv calls between pairs of processors using large
aggregated messages to improve bandwidth performance and reduce latency costs. A recent
paper [15] also outlines the MapReduce formalism from an MPI perspective, although they
advocate a more asynchronous approach, using one-way communication of small messages.



o Small, portable: The entire MR-MPI library is a few thousand lines of standard C++ code.
For parallel operation, the program is linked with MPI, a standard message passing library
available on all distributed-memory machines and many shared-memory parallel machines.
For serial operation, a dummy MPT library (provided) can be substituted. As a library, MR-
MPI can be embedded in other codes [2] to enable them to perform MapReduce operations.

e In-core or out-of-core operation: Each MapReduce object that a processor creates allocates
“pages” of memory, where the page size is determined by the user. MapReduce operations can
be performed using a few such pages (per processor). If the data set fits in a single page (per
processor), the library performs its operations in-core. If the data set exceeds the page size,
processors each write to temporary disk files (on local disks or a parallel file system) as needed
and subsequently read from them. This out-of-core mode of operation allows processing of
data sets larger than the aggregate memory of all the processors, i.e. up to the aggregate
available disk space.

o Flexible programmability: An advantage of writing a MapReduce program on top of MPI,
is that the user program can also invoke MPI calls directly, if desired. For example, one-
line calls to MPI_Allreduce are often useful in determining the status of an iterative graph
algorithm, as described in Section 4. The library interface also provides a user data pointer
as an argument passed to all callback functions, so it is easy for the user program to store
“state” on each processor, accessible during the map and reduce operations. For example,
various flags can be stored that alter the operation of a map or reduce operation, as can richer
data structures that accumulate results.

o C++, C, and Python interfaces: The C++ interface to the MR-MPI library allows user
programs to instantiate and then invoke methods in one or more MapReduce objects. The C
interface allows the same operations to be called from C or other high-level languages such
as Fortran. The C interface also allows the library to be easily wrapped by Python via the
Python “ctypes” module. The library can then be called from a Python script, allowing the
user to write map() and reduce() callback functions in Python. If a machine supports running
Python in parallel, a parallel MapReduce can also be run in this mode.

e No fault tolerance or data redundancy: Current MPI implementations do not enable easy
detection of a dead processor or retrieval of the data it was working on. So like most MPI
programs, a parallel program calling the MR-MPI library will hang or crash if a processor
goes away. Unlike Hadoop, and its file system (HDFS) which provides data redundancy, the
MR-MPI library reads and writes simple, flat files. It can use local per-processor disks, or a
parallel file system, if available, but these typically do not provide data redundancy.

The remainder of the paper is organized as follows. Sections 2 and 3 describe how in-core and
out-of-core MapReduce primitives are formulated as MPI-based operations in the MR-MPI library.
Section 4 briefly describes the formulation of several common graph algorithms as MapReduce
operations. Section 5 gives performance results for these algorithms running on a parallel cluster
for graphs ranging in size from 8 million to 2 billion edges. We highlight the performance and
complexity trade-offs of a MapReduce approach versus other more special-purpose algorithms.
The latter generally perform better but are harder to implement efficiently on distributed memory
machines, due to the required explicit management of parallelism, particularly for large out-of-core
data sets. Section 6 summarizes some lessons learned from the implementation and use of our
library.



2 MapReduce in MPI

The basic datums stored and operated on by any MapReduce framework are key/value (KV) pairs.
In the MR-MPI library, individual keys or values can be of any data type or length, or combinations
of multiple types (one integer, a string of characters, two integers and a double, etc); they are simply
treated as byte strings by the library. A KV pair always has a key; its value may be NULL. KV
pairs are stored within a MapReduce (MR) object. A user program may create one or more MR
objects to implement an algorithm. Various MapReduce operations (map, reduce, etc) are invoked
on an object and its KV pairs; KV pairs can also be passed between and combined across objects.

A related data type in the MR-MPI library is the key/multivalue (KMV) pair, where all values
associated with the same key are collected and stored contiguously as a multivalue, which is just a
longer byte string with an associated vector of lengths, one integer length per value. In this section,
we assume the KV and KMV datums operated on by each processor fit in local memory.

A typical MR-MPI program makes at least three calls to the MR-MPI library, to perform map(),
collate(), and reduce() operations on a MR object it creates. In a map(), zero or more key/value
pairs are generated by each processor. Often this is done using data read from files, but a map()
may generate data itself or process existing KV pairs to create new ones. The KV pairs produced
are stored locally by each processor; a map() thus requires no inter-processor communication. Users
call the library with a count of tasks to perform and a pointer to a user function; the MR-MPI
map() operation invokes the user function multiple times as a callback. Depending on which variant
of map() is called, the user function may be passed a file name, a chunk of bytes from a large file, a
task ID, or a KV pair. Options for assigning map tasks to processors are specified by the user and
include assigning consecutive chunks of tasks to processors, striding the tasks across processors, or
using a master-slave model that is useful when tasks have widely varying workloads.

The collate() operation (or data shuffle in Hadoop) identifies unique keys and collects all the
values associated with those keys to create KMV pairs. This is done in two stages, the first of
which requires communication, since KV pairs with the same key may be owned by any processor.
Each processor hashes each of its keys to determine which processor will “own” it. The k-byte length
key is hashed into a 32-bit value whose remainder modulo P processors is the owning processor
rank. Alternatively, the user can provide a hash function that converts the key into a processor
rank. Each processor then sends each of its KV pairs to the owning processor.

After receiving new KV pairs, the second stage is an on-processor computation, requiring no
further communication. Each processor reorganizes its KV pairs into KMV pairs, one for each
unique key it owns. This is done using a hash table, rather than a sort. A sort scales as N logy(N),
i.e. it requires logy (V) passes through the N KV pairs. With hashing, the list of KMV pairs can
be created in two passes. The first pass populates the hash table with needed count and length
information; the second pass copies the key and value datums into the appropriate location in a new
KMYV data structure. Since the cost to lookup a key in a well-formed hash table is a constant-time
O(1) operation, the cost of the data reorganization is also O(N). This methodology has the added
benefit that the number of values in each KMV pair is known and can be passed to the user function
during a reduce. For some reduce operations, this count is all the information a reduce requires;
the values need not be looped over. The count is not available in Hadoop-style data shuffles, which
sort the values; counting the values associated with the same key requires iterating over the values.

Note that the first portion of the collate() operation involves all-to-all communication since each
processor exchanges KV pairs with every other processor. The communication can either be done
via a MPI_Alltoall() library call, or by a custom routine that aggregates datums into large messages
and invokes point-to-point MPI_Send() and MPI_IRecv() calls.

The reduce() operation processes KMV pairs and can produce new KV pairs for continued com-



putation. Each processor operates only on the KMV pairs it owns; no communication is required.
As with the map(), users call the library with a pointer to a user function. The MR-MPI reduce()
operation invokes the user function, once for each KMV pair.

Several related MapReduce operations are provided by the library. For example, the collate()
function described above calls two other functions: aggregate(), which performs the all-to-all com-
munication, and convert(), which reorganizes a set of KV pairs into KMV pairs. Both functions
can be called directly. The compress() function allows on-processor operations to be performed; it
is equivalent to a convert() with on-processor KVs as input, followed by a reduce(). The clone()
function turns a list of KV pairs into KMV pairs, with one value per key. The collapse() function
turns N KV pairs into one KMV pair, with the keys and values of the KV pairs becoming 2N
values of a single multivalue assigned to a new key. The gather() function collects KV pairs from
all processors to a subset of processors; it is useful for doing output from one or a few processors.
Library calls for sorting datums by key or value or for sorting the values within each multivalue
are also provided. These routines invoke the C-library quicksort() function to compute the sorted
ordering of the KV pairs (or values within a multivalue), using a user-provided comparison func-
tion. The KV pairs (or values in a multivalue) are then copied into a new data structure in sorted
order.

The interface to various low-level operations is provided so that a user’s program can string them
together in various ways to construct useful MapReduce algorithms. For example, output from a
reduce() can serve as input to a subsequent map() or collate(). Likewise, data can be partitioned
across multiple MapReduce (MR) objects, each with its own set of KV pairs. For example, as will
be illustrated in Section 4, one MR object can store the edges of a graph, and another its vertices.
KV pairs from multiple MR objects can be combined to perform new sequences of map(), collate(),
and reduce() operations.

The above discussion assumed that the KV or KMV pairs stored by a processor fit in its physical
memory. In this case, the MR-MPI library performs only “in-core” processing and no disk files are
written or read by any of the processors, aside from initial input data (if it exists) or final output
data (if it is generated). Note that the aggregate physical memory of large parallel machines can be
multiple terabytes, which allows for large data sets to be processed in-core, assuming the KV and
KMV pairs remain evenly distributed across processors throughout the sequence of MapReduce op-
erations. The use of hashing to assign keys to processors typically provides for such load-balancing.
In the next section, we discuss what happens when data sets do not fit in available memory.

3 Out-of-core Issues

Since the MapReduce paradigm was designed to enable processing of extremely large data sets, the
MR-MPT library also allows for “out-of-core” processing, which is triggered when the KV or KMV
pairs owned by one or more processors do not fit in local memory. When this occurs, a processor
writes one or more temporary files to disk, containing KV or KMV pairs, and reads them back in
when required. Depending on the parallel machine’s hardware configuration, these files can reside
on disks local to each processor, on the front end (typically a NFS-mounted file system for a parallel
machine), or on a parallel file system and its associated disk array.

When a user program creates a MapReduce object, a “pagesize” can be specified, which defaults
to 64 Mbytes. As described below, each MR-MPI operation is constrained to use no more than
a handful of these pages. The pagesize setting can be as small as 1 Mbyte or as large as desired,
though the user should ensure the allocated pages fit in physical memory; otherwise a processor
may allocate slow virtual memory. The pagesize is also the typical size of individual reads and
writes to the temporary disk files; hence a reasonable pagesize ensures good 1/O performance.



We now explain how the MapReduce operations described in the previous section work in out-
of-core mode. The map() and reduce() operations are relatively simple. As a map() generates KV
pairs via the user callback function, a page of memory fills up, one KV pair at a time. When the
page is full, it is written to disk. If the source of data for the map() operation is an existing set
of KV pairs, those datums are read, one page at a time, and a pointer to each KV pair is given
to the user function. Similarly, a reduce() reads one page of KMV pairs from disk, and passes a
pointer to each pair, one at a time, to the user callback function that typically generates new KV
pairs. The generated pairs fill up a new page, which is written to disk when full, just as with the
map() operation. Thus for both a map() and reduce(), out-of-core disk files are read and written
sequentially, one page at a time, which requires at most two pages of memory.

A special case is when a single KMV pair is larger than a single page. This can happen, for
example, in a connected component finding algorithm if the graph collapses into one or a few giant
components. In this case, the set of values (graph vertices and edges) associated with a unique key
(the component ID), may not fit in one page of memory. The individual values in the multivalue
are then spread across as many pages as needed. The user function that processes the KMV pair
is passed a flag indicating it received only a portion of the values. Once it has processed them, it
can request a new set of values from the MR-MPI library, which reads in a new page from disk.

Performing an out-of-core collate() operation is more complex. Recall that the operation occurs
in two stages. First, keys are hashed to “owning” processors and the KV pairs are communicated
to new processors in an all-to-all fashion. In out-of-core mode, this operation is performed on
one page of KV data (per processor) at a time. Each processor reads in a page of KV pairs, the
communication pattern is determined (which processors receive which datums in that page), and
all-to-all communication is performed. Each processor allocates a two-page chunk of memory to
receive incoming KV pairs. On average each processor should receive one page of KV pairs; the
two-page allocation allows for some load imbalance. If the KV pairs are distributed unevenly so that
this limit is exceeded, the all-to-all communication is performed in multiple smaller passes until the
full page contributed by every processor has been communicated. Performing an MPI_Alltoall(), or
using the custom all-to-all routines provided by the MR-MPI library, requires allocation of auxiliary
arrays that store processor indices, datum pointers, and datum lengths. For the case of many tiny
KV pairs, the total number of memory pages required to perform the all-to-all communication,
including the source and target KV pages is at most seven.

When the communication stage of the collate() operation is complete, each processor has a set of
KV pages, stored in an out-of-core KV file, that need to be reorganized into a set of KMV pages,
likewise stored in a new out-of-core KMV file. In principle, creating one page of KMV pairs would
require all KV pages be scanned to find all the keys that contribute values to that page. Doing
this for each output page of KMV pairs could be prohibitively expensive. A related issue is that,
as described in the previous section, a hash table is needed to match new keys with previously
encountered keys. But there is no guarantee that the hash table itself will not grow arbitrarily
large for data sets with many unique keys. We need an algorithm for generating KMV pairs that
operates within a small number of memory pages and performs a minimal number of passes through
the KV disk file. An algorithm that meets these goals is diagrammed in Figure 1; it reads the KV
pages at most four times, and writes out new KV or KMV pages at most three times. It also uses
a finite-size in-memory hash table, that stores unique keys as they are encountered while looping
over the KV pages, as well as auxiliary information needed to construct the output pages of KMV
pairs.

e (Pass 1) The KV pairs are read, one page at a time, and split into “partition” files, represented
by KVp in the figure. Each partition file contains KV pairs whose unique keys (likely) fit
in the hash table (HT). Initially, all KV pairs are assigned to the first partition file as the
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Figure 1: Multi-pass algorithm for converting KV data to KMV data within a processor. The
vertical lines represent out-of-core data sets. KV is key/value pairs; HT is an in-memory hash
table; KMV is key/multivalue pairs.



HT is populated. When the HT becomes full, e.g. at the point represented by the horizontal
line shown on the leftmost vertical line as a downward scan is performed, the fraction of KV
pairs read thus far is used to estimate the number of additional partition files needed. As
subsequent KV pairs are read, they are assigned to the original partition file if the KV pair’s
key is already in the current HT. If not, a subset of bits in the hash value of the key is used to
assign the KV pair to one of the new partition files. The number of needed partition files is
estimated conservatively, rounding up to the next power-of-two, so that extra passes through
the KV pairs are almost never needed, and so that the bit masking can be done quickly. This
first pass entails both a read and write of all the KV pairs.

e (Pass 2) The partition files are read, one at a time. The key for each KV pair is hashed
into the HT, accumulating data about the number and size of values associated with each
unique key. Before the next partition file is read, passes 3 and 4 are completed for the current
partition. Eventually this pass entails a read of all KV pairs.

e (Pass 3) The unique keys in the HT for one partition are scanned to determine the total size
of KMV for keys in the HT. The associated values create KMV pairs that span M memory
pages. If M > 1, the associated partition file of KV pairs is read again, and each KV pair
is assigned to one of M smaller “set” files, represented by KVs in the figure. Each set file
contains the KV pairs that contribute to the KMV pairs that populate one page of KMV
output. If a single KMV pair spans multiple pages because it contains a very large number of
values, the corresponding KV pairs are still written to a single set file. Eventually, this pass
reads all partition files, entailing both a read and write of all KV pairs.

e (Pass 4) A set file is read and the key/value data for each of its KV pairs is copied into the
appropriate location in the page of KMV pairs, using information stored in the HT. When
complete, the KMV page is written to disk. This pass eventually reads all set files, entailing a
final read of all KV pairs. It also writes all KMV pairs to disk. If each KV pair has a unique
key, the volume of KMV output is roughly the same as that of the KV input.

In summary, this data reorganization for the collate() operation is somewhat complex, but re-
quires only a small, constant number of passes through the data. The KV datums are read from
disk at most four times, and written to disk three times. The first two write passes reorganize KV
pairs into partition and set files; the final write pass creates the KMV data set. Depending on the
size and characteristics of the KV datums (e.g., the number of unique keys), some of these passes
may not be needed. By contrast, a full out-of-core sort of the KV pairs, performed via a merge sort
as discussed below is still an O(N log, N) operation. The number of read/write passes through the
KV data files depends on the amount of KV data that can be held in memory, but can be a large
number for big data sets.

The memory page requirements for the out-of-core collate() operation are as follows. Two con-
tiguous pages of memory are used for the hash table. Intermediate passes 2 and 3 can require
numerous partition or set files to be opened simultaneously and written to. To avoid small writes
of individual KV datums, a buffer of at least 16K bytes is allocated for each file. The precise num-
ber of simultaneously open files is difficult to bound, but typically one or two additional pages of
memory suffice for all needed buffers. Thus the total number of pages required for the data reorga-
nization stage of the collate() operation is less than the seven used by the all-to-all communication
stage.

Other MR-MPI library calls discussed in the previous section, such as clone(), collapse(), and

gather(), can also operate in out-of-core mode, typically with one pass through the KV or KMV
data and the use of one or two memory pages. Sorting KV pairs, by key or value, is an exception.



An out-of-core merge sort is performed as follows. Two pages of KV datums are read from disk.
Each is sorted in local memory using the C-library quicksort() function, as discussed in the previous
section. The two pages are then scanned and merged into a new file which is written to disk as its
associated memory page fills up. This process requires five memory pages, which includes vectors
of KV datum pointers and lengths needed by the in-memory quicksort() operation. Once all pairs
of pages have been merged, the sort continues in a recursive fashion, merging pairs of files into a
new third file, without the need to perform additional in-memory sorts. Thus the overall memory
requirement is five pages. The number of read /write passes through the KV data set for the merge
sort is O(logy M), where M is the number of pages of KV pairs. The number of passes could be
reduced at the cost of allocating more in-memory pages.

4 Graph Algorithms in MapReduce

We begin with a MapReduce procedure for creating large, sparse, randomized graphs, since they
are the input for the algorithms discussed below. R-MAT matrices [7] are recursively generated
graphs with power-law degree distributions. They are commonly used to represent web and social
networks. The user specifies six parameters that define the graph: the number of vertices N and
edges M, and four parameters a, b, ¢, d that sum to 1.0 and are discussed below. The algorithm
in Figure 2 uses a single MapReduce object to generate M unique non-zero entries in a sparse
N x N matrix G, where each entry G;; represents an edge between graph vertices (V;, V;), with V;
an integer from 1 to V.

Input:
MapReduce object G = edges of graph, initially empty

Mremain =M
while Myemain > 0:
Map G: Generate Myemain/P random edges (V;, V) on each processor
Output: Key = (V;,V}), Value = NULL
Collate G

Reduce G: Remove duplicate edges
Input: Key = (V;,V}), MultiValue = one or more NULLs
Output: Key = (V;,V;), Value = NULL

Miemain = M — Nk:v

Output:
MapReduce object G = edges of graph: Key = (V;,V;), Value = NULL

Figure 2: MapReduce algorithm for R-MAT graph generation on P processors, using a single
MapReduce object G.

In the map(), each of P processors generates a 1/P fraction of the desired edges. A single
random edge (V;, V) is computed recursively as follows. Pick a random quadrant of the G matrix
with relative probabilities a, b, ¢, and d. Treat the chosen quadrant as a sub-matrix and select a
random quadrant within it, in the same manner. Perform this process a total of n times where
N = 2". At the end of the recursion, the final “quadrant” is a single non-zero matrix element G;;.

Though G is very sparse, the map() typically generates some small number of duplicate edges.
The collate() and reduce() remove the duplicates. The entire map-collate-reduce sequence is re-
peated until the number of resulting key/value (KV) pairs Ny, = M. For reasonably sparse graphs,



only a few iterations are typically needed.

Note that the degree distribution of vertices in the graph depends on the choice of parameters
a, b, ¢, d. If one of the four values is larger than the other three, a skewed distribution results.
Variants of the algorithm can be used when N is not a power-of-two, to generate graphs with
weighted edges (assign a numeric value to the edge), graphs without self edges (require i # j),
or graphs with undirected edges (require i < j). Or the general R-MAT matrix can be further
processed by MapReduce operations to meet these requirements. For some algorithms below (e.g.,
triangle finding and maximal independent set generation), we post-process R-MAT matrices to
create upper-triangular R-MAT matrices representing undirected graphs. For each edge (V;,V})
with ¢ > j, we add edge (V},V;), essentially symmetrizing the matrix; we then remove duplicate
edges and self edges, leaving only edges with i < j.

By using an additional MapReduce object, we can improve the performance of the R-MAT gen-
eration algorithm, particularly when out-of-core operations are needed. In the enhanced algorithm
(Figure 3), we emit newly created edges into MapReduce object Gy and aggregate() the edges to
processors. We then add those edges to the MapReduce object G, containing all previously gen-
erated unique edges; the edges of G are already aggregated to processors using the same mapping
as Gpew. We can use a compress() to reduce duplicates locally on each processor. The enhanced
algorithm runs faster due to the smaller number of KV pairs communicated in the aggregate(),
compared to the collate() of the original algorithm, particularly in later iterations of the algorithm
where few new edges are generated.

Input:
MapReduce object G = edges of graph, initially empty
MapReduce object Gpey, = new edges of graph, initially empty

Mremain =M
while Myemain > 0:
Map Grew:  Generate Mremain/P random edges (V;, V;) on each processor
Output: Key = (V;,V}), Value = NULL
Aggregate Gpew
Add Grew to G, Gpew = empty
Compress G: Remove duplicate edges
Input: Key = (V;,V}), MultiValue = one or more NULLs
Output: Key = (V;,Vj), Value = NULL
Mremain =M - Nkv

Output:
MapReduce object G = edges of graph: Key = (V;,V;), Value = NULL

Figure 3: Enhanced MapReduce algorithm for R-MAT graph generation on P processors, using two
MapReduce objects G and Grpey.

4.1 PageRank

The PageRank algorithm assigns a relative numeric rank to each vertex in a graph. In an Internet
context, it models the web as a directed graph G(V, E), with each vertex V; € V representing a
web page and each edge (V;,V;) € E representing a hyperlink from V; to V;. The probability of
moving from V; to another vertex Vj is a/dout (Vi) + (1 — ) /|V|, where « is a user-defined parameter
(usually 0.8-0.9), dout(V;) is the outdegree of vertex V;, and |V| is the cardinality of V. The first
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term represents the probability of following a given link on page V;; the second represents the
probability of moving to a random page. For pages with no outlinks, the first term is changed
to a/|V], indicating equal likelihood to move to any other page. Equivalently, the graph can be
represented by a matrix A [16], with matrix entries A;; = a/dow (V) if vertex V; links to V;. To
keep A sparse, terms for random jumps and zero out-degree vertices are not explicitly stored as
part of the matrix. Rather, they are computed separately as adjustments to the PageRank vector.
The kernel of the PageRank algorithm is thus a power-method iteration consisting of matrix-vector
multiplications AT2 = y, where = is the PageRank vector from the previous iteration. A few
additional dot product and norm computations per iteration are also required.

The algorithm in Figure 4 performs these iterations, using linear-algebra concepts implemented
in a MapReduce framework, with data stored in four MapReduce objects: A, MT, x, and y. A
stores the matrix; MT stores the row index of “empty” rows of A; and x and y are vectors of
length |V|. The nonzeros of matrix A are initialized as described above; the PageRank vector
x is initialized uniformly. A MapReduce object MT contains the indices of all-zero rows of A,
corresponding to vertices with no outlinks. The PageRank algorithm is made more efficient by
invoking the aggregate() operation once on each of these MapReduce objects before the PageRank
iterations begin. Since the objects are all keyed by vertex, pre-aggregating them moves all KV
pairs with a given key to the same processor. Many of the subsequent PageRank operations then
become local operations, replacing a collate() (which is equivalent to an aggregate() followed by
convert()) with simply a convert(). In Figure 4, steps where convert() is substituted for collate()
are marked with an asterisk. This strategy of pre-aggregating to improve data locality is useful in
many MapReduce algorithms, but assumes that identical keys in different MapReduce objects can
be mapped to the same processor.

Step 1 of a PageRank iteration is, effectively, a dot-product of MT and x to compute an ad-
justment cgo¢ to the PageRank vector that represents random jumps and the uniform probability
of going from a leaf page to any other page. M is unchanged by the operation. In Step 2, the
matrix-vector product ATz is computed and the result stored in y. This is the most expensive part
of the computation, requiring two passes over the nonzero structure of A. In the first pass, a con-
vert() gathers all local row entries A;; with their associated x; entry, and a reduce() computes A;;x;.
In the second pass, a collate() gathers, for each j, all contributions to the column sum >, A;;z;,
which is computed by a second reduce(). Steps 3 and 4 adjust and scale the product vector; the
work is proportional to |V|. Step 5 computes the residual as an infinity norm to determine whether
the PageRank vector has converged; work is again proportional to |V|. Note that y and = are both
keyed by vertex at this point, so they can be joined via an add() and convert() without need for
the communication required by a full collate(). In Step 6, the PageRank vector is overwritten prior
to the next iteration. Throughout the algorithm, we exploit the ability to call MPI_Allreduce to
compute global dot products and norms.

This linear-algebra approach is attractive because it allows construction of the MapReduce
PageRank algorithm from simple kernels (matrix-vector multiplication, dot products) on com-
monly used data types (matrices, vectors). One can build a variety of algorithms based on these
primitives; indeed, linear-algebra toolkits such as Trilinos [14] and PETSc [3] naturally exploit
this idea. In parallel, each of these toolkits shares pre-computed data layouts and communication
maps among its distributed objects to enable efficient operations on the objects. In a MapRe-
duce context, however, separating the data into vectors and matrices results in additional overhead
to gather KV pairs with the same key into a key-multivalue (KMV) pair. This overhead could
be reduced in the PageRank algorithm, for example, by storing the z and y vectors in a single
MapReduce object, with key i and value (z;,y;). Doing this would eliminate the copy() in Step 2 of
Figure 4, as well as the add() and convert() in Step 5. A further performance improvement would
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store an entire row of A along with z and y in a single MapReduce object, with key i and value
(@i Yi, douts [J1, Aiji |, (92, Aijals - -+ s [dows> Aiddyu:]) (that is, storing together, for each vertex, its old
and new PageRank value along with all out-going edges incident to the vertex). This data layout
would eliminate an additional it convert(), but at the cost of code reusability. This data layout
would be efficient for PageRank, but is more complex and less likely to be useful for additional
algorithms. In addition, since each KV pair must fit within a single page of memory (in MR-MPI),
storing entire matrix rows in a single KV pair limits the size of matrices to which the algorithm
can be applied. The more general approach used in Figure 4 of storing non-zeros separately, en-
ables arbitrarily large problems to be solved. The detailed timing break-downs in section 5.2 allow
estimation of the benefit of these possible enhancements.

4.2 Triangle enumeration

A triangle in a graph is any triplet of vertices (V;, V}, Vi) where the edges (Vi,V;), (V;, Vi), (Vi, Vi)
exist. Figure 5 outlines a MapReduce algorithm that enumerates all triangles, assuming an input
graph G of undirected edges (V;, V;) where V; < Vj for every edge, i.e., an upper-triangular R-MAT
matrix. This exposition follows the triangle-finding algorithm presented in [8].

The initial step is to store a copy of the graph edges as KV pairs in an auxiliary MapReduce
object Gy, for use later in the algorithm. The first map() on G converts edge keys to vertex keys
with edge values. After a collate(), each vertex has the list of vertices it is connected to; the first
reduce() can thus flag one vertex V; in each edge with a degree count D;. The second collate() and
reduce() assign a degree count D; to the other vertex in each edge. In the third map(), only the
lower-degree vertex in each edge emits its edges as KV pairs. The task of the third reduce() is to
emit “angles” for each of these low-degree vertices. An “angle” is a root vertex V;, with two edges
to vertices V; and V5, i.e. a triangle without the third edge (Vi, V2). The reduce() emits a list of all
angles of vertex V;, by a double loop over the edges of V;. Note that the aggregate number of KV
pairs emitted at this stage is minimized by having only the low-degree vertex in each edge generate
angles.

In stage 4, KV pairs from the original graph G are added to the current working set of KV pairs
in MapReduce object G. The KV pairs in G contain edges that complete triangles for the angle
KV pairs just generated. After the fourth collate(), a pair of vertices (V;,V;) is the key, and the
multivalue is the list of all root vertices in angles that contain V; and Vj;. If the multivalue also
contains a NULL, contributed by Gy, then there is a (V;, V) edge in the graph. Thus all vertices in
the multivalue are roots of angles that are complete triangles and can be emitted as a triplet key.

4.3 Connected component labeling

A connected component of a graph is a set of vertices where all pairs of vertices in the set are
connected by a path of edges. A sparse graph may contain many such components. Figure 6
outlines a MapReduce algorithm that labels each vertex in a graph with a component ID. All
vertices in the same component are labeled with the same ID, which is the ID of some vertex in
the component. We assume an input graph E of undirected edges (V;, V). This exposition follows
the connected-component algorithm presented in [8], with the addition of logic that load-balances
data across processors, which is important when one or a few giant components exist in the graph.

The algorithm begins (before the iteration loop) by assigning each vertex to its own component or
“zone,” so that Z; = V; and storing this assignment in MapReduce object V. Each iteration grows
the zones, one layer of neighbors at a time. As zones collide due to shared edges, a winner is chosen
(the smaller zone ID), and vertices in the losing zone are reassigned to the winning zone. When
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the iterations complete, each zone has become a fully connected component and the MR object V'
holds the zone assignment for every vertex. The algorithm thus finds all connected components in
the graph simultaneously. The number of iterations required depends on the largest diameter of
any component in the graph.

The first map() uses MapReduce object E as input to the empty MapReduce object W to emit
the vertices in each edge as keys, with the edge as a value. The current zone assignment of each
vertex in V is added to the set of KV pairs in W. The first collate() collects all the edges of a
vertex and its zone assignment together in one multivalue. The first reduce() re-emits each edge,
tagged by the zone assignment of one of its vertices.

Since each edge was emitted twice, the second collate() on W collects the zone assignments for
its two vertices together. If the two zone IDs are different, the second reduce() chooses a winner
(the smaller of the two IDs), and emits the loser ID as a key, with the winning ID as a value. If no
zone ID changes are emitted, the algorithm is finished, and the iterations cease.

The third map() inverts the vertex/zone KV pairs to become zone/vertex KV pairs. The parti-
tioning logic in Figure 6 for this step (and subsequent ones) is described below. The fourth map()
adds the changed zone assignments in W to the set of KV pairs in V. The fourth collate() can
now collect all the vertices in each zone along with any reassignments of that zone ID. Since a zone
could collide with multiple other zones on the same iteration due to shared edges, the new zone
ID for a zone becomes the minimum ID of any of its neighboring zones. If no zone reassignment
values appear in the multivalue resulting from the fourth collate(), the zone ID is unchanged. The
final reduce() emits a KV pair for each vertex in the zone, with the vertex as a key and the new
zone ID as a value. This is an updated version of MapReduce object V', ready to be used as input
for the next iteration.

Note that if a graph has only a few components, the fourth collate(), which keys on the zone
ID, may generate a few very large key/multivalue (KMV) pairs. For example, if the entire graph
is fully connected, in the last iteration, a single KMV pair assigned to one processor will result,
containing all vertices in the graph. This imbalance in memory and computational work can lead
to poor parallel performance of the overall algorithm. To counter this effect, various operations
in stages 3 and 4 include extra logic. The idea is to partition zones whose vertex count exceeds a
user-defined threshold into P sub-zones, where P is the number of processors. The 64-bit integer
that stores the zone ID also stores a bit flag indicating the zone has been partitioned and a set of
bits that encode the processor ID.

During the third map(), if the zone has been partitioned, the vertex is assigned to a random
processor and the processor ID bits are added to the zone ID, as indicated by the Zi+ notation in
Figure 6. Likewise, if Z; has been partitioned, the fourth map() emits the KV pair for the zone ID
as (ZZJr winner) Instead of as (Z;, Zyinner). In this case, (Z;,Zyinner) is emitted not once, but P+ 1
times, once for each processor, and once as if Z; had not been partitioned (for a reason discussed
below).

With this additional partitioning logic, the fourth collate() (which keys on zone IDs, some of
which now include processor bits) collects only 1/P of the vertices in partitioned zones onto each
processor. Yet the multivalue on each processor still contains all the zone-reassignments relevant
to the unpartitioned zone. Thus, the fourth reduce() can change the zone ID (if necessary) in
a consistent manner across all P multivalues that contain the zone’s vertices. When the fourth
reduce() emits new zone assignments for each vertex, the zone retains its partitioned status; the
partition bit is also explicitly set if the vertex count exceeds the threshold for the first time.

Note that this logic does not guarantee that the partition bits of the zone IDs for all the vertices
in a single zone are set consistently on a given iteration. For example, an unpartitioned zone with
a small ID may consume a partitioned zone. The vertices from the partitioned zone retain their
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partitioned status, but the original vertices in the small zone may not set the partition bit of their
zone IDs. On subsequent iterations, the fourth map() emits P+ 1 copies of new zone reassignments
for both partitioned and unpartitioned zone IDs, to ensure all vertices in the zone will know the
correct reassignment information.

4.4 Maximal independent set identification

An “independent” set of vertices from a graph is one where no pair of vertices in the set is connected
by an edge. The set is “maximal” if no vertex can be added to it !. Finding a maximal independent
set (MIS) is useful in several contexts, such as identifying large numbers of independent starting
vertices for graph traversals. Luby’s algorithm [17] is a well-known parallel method for finding
a MIS. Figure 7 outlines a MapReduce version of Luby’s algorithm, assuming an input graph of
undirected edges (V;, V}) where V; < V; for every edge, i.e. an upper-triangular R-MAT matrix.

Before the iterations begin, a random value is assigned to each vertex (stored consistently for all
edges in F containing V;), which is used to compare pairs of vertices. The vertex ID itself could
be used as the random value, but since the vertices eventually selected for the MIS depend on the
randomization, this may introduce an unwanted bias. Instead, a random number generator can
be used to assign a consistent random value R; to each vertex in each edge (via a map()), which
is then carried along with the vertex ID through each stage of the algorithm. In the notation of
Figure 7, each V; is then really two quantities, a vertex ID (1 to N) and R;. Alternatively, the R;
can be used to relabel the vertices in a random manner, assigning each a new, unique vertex ID
from 1 to N. In this case, V; is simply the new vertex ID, and the vertices in the final MIS could
be remapped to recover their original IDs. These operations can be performed with a few extra
MapReduce steps, outside the iteration loop.

The pre-iteration clone() converts the initial list of edge key/value (KV) pairs stored in MapRe-
duce object F to key/multivalue (KMV) pairs, with the edge as the key, and NULL as the value.
Thus, the iterations can begin with a reduce(), without need for a collate(). A second empty
MapReduce object V' is also created, which will accumulate MIS vertices as the iterations proceed.

At each iteration, the current set of edges in E is examined to identify winning vertices. Vertices
adjacent to winners are flagged as losers, and all edges that contain a loser vertex are marked
for removal at the start of the next iteration. Vertices with all their edges marked as losers are
also flagged as winners. At each iteration marked edges are removed from the graph, and winning
vertices are added to the MIS. When the graph is empty, the MIS is complete.

The first reduce() flags the two vertices in each edge as a potential winner or loser. This is done
by comparing the two random values for the vertices (or the randomized vertex IDs as explained
above). The first collate() thus produces a multivalue for each vertex V; which contains all the
vertices it shares an edge with, and associated winner /loser flags.

In the second reduce(), if V; won the comparison with all its neighbor vertices, then it becomes
a “winner” vertex. All vertices connected to the winner are emitted with V; tagged with a winner
flag. If V; is not an overall winner, its neighbor vertices are emitted without the winner flag on V;.
The second collate() collects this new information for each vertex.

In the third reduce(), if any neighbor of V; was a winner in the previous reduce() (indicated by
a winner flag), V; becomes a “loser” vertex and emits all its neighbor vertices with V; tagged with
a loser flag. Otherwise it emits all its neighbor vertices without the loser flag on V;.

In the fourth reduce(), some vertices have all their neighbor vertices flagged as losers; these

! A maximal set is “maximum?” if it is the largest maximal set. Finding a graph’s maximum independent set is an
NP-hard problem, which MapReduce is unlikely to help with.
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vertices become winners. They are either the vertices identified as winners in the second reduce(),
or vertices who would become singletons (having no edges) when edges containing a loser vertex
are removed (on the next iteration). These winning vertices are emitted to the MapReduce object
V that stores the accumulating MIS.

All edges of each vertex are also emitted, retaining the loser flag if they have it; they are emitted
with E;; = (V;,V;) as their key, with V; < V. This is to ensure both copies of the edge come
together via the fourth collate(). The multivalue for each edge now has two values, each of which
is either NULL or a loser flag.

In the first reduce() of the next iteration, any edge with a loser flag in its multivalue does not
compare its two vertices; it is effectively deleted from the graph. The iterations end when all edges
have been removed from the graph. At this point, the MapReduce object V' contains a complete
MIS of vertices.

4.5 Single source shortest path calculation

For a directed graph with weighted edges, the single-source shortest path (SSSP) algorithm com-
putes the shortest weighted distance from a chosen source vertex to all other vertices in the graph.
This calculation is straightforward when global graph information is available. The source vertex
is labeled with distance zero. Then in each iteration, edge adjacencies of labeled vertices are fol-
lowed, and adjacent vertices are relabeled with updated distances. When no distances change, the
iterations are complete. Most importantly, only edges adjacent to modified vertices need be visited
in each iteration.

For a distributed graph, global information about edge adjacencies and labeled vertices is not
available. Instead, following the Bellman-Ford-style algorithm of [6, 4, 12], every edge of the graph
is visited in each iteration and vertex distances are updated. A MapReduce formulation of this
algorithm, described in Figure 8, begins with a graph E of directed edges (V;, V;). As generated by
the R-MAT procedure discussed earlier, this may include self-edges (V;,V;) and loop edges (both
(Vi,V;) and (V},V;)). These are handled as special cases within the algorithm to avoid spurious
contributions to the shortest path distances. MapReduce object V stores the distance of each
vertex V; from the source vertex V.

To begin, the distance to all vertices is set to infinity, except a distance of 0 for V; itself. At each
iteration, a map() is performed using E as input to add edges and their weights to each vertex in
V. After a collate(), each vertex V; knows its outgoing edges and their weights, as well as its own
current distance. It may also have one or more distances assigned to it from a previous iteration
(from an inbound edge). In the reduce(), each vertex resets its distance to the minimum of these
new distances and its current distance. If its distance changed, it emits new distance values d; for
the vertices associated with its outgoing edges, where d; = d; + w;;. It also unsets a “done” flag,
stored by each processor. When the reduce() is complete, an MPI_Allreduce is performed to check
the “done” flag status on all processors. If any distance was changed, the iterations continue, and
the distance updates propagate through the graph. Otherwise the algorithm is done.

As with PageRank and R-MAT generation, significant savings in communication and execution
time can be achieved by pre-aggregating the data stored in MapReduce objects and by splitting
the data appropriately across more than one MapReduce object. An enhanced SSSP algorithm is
shown in Figure 9. The MapReduce objects V' and F which store vertices and edges are aggregated
across processors only once at the beginning of the computation, which means the communication
portion of the collate() is performed to assign each key to a processor. The collate() of Figure 8
can then be replaced with a compress() which requires no communication.

In each iteration of SSSP, typically only a small number of new distances are generated. The
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Data # of # of Maximum
Set vertices edges vertex degree
RMAT-20 (small) 20~ 1M | 2B ~8M ~ 24K
RMAT-24 (medium) | 2% ~ 17M | 27 ~ 134M ~ 147K
RMAT-28 (large) 228 ~ 268M | 23! ~2B ~ 880K

Table 1: Characteristics of R-MAT input data for graph algorithm benchmarks.

enhanced algorithm uses MapReduce object U to store these updates. Only the updates in U
are communicated; they are aggregated to the same processor that permanently stores the corre-
sponding vertex and its edges. Thus, the total amount of required communication is smaller than
in the original algorithm, which communicated all graph edges at each iteration. Updated vertex
distances are stored in MapReduce object V', as before.

5 Performance Results

In this section, we present performance results for the graph algorithms of the preceding section,
implemented as small C++ programs calling our MR-MPI library. The benchmarks were run on a
medium-sized Linux cluster of 2 GHz dual-core AMD Opteron processors connected via a Myrinet
network. Most importantly for MR-MPI, each node of the cluster has one local disk, which is used
for out-of-core operations. To avoid contention for disk I/O, we ran all experiments with one MPI
process per node. For comparisons with other implementations, we used either the same cluster
or, where noted, Sandia’s Cray XMT, a multi-threaded parallel computer with 500 MHz processors
and a 3D-Torus network.

We ran the algorithms on three R-MAT graphs of different sizes, each for a varying number of
processors. Details of the input data are shown in Table 1. The small problem (around 8M edges)
can typically be run on a single processor without incurring out-of-core operations. The medium
problem (around 134M edges) can be run on a single processor with out-of-core operations; larger
processor configurations, however, do not necessarily require out-of-core operations. The large
problem (around 2B edges) requires out-of-core operations on our 64-node cluster. These are edge
counts before pre-processing steps used in some of the algorithms, e.g. to eliminate self-edges or
convert the matrix to upper-triangular form.

All data sets used R-MAT parameters (a,b,c,d) = (0.57,0.19,0.19,0.05) and generated eight
edges per vertex (on average). These parameters create a highly skewed degree distribution, as
indicated by the maximum vertex degree in Table 1.

The resulting timings give a sense of the inherent scalability of the MapReduce algorithms as
graph size grows on a fixed number of processors, and of the parallel scalability for computing on
a graph of fixed size on a growing number of processors. Where available, we compare the MapRe-
duce algorithm with other parallel implementations, including more traditional distributed-memory
algorithms and also multi-threaded algorithms in the Multi-Threaded Graph Library (MTGL) [5]
on the Cray XMT. We compute parallel efficiency on P processors as (timeys x M)/(timep x P)
where M is the smallest number of processors on which the same graph was run, and timey is the
execution time required on I processors.

5.1 R-MAT generation results

In Figure 10, we show the scalability of the R-MAT generation algorithm (Figure 3) for RMAT-20,
RMAT-24 and RMAT-28. For RMAT-20 and RMAT-24, the algorithm exhibits superlinear speed-
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up. This is due to the decreased amount of file I/O needed with greater numbers of processors;
with a larger total memory, a fixed-size problem requires less 1/O as processors are added. For
RMAT-28, which requires significant out-of-core operations, parallel efficiency ranges from 52%
to 97%. For these problems the enhanced algorithm of Figure 3 ran about 10% faster than the
algorithm of Figure 2.

5.2 PageRank results

In Figure 11, we show the performance of the PageRank algorithm (Figure 4) compared to a
distributed-memory matrix-based implementation using the linear algebra toolkit Trilinos [14].
The Trilinos implementation of PageRank uses Epetra matrix/vector classes to represent the graph
and PageRank vectors and requires the matrix and associated vectors fit in the aggregate memory
of the processors used. Rows of matrix A and the associated entries of the PageRank vector x are
uniquely assigned to processors; a random permutation of the input matrix effectively load balances
the non-zero matrix entries across processors. Interprocessor communication gathers x values for
matrix-vector multiplication and sums partial products into the y vector. Most communication is
point-to-point communication, but some global communication is needed for computing residuals
and norms of x and y.

Figure 11 shows the execution time per PageRank iteration for R-MAT matrices RMAT-20,
RMAT-24 and RMAT-28. Converging the PageRank iterations to tolerance 0.002 requires five or
six iterations. Several R-MAT matrices of each size were generated for the experiments; the average
time over the set of matrices is reported here. The Trilinos implementations show near-perfect
strong scaling for RMAT-20 and RMAT-24. The MR-MPI implementations also demonstrate good
strong scaling. However, MR-MPTI’s execution time is more than an order of magnitude slower
than the Trilinos implementation. The benefit of MR-MPI’s out-of-core implementation is seen,
however, with the RMAT-28 data set, which could be run on smaller processor sets than the Trilinos
implementation, which required 64 processors for RMAT-28.

A more detailed analysis of the performance of the MR-MPI PageRank algorithm is shown below.
We perform the analysis using RMAT-20, which is small enough to fit in memory and thus does
not need out-of-core operations, and RMAT-28, which requires out-of-core operation in MR-MPI.
Table 2 shows the amount of time spent in each step of Figure 4 for the MR-MPI implementa-
tion and the equivalent Trilinos implementation on 64 processors. For both implementations, the
matrix-vector multiplication (Step 2) is the most costly step. However, the MR-MPI algorithm is
consistently slower than the Trilinos implementation in each step. This effect is more pronounced
for RMAT-28, where MR-MPI performs out-of-core operations.

RMAT-20 RMAT-28
MR-MPI | Trilinos | MR-MPI | Trilinos
Step 1 (Compute adjustment) 0.0203 | 0.00030 17.53 | 0.0838
Step 2 (Multiply ATx) 0.1377 | 0.00455 341.26 | 2.9239
Step 3 (Apply adjustment) 0.0015 | 0.00015 2.14 | 0.0494
Step 4 (Scale y) 0.0013 | 0.00014 1.74 | 0.0359
Step 5 (Compute residual) 0.0207 | 0.00014 21.20 | 0.0457

Table 2: Detailed execution times (in seconds) per PageRank iteration on 64 processors for each
stage of the algorithm in Figure 4 using MR-MPI and Trilinos.

To understand where MR-MPI spends its effort during the PageRank computation, we break

down the operation times further for Step 2, the most expensive step of the PageRank computation;
the results are in Table 3. In the table, we divide the collate() operation into its two parts: an
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aggregate() that involves parallel communication and a convert() that gathers local key /value (KV)
pairs with matching keys into a key-multivalue (KMV) pair. All interprocessor communication
occurs in the aggregate(). While the time spent in aggregate() is significant, it is small compared
to the time spent in the two convert() operations. When out-of-core operations are required for
RMAT-28, the communication cost in the aggregate() is a smaller percentage of total time for Step
2, as other data manipulation operations such as convert() and add() require a relatively larger
percentage of the total time. Further experimentation is needed to determine whether reorganizing
the MapReduce data, as described in Section 4.1, would reduce the execution time of Step 2.
Organizing the data such that both the matrix A and vectors x and y are in the same MapReduce
object would eliminate the copy() and add() functions, as well as the first convert(). However, to
update the y values at the completion of Step 2, either an additional convert() or aggregate() with
greater amounts of data would be needed.

PageRank Step 2 RMAT-20 | RMAT-28
Copy z to y 1.1% 0.4%
Add A toy 3.0% 14.3%
Convert y 23.5% 43.6%
Reduce y 7.7% 5.8%
Aggregate y (first part of collate) 24.9% 6.8%
Convert y (second part of collate) 38.2% 27.4%
Reduce y 1.6% 1.7%

Table 3: Percentage of execution time in each operation of Step 2 of the MR-MPI PageRank
algorithm in Figure 4; experiments used 64 processors.

Similarly, in Table 4, we show the execution times required for each operation in Step 5 of Figure 4,
for the residual computation. Clearly the time to convert KV pairs to KMV pairs dominates this
computation. Reorganization of the vectors x and y into a single MapReduce object (as described
in Section 4.1) would benefit this step of the computation, as the add(), convert(), and reduce()
could be replaced by a single map(), with execution time comparable to the vector-scaling operation
of Step 4.

PageRank Step 5 | RMAT-20 | RMAT-28
Add y to x 2.2% 9.8%
Convert x 95.1% 84.9%
Reduce z 2.5% 5.3%
MPI_Allreduce 0.2% 0.0%

Table 4: Percentage of execution time in each operation of Step 5 of the MR-MPI PageRank
algorithm in Figure 4; experiments used 64 processors.

5.3 Triangle finding results

In Figure 12, we show the performance of the triangle finding algorithm (Figure 5). Execution
times for this algorithm were too large to allow the problem to be easily run with RMAT-28 on our
cluster. Parallel efficiencies for RMAT-20 ranged from 80% to 140%; for RMAT-24, they ranged
from 50% to 120%. The RMAT-20 matrix contained about 100 million triangles; the RMAT-24
contained 2.1 billion.
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5.4 Connected Components

In Figure 13, we show the performance of the connected component identification algorithm (Fig-
ure 6). A comparison is made with a hybrid “Giant Connected Component” implementation using
both Trilinos and MR-MPI. Power law graphs often have one or two very large components and
many very small components. The hybrid algorithm exploits this feature by using an inexpensive
breadth-first search (BFS) from the vertex with highest degree to identify the largest components
one at a time, followed by a more expensive algorithm to identify the small components in the
remainder of the graph. In our hybrid implementation, we initially perform matrix-vector mul-
tiplications in Trilinos to perform a BFS, finding a handful of components that include 70% or
more of the vertices (for these R-MAT matrices). We then apply our MapReduce algorithm to the
remaining graph to identify the small components. This hybrid approach is quite effective, reducing
the execution time to identify all components in RMAT-20 and RMAT-24 by 80-99%, as shown in
Figure 13. For RMAT-28, where the graph is too large to fit into memory, Trilinos cannot perform
the initial BF'S, so only the MapReduce algorithm was used. The total number of components
identified were roughly 498K, 9.37M, and 169M for the three increasing R-MAT sizes; five or six
iterations were required by the algorithm.

5.5 Maximally independent set results

The execution times for the maximal independent set (MIS) algorithm (Figure 7) are shown in
Figure 14. Like the R-MAT generation results, superlinear speed-up of the algorithm occurs for
RMAT-20 and RMAT-24, as more of the graph fits into processor memory and less file I/O is
needed. For RMAT-28, the algorithm requires significant out-of-core operations. In this case,
parallel efficiency is nearly perfect going from 8 to 64 processors. The number of vertices in the
resulting MIS were 368K, 5.18M, and 72.4M for the three increasing R-MAT sizes; the number of
iterations required by the algorithm ranged from five for RMAT-20 to nine for RMAT-28.

5.6 Single-source shortest path results

The execution times for the SSSP algorithms of Figures 8 and 9 are shown in Figure 15. The
results show the benefit of using the enhanced algorithm, which gave at least a 17% (and often
greater) reduction in execution time due to reduced communication; only the updated distances
are communicated throughout most of the enhanced algorithm. However, the execution times are
still large compared to multi-threaded implementations; for example, Madduri et al. [18] report
execution times of only 11 seconds on 40 processors for a multithreaded implementation on a Cray
MTA-2 (the predecessor of the XMT) on graphs with one billion edges. Seven to ten iterations
were required in the MapReduce algorithms to find the SSSP to all vertices.

To compare our MR-MPI implementation with a wider set of algorithms, we performed ex-
periments comparing MR-MPI, Hadoop, PBGL (Parallel Boost Graph Library) [13] and a multi-
threaded implementation on the Cray XMT using two web graphs: WebGraphA with 13.2M vertices
and 31.9M edges, and WebGraphB with 187.6M vertices and 531.9M edges. In Figure 16, we show
execution times for the SSSP algorithm using WebGraphA. Like our MR-MPI implementation, the
Hadoop implementation is a Bellman-Ford-style [4, 12] algorithm. The XMT and PBGL imple-
mentations are based on delta-stepping [19], and do not require full iterations over the entire edge
list to advance a breadth-first search. We observe that the MR-MPI implementation runs in less
time than the Hadoop implementation, but requires significantly more time than the XMT and
PBGL implementations. In experiments with WebGraphB, the benefit of the enhanced algorithm
(Figure 9) is clearly shown, with a 40% reduction in execution time compared to the original SSSP
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Implementation Number of Processes | SSSP Execution Time
Hadoop 48 38,925 secs.
MR-MPI original (Figure 8) 48 13,505 secs.
MR-MPI enhanced (Figure 9) 48 8,031 secs.
XMT/C 32 37 secs.
Table 5: Execution times for SSSP with WebGraphB.
Algorithm R-MAT | R-MAT++ | PageRank | Tri | CC | MIS | SSSP | SSSP++
Lines of code 208 216 603 367 | 453 | 393 | 394 448
Figure 2 3 4 5 6 7 8 9

Table 6: Lines of code to implement each of the graph algorithms in the associated figures.

algorithm (Figure 8). But the Bellman-Ford-style iterations are especially costly in the MR-MPI
and Hadoop implementations for WebGraphB, which required 110 iterations to complete; execution
times for this data set are shown in Table 5.

5.7 Implementation effort

To give a rough sense of the effort involved to implement the various MapReduce algorithms
described in this section, we list the line counts of the C++ codes used to perform the benchmarks.
Each code makes calls to the MR-MPI library and implements the algorithm in the indicated figure.
The line counts exclude comments and blank lines which typically add about 30% to the total. They
also exclude the routines used to generate the R-MAT matrix input (except in the case of the two
R-MAT algorithms themselves) or process it into upper-triangular form, since that is common to
several of the benchmarks.

For comparison, we wrote a parallel distributed-memory R-MAT generation code with explicit
MPI calls using a different (non-MapReduce) algorithm than that of Figures 2 and 3. It required
845 lines of code, mainly because it must implement the parallelism explicitly, whereas the codes
of this section relegate that task to the MR-MPI library. A similar all-MPI implementation of the
PageRank algorithm required 718 lines. By contrast an implementation of PageRank using the
Trilinos parallel linear algebra library (discussed in Section 5.2) required only 153 lines of code,
since entire dot-products and matrix-vector multiplications can be invoked by single function calls
to Trilinos. Our collaborators (see Acknowledgments) have a Hadoop implementation of the SSSP
algorithm of Figure 8. It required 697 lines of Java.

5.8 Scalability to large numbers of processors

Finally, we demonstrate the scalability of our MR-MPI library to large numbers of processors.
The library was used on Sandia’s Redstorm and Thunderbird parallel computers. Redstorm is a
large Cray XT3 with 24+ GHz dual/quad-core AMD Opteron processors and a custom interconnect
providing 9.6 GB/s of interprocessor bandwidth. Thunderbird is a large Linux cluster with 3.6 GHz
dual-core Intel EM64T processors connected by an Infiniband network. Because these systems do
not have local disks for each processor, we selected a data set and page sizes that fit in memory,
so out-of-core operations were not needed. For these experiments, we used two R-MAT data sets
with with 2%° vertices and 22 edges, with parameters given in Table 7. The “nice” parameters
produce a less-skewed sparsity pattern in the matrix than the “nasty” parameters, as indicated by
the maximum degree metric. We ran both the PageRank and Connected Components algorithms
on these matrices.

20



Data | R-MAT | R-MAT | R-MAT | R-MAT # of # of Maximum
Set a b c d vertices | edges | vertex degree
nice 0.45 0.15 0.15 0.25 225 228 1108
nasty | 0.57 0.19 0.19 0.05 225 228 230,207

Table 7: Characteristics of R-MAT input data for PageRank and Connected Components scalability
experiments.

Figure 17 shows the performance of the various PageRank implementations on distributed mem-
ory and multi-threaded architectures. The MR-MPI and Trilinos implementations are described in
Sections 4.1 and 5.2, respectively. In the multi-threaded MTGL implementation, rank propagates
via adjacency list traversal in a compressed sparse-row data structure. To maintain its scalability,
code must be written so that a single thread spawns the loop that processes all in-neighbors of a
given vertex; this detail enables the compiler to generate hotspot-free code.

The MR-MPI implementation demonstrated good scalability up to 1024 processors; however,
as before, it required an order-of-magnitude more execution time than the matrix-based imple-
mentations on Redstorm. The Trilinos implementation is competitive with the multi-threaded
implementation in MTGL on the Cray XMT, when both are run on the same number of proces-
SOTS.

Similar results were obtained for the Connected Components algorithm, as shown in Figure 18.
As with PageRank, the MR-MPI implementation showed good scalability up to 1024 processors,
but required significantly more time than the hybrid algorithm using Trilinos and MR-MPT or the
MTGL algorithm.

6 Lessons Learned

We conclude with several observations about performing MapReduce operations on distributed-
memory parallel machines via MPI.

MapReduce achieves parallelism through randomizing the distribution of data across processors,
which often intentionally ignores data locality. This translates into maximal data movement (during
a data shuffle or collate() operation) with communication between all pairs of processors. But the
benefit is often good load-balance, even for hard-to-balance irregular data sets, such as those
derived from sparse graphs with power-law degree distributions. By contrast, MPI-based parallel
algorithms, e.g. for matrix operations, or grid-based or particle-based simulation codes, typically
work hard to localize data and minimize communication. To do this they often require application-
specific logic and parallel communication coding to create and maintain a data decomposition,
generate ghost copies of nearby spatially-decomposed data, etc.

MapReduce algorithms can be hard to design, but are often relatively easy to write and debug.
Thinking about a computational task from a MapReduce perspective is different from traditional
distributed-memory parallel algorithm design. For example, with an MPI mindset, it often seems
heretical to intentionally ignore data locality. However, writing small map() and reduce() functions
is typically easy. And writing an algorithm that involves complex parallel operations without
needing to write application-specific code to communicate data via MPI calls or to move data
between out-of-core disk files and processor memory is often a pleasant surprise. By contrast,
extending a library like Trilinos (or other in-core MPI applications) to enable it to perform its suite
of linear algebra operations in out-of-core mode on large data sets would be a considerable effort.
Moreover, if a MapReduce algorithm is initially coded so that it runs correctly on one processor, it
often works out-of-the-box on hundreds or thousands of processors, without the need for additional
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debugging.

Performing MapReduce operations on a fixed allocation of processors on a traditional MPI-based
parallel machine is a somewhat different conceptual model than performing MapReduce operations
on a cloud computer using (for example) Hadoop. In the former case, one can potentially control
which processor owns which data at various stages of an algorithm. This is somewhat hidden from
the user in a typical cloud-computing model, where data simply exists somewhere in the cloud
and Hadoop ensures data moves where it is needed and is operated on by some processor. The
cloud model is a nice data-centric abstraction which allows for fault tolerance both to data loss (via
redundant storage) and to processor failure (via reassignment of work), neither of which is typically
possible on current MPI-based parallel machines.

However, since the MPI implementation of MapReduce as described in this paper is processor-
centric, one can sometimes fruitfully exploit the possibility for processors to maintain “state” over
the course of multiple map and reduce operations. By controlling where data resides for maps and
reduces (e.g. via a user-specified hash function), and by assuming that processor will always be
available, more efficient operations with less data movement are sometimes possible. The discussion
of enhanced graph algorithms in Section 4 illustrated this. To fully exploit this idea for large data
sets, mechanisms and data structures are needed for processors to store, retrieve, and efficiently
find needed datums on local disk (e.g. static edges of a graph), so that archived state can be used
efficiently during subsequent map and reduce operations.

Finally, though this paper focuses on graph algorithms expressed as MapReduce operations,
there is nothing about the MR-MPI library itself that is graph specific. We hope the library can
be generally useful on large-scale monolithic or cloud-style parallel machines that support MPI, for
a variety of data-intensive or compute-intensive problems that are amenable to solution using a
MapReduce approach.
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Input:
Pre-aggregated MapReduce object A = |V| x |V| matrix: Key = i, Value = [j, Aj;]
Pre-aggregated MapReduce object MT = indices of all-zero rows of A: Key = i, Value = NULL
Pre-aggregated MapReduce object x = initial PageRank vector: Key = i, Value = 1/|V/|
MapReduce object y = vector, initially empty; user-defined parameter «

while (residual > tolerance)
1 Compute adjustment for random jumps and zero-outdegree vertices
Add x to MT
* Convert MT: Key is vertex ¢
Reduce MT:
Input: Key = ¢, MultiValue = (x;, NULL) if i € MT}; else MultiValue = z;
If (nvalues = 2) cior = Caor + i €lse cior = Cior + @
Output: Key = ¢, Value = NULL if nvalues = 2
ciot = MPI_Allreduce(cgor, MPI.SUM) / |V|
2 Compute y = ATz
Copy z to y
Add Atoy
* Convert y: Key is row index of A
Reduce y:
Input: Key = 4, MultiValue = y;, [, A;;] for nonzeros A;; in A
Output: Key = j, Value = A;;y;
Collate y: Key is column index of A
Reduce y:
Input: Key = j, MultiValue = A;;y; for nonzeroes A;; in column j of A
Output: Key = j, Value = >, A;;y;
3 Add cgot to y; compute ymqr = max element in y
Map y:
Input: Key = 4, Value = y;
Yi = Yi + Cdot; Ymaz = maX(yi, yma:r)
Output: Key = i, Value = y;
Ymaz = MPI_Allreduce(Ymar, MPI_MAX)
4 Scale y by Ymaz
Map y:
Input: Key = 4, Value = y;
Output: Key = ¢, Value = ¥;/Ymax
5 Compute residual
Add y to x
* Convert z: Key is vertex ¢
Reduce z:
Input: Key = ¢, MultiValue = z;, y;
residual = max(|z; — yi|, residual)
residual = MPI_Allreduce(residual, MPI_MAX)
6 Copy y to x

Output:
MapReduce object x = PageRank vector: Key = 4, Value = x; = numeric rank

Figure 4: MapReduce algorithm for PageRank vertex ranking, using four MapReduce objects A,
MT, x, and y. Pre-aggregating several of the MapReduce objects allows several communication
intensive collate() operations to be replaced by local convert() operations (marked with asterisks).



Input:
MapReduce object G = edges of graph: Key = (V;,V;) with V; <V}, Value = NULL
MapReduce object Gy = edges of graph, initially empty

1 Copy G to Gy
1 Map G:  Convert edges to vertices
Input: Key = (V;,Vj;), Value = NULL
Output: Key = V;, Value = V;
Output: Key =V}, Value = V;
1 Collate G
1 Reduce G: Add first degree to one vertex in edge
Input: Key = V;, MultiValue = (V}, V4, ...)
for each V in MultiValue:
if V; < V: Output: Key = (V;, V), Value = (D;,0)
else: Output: Key = (V,V;), Value = (0, D;)
2 Collate G
2 Reduce G: Add second degree to other vertex in edge
Input: Key = (V;,V;), MultiValue = ((D;,0), (0, D;))
Output: Key = (V;,Vj), Value = (D;, D;) with V; <V
3 Map G:  Low degree vertex emits edges
it D; < Dj: Output: Key = V;, Value =V}
else if D; < D;: Output: Key = Vj, Value = V;
else: Output: Key = V;, Value = Vj
3 Collate G
3 Reduce G: Emit angles of each vertex
Input: Key = V;, MultiValue = (V}, V4, ...)
for each V7 in MultiValue:
for each V5 beyond V; in MultiValue:
if V1 < Va: Output: Key = (V1,V2), Value = V;
else: Output: Key = (V3,V;), Value = V;
4 Add Gy to G
4 Collate G
4 Reduce G: Emit triangles
Input: Key = (V;,V}), MultiValue = (Vj, Vi, NULL, Vpp, ...)
if NULL exists in MultiValue:
for each non-NULL V in MultiValue:
Output: Key = (V;,V}, V), Value = NULL

Output:
MapReduce object G = triangles in graph: Key = (V;,V}, V}), Value = NULL

Figure 5: MapReduce algorithm for triangle enumeration, using two MapReduce objects G and Gy
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Input:
MapReduce object E = edges of graph: Key = (V;,V;), Value = NULL
MapReduce object V = zone assignments of vertices: Key = V;, Value = Z; =V
MapReduce object W = workspace
Iterate:
1 Map W using E as input: Convert edges to vertices
Input: Key = E;; = (V;,V;), Value = NULL
Output: Key = V;, Value = E;;
Output: Key =V}, Value = E;;
1Add V to W
1 Collate W: Vertex as key
1 Reduce W: Emit edges of each vertex with zone of vertex
Input: Key = V;, MultiValue = FEFE...Z
for each E in MultiValue:
Output: Key = E;;, Value = Z;
2 Collate W: Edge as key
2 Reduce W: Emit zone re-assignments
Input: Key = E;j, MultiValue = Z;7;
Zwinner = min(Zz}Zj); ZLloser = maX(Zth)
if Z; and Z; are different:
Output: Key = Zjyserr, Value = Zyinner
2 Exit: if W is empty (no output by Reduce 2)
3 Map V: Invert vertex/zone pairs
Input: Key = V;, Value = Z;
if Z; is not partitioned:
Output: Key = Z;, Value = V;
else:
Output: Key = Z;r , Value = V; for a random processor
4 Map V using W as input: Add zone reassignments in W to data in V
if Z; is not partitioned:
Output: Key = Z;, Value = Zyinner
else:
Output: Key = Zl-Jr , Value = Zinner for every processor
Output: Key = Z;, Value = Zyinner
4 Collate V: Zone ID as key
4 Reduce V: Emit new zone assignment of each vertex
Input: Key = Z; or Z{*‘7 MultiValue = VVVV..ZZZ...
Znew = min(Z; or Z12,2.7,...)
partition Z,e,, if number of V' > threshold
for each V; in MultiValue:
Output: Key = V;, Value = Z,,cy

Output:
MapReduce object V' = zone assignment of each vertex: Key = V;, Value = Z;

Figure 6: MapReduce algorithm for connected component labeling, using 3 MapReduce objects F,
V, and W.
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Input:
MapReduce object V' = maximal independent set vertices, initially empty
MapReduce object £ = edges of graph: Key = (V;,V;) with V; <V}, Value = NULL
Map E: Assign random values consistently to each vertex V; and V; in E
Clone E: Convert KV pairs in E directly to KMV pairs with MultiValue = NULL

while Negges in B> 0:
1 Reduce E: Determine WINNER/LOSER vertex of each edge
Input: Key = E;;, MultiValue = NULL or LOSER
if MultiValue = LOSER, emit nothing
Vw = WINNER vertex, V; = LOSER vertex
Output: Key = V,,, Value = (V;, WINNER)
Output: Key = V;, Value = (V,,, LOSER)
1 Collate E: Vertex as key
2 Reduce E: Find WINNER vertices
Input: Key = V;, MultiValue = VVVV...
if all V; in MultiValue are flagged with WINNER, V; is a WINNER
for each Vj in MultiValue:
Output: Key =V}, Value = (V;, WINNER)
else:
for each V; in MultiValue:
Output: Key = Vj, Value = V;
2 Collate E: Vertex as key
3 Reduce E: Find LOSER vertices
Input: Key = V;, MultiValue = VVVV...
if any V; in MultiValue is flagged with WINNER, V; is a LOSER
for each Vj in MultiValue:
Output: Key =V}, Value = (V;, LOSER)
else:
for each V; in MultiValue:
Output: Key = Vj;, Value = V;
3 Collate E: Vertex as key
4 Reduce E: Emit WINNER vertices and LOSER edges
Input: Key = V;, MultiValue = VVVV...
if all V; in MultiValue are flagged with LOSER, V; is a WINNER
Output: to V: Key = V;, Value = NULL
for each V; in MultiValue:
if Vj is flagged with LOSER:
Output: to E: Key = E;; with V; <V}, Value = LOSER
else:
Output: to E: Key = E;; with V; <V}, Value = NULL
4 Collate E: Edge as key

Output:
MapReduce object V' = maximal independent set vertices: Key = V;, Value = NULL

Figure 7: MapReduce algorithm for finding a mazimal independent set of graph vertices via Luby’s
algorithm, using two MapReduce objects E and V.
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Input:
MapReduce object E = graph edges with weights: Key = (V;, V), Value = w;;
MapReduce object V' = vertices with distances from source vertex Vj:
Key = V;, Value = oo, except Value for V5 = 0

while not done:
done =1
Map V using E as input: Add edge weights in F to data in V
Input: Key = E;;, Value = w;;
Output: Key = V;, Value = (V}, w;;)
Collate V: Vertex is key
Reduce V: Loop over edges of vertex to update distance from Vj
Input: Key = Vj, MultiValue = d;, edges (V}, w;;), candidate distances d;
dmz‘n = min(di, dj, dj, .. )
done = 0
Output: Key = Vj, Value = d;p;,, + w;; for each edge vertex V;
Output: Key = V;, Value = dn
done = MPI_Allreduce(done, MPI_MIN)

Output:
MapReduce object V' = vertices with distances from source vertex Vj:
Key = V;, Value = d;

Figure 8: MapReduce algorithm for single-source shortest path (SSSP) calculation, using two
MapReduce objects V and E.
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Input:
Pre-aggregated MapReduce object E = graph edges with weights: Key = (V;,V}), Value = wj;
Pre-aggregated MapReduce object V' = vertices with distances from source vertex Vj:
Key = V;, Value = oo, except Value for V; = 0
MapReduce object U = updates to distances, initially empty

while not done:
done =1
Aggregate U
Add U to V, U = empty
Compress V: Compute best distance for each vertex
Input: Key = V;, MultiValue = d;, candidate distances d;
dmm = min(di, dj, dj, .. )
done = 0
Output to U: Key = V;, Value = dyin
Output to V: Key = V;, Value = dp;p
done = MPI_Allreduce(done, MPI_MIN)
if not done:
Add U to E, U = empty
Compress E: Generate candidate distances for neighbors of changed vertices.
Input: Key = V;, MultiValue = edges (V}, w;;) and d; if updated in previous step
If updated d; exists:
Output to U: Key =V}, Value = d; + w;; for each edge vertex V;

Output:
MapReduce object V' = vertices with distances from source vertex Vj:
Key = V;, Value = d;

Figure 9: Enhanced MapReduce algorithm for single-source shortest path (SSSP) calculation, with
an additional MapReduce object U. Pre-aggregating the vertices V and edges E, and storing only
changed distances in U, reduces communication and execution time.
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Figure 17: Scalability comparison of PageRank using MapReduce (MR-MPI), matrix-based (Trili-
nos), and multi-threaded (MTGL) implementation on the R-MAT data sets in Table 7.

38



MapReduce on Thunderbird: NICE
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Figure 18: Scalability comparison of Connected Components algorithms using MapReduce (MR-
MPI), matrix-based/MapReduce hybrid (Trilinos/MR-MPI), and MTGL implementations on the
R-MAT data sets in Table 7.
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