
Development and performance of a PVM based parallel geometric modeler for
MEMS

Craig Jorgensen, Darryl Melander, Rod Schmidt and Steve Plimpton

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM, USA, 87185
crjorge@sandia.gov, djmelan@sandia.gov, rcschmi@sandia.gov, sjplimp@sandia.gov

ABSTRACT

This paper describes a successful approach to improving
the robustness and speed of Sandia National Laboratory’s
3-D MEMS geometry modeler through a combination of
mask subdivision and code parallelization. Symptoms of
the robustness problems experienced with the original
modeler that suggested the need for the subdivision strategy
pursued here are explained. The basic elements of the
subdivision approach and the subsequent parallel
implementation are described. Results and timings for a
number of different modeling problems are presented and
discussed in order to illustrate the effectiveness of the
current approach.

Keywords: MEMS, solid modeling, parallel processing,
SUMMiT, PVM

1 INTRODUCTION

 Driven by the ongoing need to create MEMS devices
with greater complexity and improved functionality,
fabrication processes are being developed that involve an
increasing number of process steps and material layers. For
example, the current standard at Sandia National
Laboratory is the SUMMiT VTM process [1] which contains
5 layers of polysilicon. However, as the number of process
steps and material layers increase, the difficulty and time
required to design new devices also increase. The use of
accurate, robust, and fast design tools is becoming essential.
Of particular importance is the ability to automatically
generate and visualize an accurate 3-D solid-body
representation of the resulting MEMS device defined by the
set of 2-D masks. The resulting solid model can be visually
evaluated and numerically analyzed for correctness. This
improves the designer’s ability to recognize problems and
achieve early success with production.

 Previous work at Sandia National Laboratory led to the
development of a 3-D geometry modeler [2] for the
SUMMiT VTM MEMS designer. Based on the ACIS [3]
kernel, this code creates a 3-D solid-body representation of
a MEMS design by simulating the manufacturing process
on a 2-D mask set.

 The modeler performed well on many of Sandia’s
standard component designs and enabled a deeper
understanding of the parts. However, for large complex
designs and system level devices the code did not provide
sufficient speed or robustness for effective use as an
everyday design tool. Simple parts could be modeled in a
few minutes but complicated designs could take many
hours or even days to finish. In addition geometric
processing errors that are related to the geometry kernel
became more common as the complexity of the mask set
increased causing unrecoverable problems with the process
simulation.

 These problems severely hampered the effectiveness of
the modeler by discouraging analysis of the large and
complex parts where understanding is needed most.
Furthermore, since MEMS devices are only expected to
become more complicated in the future, it was clear that
without significant improvements the modeler would
become increasingly less useful.

 This paper describes a successful approach to improving
the robustness and speed of the geometry modeler through a
combination of mask subdivision and parallelization.

2 SUBDIVISION STRATEGY

 Experience with the modeler demonstrated that the
likelihood of failure increased with the complexity and size
of the problem. Of particular note was that failure would
often occur on system designs that were completely
composed of MEMS devices that by themselves could be
successfully modeled. This observation suggested that a
subdivide-and-model strategy should be explored. The
basic idea is to take a large complex design, break it up into
smaller simpler pieces, model the pieces, and then combine
the modeled pieces into the fully modeled complex design.

 There are four steps to this strategy.

1. Read in the mask set.
2. Subdivide the mask set into simpler sub-mask sets.
3. Model each of the simple sub-mask sets.
4. Join the results of the modeling.

 The second step is key to this approach and it is
important enough to describe further. The subdivision
psuedo code can be written as follows.

 Subdivide (mask_set, simple_set_collection)
 {

 Calculate mask_set complexity
 If complexity > complexity threshold then

 Divide mask_set into N simpler
sub_mask_sets

 For I = 1 to N
 Subdivide (sub_mask_set(I),

simple_set_collection)
 Else

 Add mask_set to simple_set_collection
 }

 The current subdivision algorithm estimates the

complexity of the mask set based simply on the number of
vertices. The threshold is a user specified input parameter.
If the set contains more vertices than the threshold, the
masks are spatially bisected to create a number of sub-mask
sets. These sub-mask sets are then re-evaluated by the
subdivision algorithm. Eventually the entire initial mask
set is divided into pieces consider simple enough for
modeling.

 Figure 1 illustrates the subdivide-and-model strategy for
a simple problem requiring two levels of subdivisions. In
this example, the bottom left quadrant contains many more
vertices than the other quadrants, leading to the need for a
second subdivision.

3D Solid
geometry

file

2D mask
File

(14 masks)

Subdivide based
on vertex count

Create collection
of new individual
mask files 3-D process

modeling

Combine individual
pieces into one 3-D
solid model file

Figure 1 Illustration of the subdivide-and-model strategy.

3 PARALLELIZATION

 Figure 1 also helps to illustrate that many steps in the
overall process could, in principle, be accomplished
concurrently. The most obvious are the modeling tasks,
each of which are independent from each other. However,
much of the work in the subdivision and joining steps can
also be accomplished through sets of independent tasks.

 The parallelization approach taken is based on a master-
slave strategy and was implemented by using the PVM
software package (Parallel Virtual Machine) [4]. PVM is a
software system that permits a heterogeneous collection of

networked computers to be viewed by a user’s program as a
single parallel computer. In this case, a controlling “master”
code was written which reads in the initial problem
definition through input files, identifies and spawns tasks to
available slave processors, monitors the status of each task,
and stops when all tasks are finished and the overall process
is completed. While the master code is run on the users
workstation, the spawned tasks are assigned out to any of
the available workstations within the PVM network.

 We define three types of tasks, called subdivide, model,
and join tasks. These tasks are linked through a set of
dependencies that reflect the sequential aspects of the
overall problem. For example, mask set subdivision must
always occur first, and for each subdivision that occurs, an
associated join task must later be performed to recombine
the sub-masks that have been modeled.

 2
. j

oi
n

1.
 s

ub
di

vi
de

3.model

4.model

5.model

8.model

6.
 s

ub
di

vi
de

9. model

10.model

11.model

 7
. j

oi
n

 decision point waiting point

Start Finish

 Figure 2 An example task flow chart for the problem

illustrated in Figure 1.

 Figure 2 shows the task flow chart for the simple
problem illustrated in Figure 1. Each of the three task types
are illustrated, together with what are denoted decision
points and waiting points. Decision points correspond to
when the complexity of the current mask set is evaluated to
determine if further subdivision is necessary, or if a
modeling task can begin (explained in Section 2). Waiting
points correspond to the completion of modeling task, when
the code must potentially wait until each of the parts
required for a joining task has been modeled.

 After the input files have been read in, the master code
begins by determining if the problem is complex enough to
require subdivision. In the example illustrated a subdivision
is necessary, and a subdivide task (task 1) and an associated
join task (task 2) are added to a task list maintained by the
master code. Task 1 can begin immediately. However, task
2 must be put on hold until all the associated sub-mask
regions are modeled and ready for joining. This process
continues with appropriate tasks being identified at each
decision point along the process path.

 Multiple tasks can be accomplished simultaneously by
allocating the tasks to different processors. For example,

after the initial subdivide (task 1) is complete, three model
tasks (tasks 3-5) and one subdivide task can be run
concurrently on four separate processors. As any processor
completes a task, it is then free to be assigned to the next
task in the task list. As can be seen, the overall process in
this case is accomplished as the sum of 11 separate tasks –
two subdivide tasks, seven model tasks and two join tasks.

 Figures 3 and 4 show some examples of the models that
were successfully generated with the subdivide strategy
described in this paper.

4 RESULTS

 The parallel modeler was tested and benchmarked on a
small network of SGI workstations. Nine machines were
used connected by a standard 100 Mbit Ethernet LAN. The
cluster was heterogeneous with each machine having one or
two MIPS R10000 or R12000 processors ranging in speed
from 175 to 400 MHz. The slowest machine in the cluster
was used as the "master" and the other boxes (1
processor/machine) as "slaves"; timings are presented for 1
to 8 slaves. Geographically, the machines reside in two
buildings a mile apart.

Procs Split Model Join Total Speed

Up
1 0 1156 0 1156 -
1 194 498 30 722 1.00
2 181 634 72 544 1.33
4 181 446 72 371 1.95
8 194 457 56 366 1.97

Table 1: CPU time (in seconds) to model a flexlink with
1289 mask vertices on different numbers of SGI processors.

Total is the wall-clock time for the run; split/model/join
times are sums across all participating processors.

 Performance data for a modest-sized flexlink device

with 1289 mask vertices is given in Table 1. The first entry
is a run without subdivision. All other runs used a splitting
threshold of 1000 vertices. Due to the geometrically
asymmetric layout of the flexlink, four 4-way splits were
performed, dividing the model into 13 pieces. By itself, the
subdivision strategy reduced the time significantly.
Furthermore, an additional speed-up of about 2x was
achieved on 4 processors; adding more processors was not
effective due to the small size of the problem.

 Ideally the split/model/join times would be identical for
any number of processors, since they are the sum of times
required to perform the individual tasks. In practice, these
numbers vary from run to run, chiefly depending on what
processor they run on. This is due to the speed of the
processor and the current load on the machine (which can
be in interactive use on someone's desktop).

 Table 2 gives timings for a larger microengine model
with 34591 mask vertices. This design is interesting
because the 3-D Modeler alone can not successfully model

it (see entry 1 of Table 2). The splitting threshold was set at
500 vertices, which produced a total of 87 splits and 262
sub-models. This problem takes 14.5 hours to model on
one processor and little over 4 hours with 8-processors. We
again see some variability in the split/model/join timings
due to processor differences. Another effect that limits our
parallel speed-up is the cost of doing the initial few splits.
The very first split is the most expensive, since it operates
on the full model. It requires over 4000 seconds, during
which time only 1 processor is active. Likewise, the second
level split runs more quickly but only engages 4 processors.
A similar effect occurs with joining operations at the end of
the run (though joins are less expensive); the last join that
creates the final model can also only run on one processor.

Procs Split Model Join Total Speed

Up
1 0 23053* 0 failed failed
1 14030 29569 1544 45145 1.00
2 14266 35975 2202 30947 1.46
4 14447 33057 2105 19528 2.31
8 16087 29373 2169 15212 2.97

* Modeler fails at this point

Table 2: CPU time (in seconds) to model a microengine
with 34591 mask vertices. Total is the wall-clock time for

the run; split/model/join times are sums across all
participating processors. *Modeler fails after

5 SUMMARY

 In this paper we have presented a technique that has
substantially improved the robustness and speed of Sandia
Nationals Laboratory’s 3-D MEMS geometry modeler
through a combination of mask subdivision and code
parallelization.

 The strategy of mask subdivision has been shown to
enable the modeler to in principle handle arbitrarily
complex designs. It also improves, by itself, the speed of
the modeling. The flexlink example in Table 1 requires
1156 seconds to model with the 3-D Modeler alone. The
same flexlink design requires only 722 seconds on a single
processor with the subdivide approach.

 Additionally, mask subdivision leads to the definition of
distinct tasks that can be accomplished concurrently – thus
allowing for additional speed-up through the use of parallel
processing. We took advantage of this feature by
implementing a distributed system using PVM on a
network of workstations. This resulted in further speed-
ups for the modeling.

 Subdivision is an easily implemented and useful
technique for improving geometric modeling. While this
paper demonstrates its effectiveness with a geometry
modeler based on the ACIS kernel, we also expect that the
strategy will prove useful with other modeling approaches.

6 ACKNOWLEDGEMENT

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL85000.

REFERENCES

[1] M. S. Rodgers, J. J. Sniegowski, “Designing
Microelectromechanical Systems-on-a-Chip in a 5-Level

Surface Micromachine Technology”, 2nd International
Conference on Engineering Design and Automation, 1998.

[2] C. R. Jorgensen, V. R. Yarberry, “A 3D Geometry
Modeler for the SUMMiT V MEMS Designer”, Modeling
and Simulation of Microsystems, 594-597, 2001.

[3] ACIS by Spatial Corporation, http://www.spatial.com.

[4] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, V. Sunderam, PVM: Parallel Virtual Machine, A
Users’ Guide and Tutorial for Networked Parallel
Computing, The MIT Press, 1994. Available on internet at
http://www.netlib.org/pvm3/book/pvm-book.html.

Figure 3: Solid model of Torsional Ratchet Actuator (TRA) with 13,833 vertices.

Figure 4: A solid model of a MEMS system consisting of two comb drives driving a gear
which drives a second larger gear. It contains 20,188 vertices.

