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Peridynamics background:
Alternative to traditional fracture mechanics

e Fracture mechanics has some troublesome aspects.

— Requires supplemental equations to tell a crack
what to do. T ,7?

— Treats fracture as a sort of pathology.

* Need to keep redefining the body to avoid
applying PDEs on a growing crack.

Branched crack
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Peridynamics:
Horizon, family, and bonds

* Points x and x’ can interact directly.

e Horizon ¢ : Deformed bond
— Maximum interaction distance. Bond
e Bond: Horizon

— The vector connecting x to any x’ g
within its horizon in the reference

configuration. Family

* M of x: Undeformed Deformed
— The set of all bonds from x to any x’
within its horizon.
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Vector states

* A vector state is a vector-valued function defined on a family H:

A(E), EeH

e Example: e

A(g)=3g’¢

*Define the dot product of 2 vector states by
Ao B= [ A(5)-B(&)aV,
H

;

Can also have scalar states (scalar-valued functions of &).
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Notation for vector state-valued fields

A [x 1 ] ...a vector state at a point x in the body at time ¢

A [x 1 ]<(:> ...the value (which is a vector) of 4[x,7] evaluated at a bond &

@ i
- National
snp_2007_silling.ppt « Oct 27, 2007 * frame 5 .
9 Laboratories



Deformation states

Deformed bond
e Deformation: H,
Yy =y(x,t)
* Deformation state maps a bond into its Undeformed Deformed
deformed image:

Y[x,eJe) = p(x+&,0) - p(x,0), EeH,
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eformation states can describe
complex relative movements near x

Crack and void formation

()

Undeformed Deformed F
Ok

Replacement

Deformation gradient tensor is
less general
Y
—
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The basic assumption

Deformed bond
Bond

* Strain energy density W(x,t) Horizon of x
depends only on Y [x,t]. g

Undeformed Deformed

Peridynamic constitutive model
W (x,t)=W(Y)

Energy depends on all the bonds collectively; it
is not merely the sum of independent bond
energies.
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Strain energy and force states

If there is a vector state I such that if AY is any increment in the deformation state,
AW =W(Y +AY)-W(Y)=T ¢ AY +0(AY)

then T is the Frechet derivative of W, and we write

T=VW

(analogous to the tensor gradient in the classical theory)

Nonhomogeneous elastic bodies: include x explicitly in constitutive model:
T =1(Y,x)=VIW(x)

T is called the force state. It is a vector state that associates
every & with a force density.
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} Equilibrium equation from stationary

potential energy

Potential energy in a body:
d :I W(X[x])de —J-b(x)-u(x)dV
R R

X

Take first variation:

AD = jT-AYdV jb AudV.

= jU x]x x T[x]<x x )dV +b(x)) - Au(x)dV.
So the Euler-Lagrange (equilibrium) equation is

[l - )= T[xYx = x)av, +b(x) =0

R
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Internal forces

The force state I [x,t] associates a force density with each bond x’-x.

Peridynamic equation of motion:
pii(x,¢)= j {l[x, t]<x' —x)— T|x', t]<x — x'>}de, +b(x,1)

AENGIES

Force states act together

Forces need not be parallel to each other or
to the deformed bond.
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= -- Special case:

Bonds independent of each other

Suppose the strain energy density function is

A 1 )
W(X ) = 5 j w(g<§>, &)dV , g<§> = ‘Z <§>‘ — ‘&‘ ...extension state
H
w...  scalar - valued "micropotential” function
* Magnitude of the bond force depends only Nonlinear spring
on the deformed bond length. o
*Bond force is parallel to the deformed bond. X

Leads to the “bond-based” peridynamic model

pi(x,t) = jf( j/(x’,t)—j/(x,t)( ,x’—x)de, +b(x,t)

_ow
f(n,€)= . (n,€)
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i Further restriction of special case:
Linearized bond-based model

e Magnitude of the bond force depends only on the bond extension (length change) .
* Bond force is parallel to the deformed bond.

* Bond force varies linearly with bond extension.

e Extension is evaluated by a linear approximation.

pii(x,t) = j C(x'—x)u(x',t)—ulx,2))aV, +b(x,t)
H Linear spring

- (0,¢) ¥

Cle)=7

I. A. Kunin’s books Elastic Media with
Microstructure I & II (1982, 1983) solve many
important problems with this model.
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Results from the Emu computer code
demonstrate the ability to model complex
discontinuities

Transition to unstable crack growth

Defect

Impact and fragmentation

Crack turning in a 3D feature
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} Back to full model: Global balances

of conserved quantities

Linear momentum: Integrating the equation of motion over the body

| ( [ et = x) Tl K x = x')j v, +b(x,1)- pz;i(x,t)]dr/x 0

R

= [ (b(x,1)- pii(x, )V, =0

R

Angular momentum: The restriction on the constitutive model

[ Y(g)xT(x)g)av, =0
= | H(x, ) (b(x, 1) pii(x,))av, =0
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. Some properties of peridynamic

constitutive models

Define the composition of two vector states by

(42 B)e) = 4(B(e))

Condition for material frame indifference (objectivity): | [T ~—" ~~—
f(Q o Y) =Qo f(Y) || Orthogonal states
= = / rigidly rotate bonds

for all orthogonal states O
/\/\/

Condition for isotropy:

N N

1y o0)=1(r)eQ

for all orthogonal states O
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} What about stress?

e How to eliminate stress from your life:

pii(x,t)zj {l[x,t]<x'—x>—Z[x',t]<x—x'>}de, +b(x,1)

H

*But if you want stress in your life, define the peridynamic stress tensor:

v(x)= [ [ [(a+B) T[x—pm)(a+PB)m) ® mdodpdQ, ,
S00

a,P ... scalars ~,
dQ ... differential solid angle in the -
direction of unit vector m o Bond through x

S ... unit sphere xX—am in the direction m

Then: V.y= j{z[xkx’ — x> — Z[x']<x — X'>}de' |
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More about peridynamic stress

e Total force on subregion Q in R:

F = jvndA
o0

* Stress satisfies the following boundary condition:

vn=0 on OR'

n R’ = convex hull of R

©

R

@ i
snp_2007_silling.ppt * Oct 27, 2007 + frame 18 National
Laboratories



A

Atoms as a peridynamic continuum

Y5 )
=) 1'/ ;.

Assume identical atoms for simplicity. M =mass.
Multibody interatomic potential of each atom k:

C I ) xi
® 6 /0 ©
\l’(Jﬁ_Yk»yz_yka---ayN_yk) oo /: o
o o .x. [ )
where y; is the current position of atom i. . o o
Undeformed Deformed

Description of this system as a nonhomogeneous peridynamic body:
p(x) - Mzk: A(x T ) " Delta functions
Za /
W(X,x) = ZA(x — X, )\V()_’<xl — x>, Z<x2 — x>,...,X<xN — x>)
k

where x; is the reference position of atom .
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Deformations:
A seeming paradox

* If you have a finite set of atoms, you can determine the
internal forces from their current configuration alone.

* But if you have a continuous body, you can't.

\

This is why we usually introduce a reference \
configuration in continuum mechanics.

N
Why not?
b We lost something when went
from a finite set into a
continuous set: the spaces.
Sandia
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So, how should we define a deformation?
First, take a statistical view of atomic positions

* Suppose that the probability of finding atom & in a small volume

d Vy at point y in the current configuration at time ¢ is p,(y,1)d Vy

y

‘%d v,

Probability density p;

e If atomic positions y, are defined exactly, set p;(y,1) = A(y-y;).
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Statistical interpretation of a deformation

x N
; y(x)
ddv. %
. o W
Undeformed probability Deformed probability
density P}, density p;,

e This is the only condition we’ll
R need on the deformation.
p(P(x.2)0)d V,=15 (x)av,  forallx,z e In general, there is not a
unique deformation that
conforms to given p;.

Condition on the deformation:

Deformation “conforms to” the p,
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| I
Resulting kinematics are less

restrictive than the Cauchy-Born rule

- _
_ _
- -
C-B rule - - - -
. O » » - -
- o -
D -
. » » »
. » g — -
. -
Conformance ‘ ' >
»
_— - . »
- . »
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Peridynamic representation of a statistical
distribution of atoms

Define a nonhomogeneous peridynamic body by

x)=MZPk(x)
W (Y, x) ZP [ [wlr(e).x(e,)... 7))

P(& +x)P 2(§2 +x)... P, (&, +x)dl{:1d1/§2 AV

.- " " »

. " »

. 5 » »

. "
e
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4‘. If the atomic positions are known exactly

If the atomic positions x; are known exactly:

Set P.(x)zA(x—xi) =

l

p(x) =M D Alx-x,)

W(X,x)z Zk:A(x—xk )\I’(X<X1 — x>,Z<x2 —x>,...,X<xN —x>)
® © & © S\ o
. . . .x ame as perore
® © 6 © |
® © & ©
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Total free energy in the statistical
peridynamic body

U=[w(rhr,

= [ X RG]l ) 1) Y(E))

(g+x)xg+x).N@N+an¥n%“dnfﬂg

:ij'°'jw(Y1_YaY2_J’a---:yN_J’) Conformance
k

)2 (y1 )p2 (y2 )...pk (y)...pN(yN )a’Vyla’Vy2 ...dVy...a’VyN

which is what a physicist would say is the expected value of
total free energy in the N-atom system.
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Homogenization:
Smooth out the spatial dependence of PD model

* Choose a scalar-valued weighting function ¢(q) where ¢ is a vector;

[olg)av, =1, o(a)=0(-q)

* Define a homogenized body by

p(x)=[o(g)p(x+q)av,

_ . . A = averaging volume
W (¥, x)= | oW (¥, x+q)dV, J
A

g moves around
in 4 while Y is
held fixed.
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Homogenization

* For a given homogeneous deformation, compute the total strain
energy in the homogenized body:

W (Y, x)dV, = [ [ (g7 (Y. x+q)dV,dv,

R? R*R?

= [o(q)av, [W(¥,z)v.
3 R3

U=

= (Y27,
R3

=U

* Therefore the total strain energy is unchanged by homogenization.
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Homogenization example:
1D spring-mass system

Spring constant = i

-0 @ Q\’t ? @ @ O— x

Peridynamic body: h
p(x)=M> Alx-hk)
¢ lo(q)
Peridynamic body after homogenization:
px)= [ MY Alx+q—hk)p(g)dg / \ .q
= MY ol hk)
k
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Peridynamic body:

W(Y,x)= %Zk:A(x - hk){()_’(h} —h) +(¥(-n)+ h)z}

Homogenization example:
1D spring-mass system

Peridynamic body after homogenization:

ot
; o — e )u(x + 1) — () + (o — ) — ()|
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Homogenization example:
1D spring-mass system

Equation of motion after homogenization boils down to:

MZ(p x—hk)i(x,t)= qu) x — hk Yu(x = h,t) = 2u(x, )+ u(x + 7,1 )}

If we assume waves of the form

M(X, t) _ ei(Kx—a)t)

same as for the original

This leads to the following dispersion relation: spring-mass system,
Yu(1— cos xh regardless of ¢
on [HeH)
M
t o(q) 4 Dispersion curve

S
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Rescaling:
Increase the length scale of a PD material model

e Take any strain energy density function and change its horizon from
o too.

¢ Define:
w()=W(EY))., (EQ)(E)=x(eE), e=8/8

* Can show the strain energy is invariant under rescaling if the
deformation is homogeneous.

Old horizon ¢

e

New horizon ¢’
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Discussion

* The peridynamic theory has a qualitative connection with molecular
dyamics.

— Our slogan: “Nature integrates”
* Possible strategy for coarse-graining includes
— Representation of discrete atoms as a peridynamic continuum.
— Continuum constitutive model IS the interatomic potential.
— Homogenize.
— Rescale.
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Numerical method:
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S.A. Silling and F. Bobaru, Peri%mamic modeling of membranes and fibers, International Journal of Non-Linear
Mechanics (2005).
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Phase boundaries:
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