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Peridynamics background:
Alternative to traditional fracture mechanics

• Fracture mechanics has some troublesome aspects.

– Requires supplemental equations to tell a crack 
what to do.

– Treats fracture as a sort of pathology.

• Need to keep redefining the body to avoid 
applying PDEs on a growing crack. Branched crack

• 1998 – Began looking for a new model 
of solid mechanics such that the same 
equations hold everywhere regardless 
of discontinuities.

?
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Peridynamics:
Horizon, family, and bonds

• Points x and x’ can interact directly.

• Horizon δ :

– Maximum interaction distance.

• Bond:

– The vector connecting x to any x’
within its horizon in the reference 
configuration. 

• Family of x:

– The set of all bonds from x to any x’
within its horizon.

x

x′

Undeformed Deformed

Horizon

Bond

Deformed bond

Family
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Vector states

x
ξH

Bond

•Define the dot product of 2 vector states by

ξξξ dVBABA
H

⋅=• ∫

Usual scalar product of 2 vectors

HA ∈ξξ       ,

•A vector state is a vector-valued function defined on a family H:

ξξξ
2

3=A

•Example:

Can also have scalar states (scalar-valued functions of ξ).



snp_2007_silling.ppt • Oct 27, 2007 • frame 5

Notation for vector state-valued fields

[ ]txA , …a vector state at a point x in the body at time t

[ ] ξtxA , …the value (which is a vector) of A[x,t] evaluated at a bond ξξξξ

R
x

ξ
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Deformation states

• Deformation:

• Deformation state maps a bond into its 
deformed image:

x

Undeformed Deformed

Deformed bond

),(ˆ txyy =

[ ] xHtxytxytxY ∈−+= ξξξ       ),,(ˆ),(ˆ,

ξ
ξY

Hx
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Deformation states can describe 
complex relative movements near x

Replacement

Y

F

Deformation gradient tensor is 
less general

Deformed

x

Undeformed

Crack and void formation

Y

y
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The basic assumption

• Strain energy density W(x,t)

depends only on Y [x,t].

x

x′ xxY −′

Undeformed Deformed

Horizon of x

Bond

Deformed bond

( )YWtxW ˆ),( =

Peridynamic constitutive model

Energy depends on all the bonds collectively; it 
is not merely the sum of independent bond 

energies.
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Strain energy and force states

( ) ( ) ( )YoYTYWYYWW ∆+∆•=−∆+=∆ ˆˆ

If there is a vector state T such that if ∆Y is any increment in the deformation state,

then T is the Frechet derivative of W, and we write

WT ˆ∇=

(analogous to the tensor gradient in the classical theory)

Nonhomogeneous elastic bodies: include x explicitly in constitutive model:

( ) ( )xYWxYTT ,ˆ,ˆ ∇==

T is called the force state. It is a vector state that associates 
every ξ with a force density.
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Equilibrium equation from stationary 
potential energy

[ ]( ) ( ) ( ) x

RR

x dVxuxbdVxYW ⋅−=Φ ∫∫   ˆ

Potential energy in a body:

[ ] [ ]( ) ( )  

  

x

R R

x

x

RR

x

dVxuxbdVxxxTxxxT

udVbdVYT

∆⋅







+′−′−−′−=

∆⋅−∆•=∆Φ

∫ ∫

∫∫

′ )(

Take first variation:

So the Euler-Lagrange (equilibrium) equation is

[ ] [ ]( ) ( ) 0=+′−′−−′∫ ′

R

x xbdVxxxTxxxT
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Internal forces

The force state T [x,t] associates a force density with each bond x’-x.

( ) [ ] [ ]{ } ( )txbdVxxtxTxxtxTtxu x

H

,,',, +′−−−′= ′∫    &&ρ

Peridynamic equation of motion:

Force states act together

y

y′[ ] xxtxT −′,

[ ] xxtxT ′−′,

Forces need not be parallel to each other or 
to the deformed bond.
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Special case:
Bonds independent of each other

( ) ( )

function tial"micropoten" valued-scalar                                                 

state on...extensi                  ,

...

,
2

1ˆ

w

YedVewYW
H

ξξξξξ ξ −== ∫

Suppose the strain energy density function is

• Magnitude of the bond force depends only 
on the deformed bond length.

•Bond force is parallel to the deformed bond. x x′
Nonlinear spring

Leads to the “bond-based” peridynamic model

( ) ( )( ) ( )

( ) ( )ξη
η

ξη

ρ

,,

,,,ˆ,ˆ),(

∂
∂

=

+−′−′= ∫ ′

w
f

txbdVxxtxytxyftxu
H

x  &&
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Further restriction of special case:
Linearized bond-based model

• Magnitude of the bond force depends only on the bond extension (length change) .
• Bond force is parallel to the deformed bond.
• Bond force varies linearly with bond extension.
• Extension is evaluated by a linear approximation.

x x′
Linear spring

I. A. Kunin’s books Elastic Media with 
Microstructure I & II (1982, 1983) solve many 

important problems with this model.

( ) ( ) ( )( ) ( )

( ) ( )ξ
η

ξ

ρ

,0

,,,),(

∂
∂

=

+−′−′= ∫ ′

f
C

txbdVtxutxuxxCtxu
H

x
&&
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Some applications of the 
bond-based theory

Results from the Emu computer code 
demonstrate the ability to model complex 

discontinuities

Crack turning in a 3D feature

Defect

Transition to unstable crack growth

BANG!
Defect

Impact and fragmentation
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Back to full model: Global balances 
of conserved quantities

[ ] [ ]{ } ( ) ( )

( ) ( )( )∫

∫ ∫

=−⇒

=







−+′−−−′ ′

R

x

R

xx

R

dVtxutxb

dVtxutxbdVxxtxTxxtxT

0,,

0,,,',

&&

&&

ρ

ρ   

Linear momentum: Integrating the equation of motion over the body

Angular momentum: The restriction on the constitutive model

( )

( ) ( ) ( )( )∫

∫

=−×⇒

=×

R

x

H

x

dVtxutxbtxy

dVYTY

0,,,ˆ

0ˆ

&&ρ

ξξ
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Some properties of peridynamic
constitutive models

( ) ξξ BABA =o

Define the composition of two vector states by

Condition for material frame indifference (objectivity):

( ) ( )YTQYQT ˆˆ oo =

for all orthogonal states Q

Condition for isotropy:

( ) ( ) QYTQYT oo ˆˆ =

for all orthogonal states Q

Orthogonal states 
rigidly rotate bonds
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What about stress?

( ) [ ] [ ]{ } ( )txbdVxxtxTxxtxTtxu x

H

,,',, +′−−−′= ′∫    &&ρ

•How to eliminate stress from your life:

( ) ( ) [ ] ( ) m

S

ddmdmmxTx Ω⊗+−+= ∫ ∫ ∫
∞ ∞

βαβαββαν
0 0

2

•But if you want stress in your life, define the peridynamic stress tensor:

sphere unit  ...     
 vector unit of direction            

 the in angle solid aldifferenti  ... 
scalars  ...   ,

S
m

d mΩ
βα

x

x−αm

x+βm

Bond through x
in the direction m

m

[ ] [ ]{ }∫ ′′−′−−′=⋅∇ xdVxxxTxxxTν
Then:
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More about peridynamic stress

• Total force on subregion Q in R:

• Stress satisfies the following boundary condition:

R

R’ = convex hull of Rn

∫
∂

=
Q

ndAF ν

Q

'0 Rn ∂=  on          ν
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Atoms as a peridynamic continuum

( ) ( )

( ) ( ) ( )xxYxxYxxYxxxYW

xxMx

N

k

k

k

k

−−−−∆=

−∆=

∑

∑

,...,,,ˆ
21ψ

ρ

Assume identical atoms for simplicity.  M = mass.
Multibody interatomic potential of each atom k:

( )kNkk yyyyyy −−− ,...,, 21ψ

where yi is the current position of atom i.

Description of this system as a nonhomogeneous peridynamic body:

where xi is the reference position of atom i.

DeformedUndeformed

xxY i −

ix

x

Delta functions
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Deformations:
A seeming paradox

• If you have a finite set of atoms, you can determine the 
internal forces from their current configuration alone.

• But if you have a continuous body, you can’t.
?

ky

0y
f

This is why we usually introduce a reference 
configuration in continuum mechanics.

ŷ

Why not?
We lost something when went 
from a finite set into a 
continuous set: the spaces.
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So, how should we define a deformation?
First, take a statistical view of atomic positions

y

ydV

Probability density pk

• Suppose that the probability of finding atom k in a small volume 
dVy at point y in the current configuration at time t is pk(y,t)dVy

• If atomic positions yk are defined exactly, set  pk(y,t) = ∆(y-yk).
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Statistical interpretation of a deformation

Undeformed probability 
density Pk

( )xŷ

ydV

x

xdV

Deformed probability 
density pk

( )( ) ( ) txdVxPdVttxyp xkyk ,,,ˆ  all for       =

Condition on the deformation:

Deformation “conforms to” the pk

• This is the only condition we’ll 
need on the deformation.
• In general, there is not a 
unique deformation that 
conforms to given pk.
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Resulting kinematics are less 
restrictive than the Cauchy-Born rule

C-B rule

Conformance
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Peridynamic representation of a statistical 
distribution of atoms

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
N

NN

N

k

k

k

k

dVdVdVxPxPxP

YYYxPxYW

xPMx

ξξξξξξ

ξξξψ

ρ

......

,...,,...,ˆ

21
2211

21

+++

=

=

∫∫ ∫∑

∑

                          

                                

Define a nonhomogeneous peridynamic body by

iP
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If the atomic positions are known exactly

( ) ( )
( )

( ) ( ) ( )xxYxxYxxYxxxYW

xxMx

xxxP

N

k

k

k

i

ii

−−−−∆=

−∆=

⇒−∆=

∑

∑

,...,,,ˆ

)(

21ψ

ρ

         Set

If the atomic positions xi are known exactly:

Same as before

ix
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Total free energy in the statistical 
peridynamic body

which is what a physicist would say is the expected value of 
total free energy in the N-atom system.

Conformance

( )

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )
N

yyyyNNk

k

N

x
N

NN

N

k

k

x

dVdVdVdVypypypyp

yyyyyy

dVdVdVdVxPxPxP

YYYxP

dVYWU

............

,...,,...

......

,...,,...

ˆ

21
2211

21

21
2211

21

                  

                  

 

∑ ∫∫∫

∫ ∫∫ ∫∑
∫

−−−=

+++

=

=

ψ

ξξξ

ξξξψ

ξξξ
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Homogenization:
Smooth out the spatial dependence of PD model

• Choose a scalar-valued weighting function ϕ(q) where q is a vector; 

• Define a homogenized body by

( ) ( )

( ) ( )∫

∫
+=

+=

A

q

A

q

dVqxYWqxYW

dVqxqx

,ˆ)(,

)(

φ

ρφρ

( ) ( ) ( )qqdVq
A

q −==∫ φφφ                 ,1

x

 volumeaveraging=A

q

q

)(qφ

q moves around 
in A while Y is 

held fixed.

Y
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Homogenization

•For a given homogeneous deformation, compute the total strain 
energy in the homogenized body:

( ) ( )

( )

( )

U

dVzYW

dVzYWdVq

dVdVqxYWqdVxYWU

z

R

R

z

R

q

R R

xq

R

x

=

=

=

+==

∫

∫ ∫

∫ ∫∫

3

3 3

3 33

,ˆ

,ˆ)(

,ˆ)(,

φ

φ

•Therefore the total strain energy is unchanged by homogenization.
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Homogenization example:
1D spring-mass system

( ) ( )∑ −∆=
k

hkxMxρ

Peridynamic body:

( ) ( ) ( )
( )∑

∫ ∑
−=

−+∆=

k

k

hkxM

dqqhkqxMx

φ

φρ

Peridynamic body after homogenization:

q

)(qφ

h

Spring constant = µ

x

( )xρ
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Homogenization example:
1D spring-mass system

( ) ( ) ( ) ( ){ }∑ +−+−−∆=
k

hhYhhYhkxxYW
22

4
,ˆ µ

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )( ) ( ) ( )( ){ }∑

∫∑

−−+−+−=

+−+−







−+∆=

k

k

xuhxuxuhxuhkx

hhYhhYdqqhkqxxYW

22

22

4

4
,

φ
µ

φ
µ

Peridynamic body:

Peridynamic body after homogenization:



snp_2007_silling.ppt • Oct 27, 2007 • frame 31

Homogenization example:
1D spring-mass system

Equation of motion after homogenization boils down to:

( ) ( ) ( ) ( ) ( ) ( ){ }∑∑ ++−−−=−
kk

thxutxuthxuhkxtxuhkxM ,,2,, φµφ &&

If we assume waves of the form

( ) ( )txietxu ωκ −=,

This leads to the following dispersion relation:

( )
M

hκµ
ω

cos12 −
=

same as for the original 
spring-mass system, 

regardless of ϕ

q

)(qφ

κ

ω Dispersion curve
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Rescaling:
Increase the length scale of a PD material model

•Take any strain energy density function and change its horizon from 
δ to δ’.

•Define:

•Can show the strain energy is invariant under rescaling if the 
deformation is homogeneous.

( ) ( )( ) ( )( ) δδεεξξε
′=== /,ˆˆ        ,        YYEYEWYW

New horizon δ’

x

ξ
εξ

Old horizon δ
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Discussion

•The peridynamic theory has a qualitative connection with molecular 
dyamics.

– Our slogan: “Nature integrates”

•Possible strategy for coarse-graining includes

– Representation of discrete atoms as a peridynamic continuum.

– Continuum constitutive model IS the interatomic potential.

– Homogenize.

– Rescale.
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– S.A. Silling, M. Zimmermann, and R. Abeyaratne, Deformation of a peridynamic bar, J. Elast. (2003).
– O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, JMPS (2005).
– M. Zimmermann, thesis (MIT, 2004).
– R. B. Lehoucq and S. A. Silling, Force flux and the peridynamic stress tensor, JMPS (2007).
– S. A. Silling et. al., Peridynamic states and constitutive modeling, J. Elast. (2007).
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– R. B. Lehoucq and S. A. Silling, Statistical coarse-graining of atomistics into peridynamics, Sandia report (2007).
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– E. Emmrich and O. Weckner, Analysis and numerical approximation of an integro-differential equation modelling
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– O. Weckner and  E. Emmrich, Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar, J. 
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motion in the non-local elasticity theory (to appear).

• Fracture and damage (mostly numerical):
– S.A. Silling and E. Askari, Peridynamic modeling of impact damage, ASME PVP-Vol. 489 (2004).
– S.A. Silling and F. Bobaru, Peridynamic modeling of membranes and fibers, International Journal of Non-Linear 

Mechanics (2005).
– F. Bobaru and S.A. Silling, Peridynamic 3D models of nanofiber networks and carbon nanotube-reinforced 

composites, American Institute of Physics conference proceedings (2004).

• Phase boundaries:
– K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum 

mechanics, JMPS (2006).
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