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Reliable Whisker Weaving via Curve Contraction
 Nathan T. Folwell and Scott A. Mitchell1

 Abstract.Whisker Weaving is an advancing front algorithm for all-hexahedral mesh generation. It uses global
information derived from grouping the mesh dual into surfaces, theSTC, to construct the connectivity of the mesh,
then positions the nodes afterwards. Currently we are able to reliably generate hexahedral meshes for complicated
geometries and surface meshes. However, the surface mesh must be modified locally. Also, in large, highly-
unstructured meshes, there are usually isolated regions where hex quality is poor. Reliability has been achieved by
using new, provable curve-contraction algorithms to sequence the advancing front process. We have also
demonstrated that sheet moving can remove certain types of invalid connectivity.

keywords.hexahedra, mesh generation, advancing front, topology, curve contraction

1. Introduction

The finite element method (FEM) is effective for studying a wide variety of physics. Before a FEM analysis ca
performed, however, a mesh of the model must be generated. Of particular interest to Sandia National Laborat
structural mechanics simulations, often coupled with electromagnetism and radiation. For these problems, it 
important that the mesh be conformal, be composed of hexahedra, and have high quality near the boundary. At
simulations are often performed on models that are different from typical industrial models; these models often
hundreds of interlocking parts, surrounded by a potting material whose geometry is the complement of the un
the other parts. The parts often have simple geometries, but the potting itself has a complex geometry that st
and semi-structured meshing algorithms have little hope of addressing. Decomposing the potting geometry into
pieces is helpful but tedious since automatic decomposition tools are not yet mature. Obtaining a conformal m
difficult. Even with careful manual decomposition it is difficult to keep the sweep directions of 2.5-dimensiona
algorithms from colliding. Meshing complex models would be much easier if we had an algorithm for generat
unstructured hexahedral meshes from a fixed bounding surface mesh. We envision that most parts would be
with a (semi-) structured algorithm, and the general meshing tool would address parts where sweep directions
and parts such as the potting that are geometrically complex and have lower quality requirements. Plastering[
Whisker Weaving[23] are two general meshing tools that are being developed by the CUBIT project at Sandia t
these requirements.

Both Plastering and Whisker Weaving are based on the advancing front approach, which is motivated by the n
conform to a fixed surface mesh and for high quality near the boundary. Without both of these simultaneous
requirements, alternatives abound. In [1][16][17], the medial axis is used to subdivide volumes into simpler subr
which are then meshed with a structured approach. Mesh quality is good, but the mesh doesn’t necessarily con
a fixed surface mesh. The octree or grid based approaches used in [18], [19] and [20] start with a regular me
then adapt the outer elements to the boundary of the volume. A new approach is to recursively insert a layer o
separating the volume into two smaller sub-volumes[3]. Another approach in [14] uses the dual to transform the
of the surface mesh by placing layers of hexes hugging the boundary. The layer is removed from the problem, l
a surface mesh with one less dual cycle. Eventually the surface mesh of a single hexahedron is obtained. Th
approaches [3], [14], and the current form of Whisker Weaving all concentrate on building the mesh one laye
time. The method in [22] relies on pattern recognition, local mesh refinement and coarsening, and variational
smoothing techniques. Plastering advances the front based on geometric tests; for complicated geometry, how
has trouble closing the connectivity on the interior of the mesh. Recent results on stopping with a well-shaped le
region (void) followed by filling the void with tetrahedra appear promising.[12][13] [26] In contrast to Plastering
Whisker Weaving advances the front based on connectivity information inherent to a global grouping of the d
Geometric criteria near the boundary are of secondary importance. In this interim report, we describe how W
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Weaving is able to reliably generate an all-hexahedral mesh for large and complex geometries. Currently, we
modify the surface mesh. Except for ensuring that the surface mesh has an even number of quadrilaterals, thi
fundamental; we have an algorithm on paper for fixed surface meshes, but have not yet implemented it. This alg
will probably produce some degenerate hexes calledknives. Another drawback is that, despite better algorithms fo
removing degenerate connectivity (described here) and improving smoothing [8], the quality of the hexes are
unacceptable. For example, often isolated hexes have negative Jacobians. We plan to develop a hex mesh impr
algorithm based on a set of local connectivity-swapping operations and smoothing, as is commonly done for
triangular[2], tetrahedral[6] and quadrilateral meshes. [7][21]

Given a surface mesh satisfying mild conditions, the existence of a hexahedral mesh conforming to it has be
proven.[5][10][25] We developed our algorithm loosely based on the constructive steps of Mitchell’s proof.[10]
proof is based on the Spatial Twist Continuum (STC) [15] which is the observation that the dual of a quadrilateral me
can be grouped into an arrangement of curves, and the dual of a hexahedral mesh can be grouped into an arra
of surfaces; see Figure 1. Conversely, given certain conditions on the arrangements, a curve arrangement dua
a quad mesh and a surface arrangement dualizes into a hex mesh. The problem of extending a quad mesh i
mesh then becomes the problem of extending the arrangement of dual curves into an arrangement of surfaces,
fixing the arrangement to ensure that the surfaces dualize to a hex mesh.

Mitchell’s proof [10] states that there exists a way to extend dual curves to dual surfaces by simultaneously
manipulating the topological properties of the curves and extending the surfaces into the volume. These topo
operations on the curves reduce the number of intersections among the curves. A curve shrinks to a point an
disappears from the problem when it no longer intersects any other curve. For this reason, we refer to the algor
thecurve contraction algorithm. This paper describes a new, provably-correct algorithm for carrying out this
extension, and our robust, effective implementation. Currently we have implemented the curve-contraction alg
for simple (not self-intersecting) curves and a local pre-processing algorithm that perturbs the surface quad m
that the dual curves are simple. Mitchell’s proof also describes how to incrementally add surfaces to an arbitr
arrangement so that it dualizes to a hex mesh. This paper describes our implemented algorithm for these fix-
produces better quality and fewer hexes than the straightforward translation of the proof.

The remainder of the paper is organized according to the flow of the algorithm. In section 2, we recall the ST
section 3, we describe how to perturb the surface mesh to remove dual-curve self-intersections. In section 4, we
the main result of this paper, our new algorithm for creating a surface arrangement by contracting curves. In 
5, we describe fix-ups for converting this arrangement to a reasonable mesh. Section 6 gives examples of good
meshes of small geometries, and bad-quality meshes of large geometries. Section 7 describes our plan for ove
Whisker Weaving’s current limitations. Conclusions follow in section 8.

2. STC Definitions

Whisker Weaving is based on the Spatial Twist Continuum, STC, the dual of a hex mesh grouped into surfac
sheets in general position.[15] Eachsheetis dual to a layer of hexes. The intersection of two sheets is achord, the dual
to a column of hexes. While the mesh is being formed, the dangling end of a chord is awhisker and is dual to a
quadrilateral face on the meshing front. The intersection of three sheets is avertex, the dual of a hex. See Figure 1. A
quadrilateral surface mesh also has an STC, an arrangement of curves orloops in general position. A loop is defined
by recursively passing from one mesh edge of a quad to the edge opposite it, until encountering the first edg
boundary of the surface mesh. For our purposes, the surface mesh has no gaps and completely encloses the
so all loops will be closed. The intersection of two loops is apoint dual to a quadrilateral.

Note that the primal and dual contain the same information, but grouping the dual into the curves and surfaces
STC illuminates global information about how a surface mesh constrains the possible interior volume meshe
have also found that the STC is a more flexible datastructure than the primal; the STC can generically describe
configurations that don’t dualized to a well-defined hex mesh. These configurations are useful as intermediate
as they can be fixed later.
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3. Modifying the Surface Mesh to Remove Self-Intersections

We now describe how to locally modify the surface mesh so that itsloops(dual curves) are simple. This condition is
required by the current implementation of our curve contraction algorithm, section 4, but will be removed soo
secondary goals of surface modification are to maintain good quality quadrilaterals and to change the surface m
little as possible.

The fact that a loop has a self-intersection is a global property that one usually wouldn’t notice by looking in a
neighborhood of the self-intersection. Self-intersections arise because of unstructured surface meshes and n
rectilinear geometry, and are quite common.

The basic operation is collapsing a quadrilateral of self-intersection into two edges; see Figure 2. Apillow (ring of
quadrilaterals) is occasionally inserted to improve the edge-valence of nodes or to meet geometric constraint
Figure 3. Note that neither of these operations affect the topology of any other loop, so each loop may be ha
turn. The algorithm is a greedy heuristic, collapsing the most favorable face of self-intersection in the most fav
way and recursing on the resultant loop or loops. The algorithm always succeeds in removing self-intersections
models with thin features the surface mesh quality is sometimes poor. We suspect that minimizing the numb
collapses and similar problems are NP-Complete. Another basic operation that may be useful is opening a face
have not explored this.

Figure  1. Three hexes and their STC.

Figure  2. Two choices for collapsing: The edge-valence may differ, and the loop either remains one or splits into two
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3.1 Basic face-collapsing operation

Consider collapsing a quad into two edges by merging nodesA andC into E as in Figure 2. Let V(X) denote theedge-
valence of X, the number of edges containingX. The edge-valence ofB andD decreases by one, and V(E) = V(A) +
V(C) - 2. If the valence of nodeX becomes 2, then we insert a pillow around each of the nodes that are face-opp
X; see “Pillowing Doublets...”[11] and Figure 4 center. Similarly, regardless of edge-valence, we pillow if the int
angle between edges is nearly obtuse; see Figure 3 right. Also, if bothA andC lie on curves or vertices and not a
surface, then we must place a pillow around the face before collapsing it; see Figure 4.

3.2 Choosing which faces to collapse

Note that each face of self-intersection can be collapsed in two different ways. One way splits the loopL into two,L1

andL2, and the other way retains one loop; see Figure 2. If the loops splits into two, then points whereL1 andL2

intersect are no longer self-intersections and need not be collapsed. Because of this we typically only have to c
a small number of faces, which seems to grow as the cube root of the total number of self-intersections.

We favor collapsing faces such that no pillowing is required; among faces that all need or all don’t need pillowin
favor collapsing a face if the resultant nodes have edge-valence closer to 4; see [2]. Also, since collapsing a fa
that the loop splits into two avoids having to collapse certain other faces, we favor a face if collapsing those othe
would have resulted in edge-valence far from 4. We conclude this section with a difficult example, Figure 5.

4. Creating Surface Arrangements by Contracting Simple Curves

Whisker Weaving is based on constructing an arrangement ofsheets (STC surfaces) dual to layers of hexes, by
iteratively performing basic weaving operations which are local. Previously, Whisker Weaving relied on astate list
[23] similar to a first-in first-out queue to determine the order in which weaving operations should be tried. Here
describe an alternative approach that has proven to be more reliable for larger problems. It is based on the obs
that contracting a curve to a point on a shrinking sphere sweeps out a surface behind it inside the ball.[10] For W
Weaving, the initial curves are loops of the surface-mesh STC, and the swept out surfaces are thesheetsof the hex-

Figure 3. If an angle is nearly obtuse, we pillow all quads attached to the node opposite the large angle. The angle m
large due to poor smoothing or geometric constraints.

Figure 4. If both merging nodes of a collapsing face don’t lie on a geometric surface, e.g. each lies on a curve, the fa
be pillowed (left) before collapsing (center). Finally, the nodes opposite the resulting 2-valent nodes are pillowed (righ
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mesh STC. A shrinking curve is dual to the advancing front; as a curve is shrunk, or passed over by another sh
curve, hex-duals are created the as front is advanced. Here we are only interested in the topological descript
sheet, namely the chords and vertices of intersection with other sheets, and not its geometric embedding.

Whisker Weaving chooses a curve to shrink and decides whether to shrink it to the left or right, then shrinks 
completely. This is repeated until all curves are shrunk. Shrinking a curve is accomplished bycollapsing cells on its
boundary until no cell remains. Collapsing a cell means moving the curve so that no point of the cell isinside(to the
right of) the curve any longer. Each cell is collapsed by a combination of three weaving operations. Both the st
and the curve contraction implementation rely on local connectivity rules not only to determine if a desired we
operation will result in a reasonable mesh, but to automatically seam together parts of the front (thejoin operation
below) and to resolve certain other degeneracies. In Figure 6, we have provided a simple example illustrating th
of the algorithm. Across passes a curve over an intersection point. Ajoin removes the empty overlap between two
curves. Crossandjoin are defined more fully in section 4.1.

4.1 Curve Contraction Algorithm

Weaving Operations.We use three basic weaving operations in our curve shrinking algorithm; see Figure 7. I
following description we use the terminology introduced in [23] and outlined in section 2. The first operation, use
collapsing a cell of size two, is ajoin. In the STC, it corresponds to joining the whiskers (dangling ends) of two cho
together to make one chord. In the primal, it corresponds to seaming two faces of neighboring hexes together i
face. The second operation, used for collapsing a cell of size three, is across.In the STC, it corresponds to extending
a sheet so that it crosses the chord of intersection of two other sheets. In the primal, a cross corresponds to 
hex containing three faces of the meshing front which pairwise share edges. The third operation, used for collapsing
cells of size four or more, is ablind chord formation. In the STC it corresponds to extending a sheet so that it cros
a locally parallel sheet along a third sheet intersecting the previous two. The chord of intersection between thes
does not start at a surface mesh face and is completely interior to the volume so it is calledblind. In the primal, it simply
corresponds to adding a hex that contains only two faces of the meshing front that share an edge.

Cell Collapsing.Given an oriented curve segment from pointa to pointb, we can use the basic operations to deform
the segment in such a way that one of the cells neighboring the segment is collapsed.The convention we sha
that of always collapsing to the right of the oriented segment. Recall that collapsing a cell means moving the cu
that no point of the cell is still to the right of the curve. Repeated cell collapsing will shrink a curve. Define a c
be the segments of the pointsa, b and1,...,kas in Figure 8 left. Collapsing the cell with pointsa, b, 1,..., k is
accomplished byk -1 blind chord formations followed by a cross operation as in Figure 8 right. The running tim

Figure 5. The unfolded surface mesh of a cube with imprinted circles. Left is the initial surface mesh, and right is aft
lapsing loop self-intersections and pillowing. In the initial surface mesh there are a total of six surface loops. Two of th
loops pass througheveryquad, which is typical of unstructured meshes. The thin regions around the circles make this is
ficult example for our algorithm. Of the 272 initial quads, 90 are self-intersections. Collapsing just 16 quads removed a
intersections, and pillowing added 108 quads.
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collapsing is linear in the size of the cell; each weaving operation is constant time, and collapsing takesk operations
for ak+2 sided cell and 1 operation for a 2 sided cell. (1 sided cells do not arise with simple curves.)

Shrinking a curve. An oriented curve can be shrunk by a sequence of cell collapses. Shrinking a curve will suc
regardless of the order in which cells are collapsed. However, in practice, better meshes result if we shrink the
cells first. Our approach is to begin by first traversing once about the curve to find a cellC with the fewest number of
sidesS. We then collapseC. We back-up one cell, then continue traversing forward. Whenever we encounter a ce
sizeSor smaller we collapse it. If we traverse all of the way around the curve without collapsing a cell, thenS is
increased. Eventually all cells are collapsed and the curve shrinks to a point that does not intersect any other

Figure  6. A simple example illustrating the curve collapsing algorithm. The grey curve is oriented clockwise.

Figure  7. The three basic weaving operations used in curve contraction: join, cross and blind chord formation.

Figure 8. An example of collapsing a k+2 sided cell. Starting on the left of the figure and working to the right, we perfo
1 blind chord formations and finish with a cross operation.

cross cross

join cross 2 joins

join
cross

blind chord

formation

a

3

k

b

. . .
. . .2

a

3

k

b

. . .

a cell of size k+2
before collapsing

Step 1: 1st blind
chord formation

Step 2: 2nd blind
chord formation

3rd through
k-1th blind
chord
formations

Step k-1: before
cross...

...after cross -
Cell collapsed.

a b

1
2

3

k

. . .
.

b

a

k

. .



e of the

ides;

of size

e

ce
a
ll

ells

t
runk. In
es

)

he

would
Recall Figure 6 provides a simple example. The reason that we back-up is that collapsing a cell reduces the siz
cells to either side; see Figure 9.

To avoid forming self-intersections, we will not collapse a cell if the shrinking curve forms two or more of its s
see Figure 10 for a simple example.

The curve shrinking algorithm provably eliminates a curve from the front. (The local rules may prevent our
implementation from achieving this, however. Section 4.2 describes how we overcome this.) Collapsing a cell
k yields one of two forms of progress. First, ifk is 3 or greater, then collapsing the cell reduces the number of
intersection points inside the curve byk-2. Second, ifk is 2, then collapsing the cell performs a join which reduces th
number of points on the curve by 2.

As implemented, the running time of shrinking a single curve is O(n Smax) wheren is the number of intersection points
on or to the right of the curve, andSmax is the maximum cell size; for each cell size, we may have to traverse on
about the curve, which is always O(n). Also, each point to the right of the curve is moved to the left of the curve by
weaving operation in constant time. In practiceSmaxis small, usually less than 20. A single curve could consist of a
the points on the front, son could be large, but by amortizing over all curves this is not a problem. If we shrunk c
as they were encountered regardless of size, then the algorithm would take time O(n). Either way, the number of hexes
created is equal to the number of points to the right of the curve, up to modification by the local rules.

Choosing which curve to collapse. Repeatedly applying the curve shrinking algorithm to each curve on the fron
creates a complete STC. On paper, the algorithm will succeed regardless of the order in which curves are sh
practice, the best order is by increasingweight(defined below). The weights of all curves is computed, then the curv
are shrunk in that order. The running time of the curve shrinking algorithm as implemented is O(NSmax+ cn), where
c is the number of curves,n is the number of points on the front, andN = O(cn) is the number of hexes generated.

Each oriented curve has two weights, corresponding to shrinking it to theleft (from the equator towards the north pole
or right (from the equator towards the south pole). Letnrp denote the number of points to the right of the curve,nlp the
number of points to the left of the curve andnpc the number of points on the curve. The left-weight is defined aswl=
nlp + npcand the right-weight aswr= nrp + npc. We currently know no better way to compute these weights than t
straightforward method which takes O(cn) steps, wherec is the number of curves andn is the number of points on the

Figure  9. Collapsing a cell reduces the size of the neighboring cells by one.

Figure 10. An example of a cell where the shrinking curve forms two sides. Collapsing the cell with points a,b,1,2
cause a self-intersection as shown on the right, and does not lead to progress. Hence, we do not shrink such cells.
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front. Note that for a rectangular parallelepiped with a regular surface mesh, shrinking in order of our weights pro
a regular hexahedral mesh. In practice, our shrinking order produces a small mesh compared to other shrinking

4.2 Blending Curve Shrinking with Local Rules

The curve shrinking algorithm forms a weave without directly considering the geometry or connectivity of the h
formed. Within Whisker Weaving there is a set of local rules[24] that prevent hexes from being formed that vi
certain geometric and connectivity constraints, and also automatically perform basic weaving operations to fix c
configurations. For example, before forming a hex next to the boundary of the model, one local rule requires tha
must be a certain angle between the corresponding two or three faces. We have blended these local rules in
decision structure of the curve shrinking algorithm to increase mesh quality.

In the blended algorithm, curve shrinking chooses a weaving operation, and passes it to the local rules. If the op
is consistent with the local rules, it is performed. Otherwise, it is kicked back to the curve shrinking algorithm;
current cell being collapsed is returned to its initial state and curve shrinking moves on to another cell. Also, loca
automatically remove degenerate hexes such as two hexes sharing two edges, and join chords; this can cau
changes in the curve being shrunk. This turns the provable algorithm into a reliable heuristic that produces a
arrangement of surfaces than the pure algorithm.

There are two sets of local rules. The first set is geometry rules, which only applies to hexes being formed on
geometric boundary of the model. The second set is connectivity rules, which applies universally, and preven
hexes from sharing three faces and the like. We first attempt to weave with both sets of rules on. If we get stu
turn the geometry rules off, remove the partially completed weave, and start weaving over. If we still get stuc
turn the connectivity rules off and restart. It is usually necessary to turn the geometry rules off in order to comple
weave, but rarely necessary to turn the connectivity rules off.

A structured mesh has eight hexes attached to each node. In a Whisker Weaving mesh, one cause of poor mes
is high valence nodes- nodes with high numbers of hexes attached. We treat high valence nodes much the sam
as we treat local degeneracies, by a type of local rule that attempts to avoid forming them. While choosing whi
to collapse, we check the size of the cell and the size of the polyhedra behind the cell. This corresponds to ta
node on the front and checking the number of attached faces on the front and the number of attached hexes be
front. If the sum of these two values is above a certain threshold, we collapse that cell next. This buries the node
the front, preventing the number of hexes attached from increasing.

5. Converting a Surface Arrangement to a Well-Defined Hex Mesh.

5.1 Removing Degeneracies by Pillowing

Mitchell’s [10] existence proof enumerates the possible degeneracies that would keep an arrangement of surfac
dualizing to a well-defined hexahedral mesh. There are three types of degeneracies possible. The first isthrough-cells:
the arrangement does not resolve distinct portions of the surface mesh. For example, normally a 3-cell contains
one 2-cell of the surface mesh. If it contains one, then the dual node of that 3-cell is actually the surface mesh n
that 2-cell. If it contains more than one, it is dual to all of those nodes. One interpretation is that in order to reali
mesh, we must first collapse the surface mesh nodes; see Figure 11 for a two-dimensional example.

The second degeneracy isnon-simplicial meets: the intersection of two cells is non-simplicial. That is, the two cell
share two or more maximal sub-cells. E.g. two 3-cells sharing two distinct 2-cells is dual to two nodes being con
by two distinct edges.

The third degeneracy isnon-distinct sup-cells: the cells containing a cell are not distinct. A vertex should be in eig
distinct 3-cells, twelve distinct 2-cells, and six distinct 1-cells (STC-edges). Similarly for STC-edges and 2-cells
if a vertex lies in only seven 3-cells, then the dual hex has only 7 distinct nodes.
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Mitchell [10] also gives a provable construction for removing these degeneracies. However, the straight-forw
implementation of that would lead to many more hexes than is necessary, and poorer quality. Our algorithm 
follows. First, we remove through-cells. We remove through-2-cells and any adjoining through-3-cells and thr
1-cells bysheet moving; see section 5.2. Rarely we have a through-3-cell that is not part of any through-2-cell. T
are removed by inserting apillow-sheet, a new surface that surrounds all non-surface vertices of the through-3-cel
in Figure 11 right.

Second, geometric checks are done on the STC-vertices connected to the surface mesh. If any vertex is dua
with two or more surface-mesh quads that make a large dihedral angle, we insert a pillow-sheet that puts a b
layer around the surface mesh. This pillowing is almost always needed if the geometry rules were turned off 
weaving. We have experimented with adding a pillow-sheet surrounding just a neighborhood of the vertex, b
practice these sheets are nearly as large as the complete boundary layer and have poorer quality.

Third, we remove non-simplicial meets by pillowing the non-simplicial intersection. For each vertex, we travers
attached 1-cells, checking that each pair has only the vertex in common. If a pair has two common vertices, w
each vertex to a list of vertices to pillow. Each vertex must be in separate pillows, since a pillow around both ve
will not remove the degeneracy. Similarly, we traverse the attached 2-cells. If any 2-cell pair has more than an e
common, then we collect the vertices of intersection for later pillowing. We collect maximal components that are
connected by edges shared by both 2-cells; each components must be in a separate pillow. If any attached 3-c
more than a 2-cell in common, we gather their intersection for later pillowing. After all these checks for the verte
pillow maximal sets of vertices that need not be kept separate, then proceed to the next vertex. Occasionally th
and we fall back on the provable algorithm of pillowing non-simplicial meets one-by-one as they are encounte

Fourth, we remove non-distinct sup-cells. This is rarely necessary, usually just in cases where we had to pillo
simplicial meets one by one. For each vertex, we gather its 3-cells. We pillow vertices appearing more than on
single 3-cell.

5.2 Sheet moving for through-cells

A through-2-cell can be removed by inserting a pillow sheet surrounding all of its non-surface vertices. However,
there is aboundary-through-3-cell, moving the 2-cell so that it is cut by other sheets removes the degeneracy a
produces fewer hexes and a better quality mesh; see Figure 12.

Figure 11. Left, an STC with through-cells dualizes to a mesh that conforms to a collapsed version of the bounding me
2-cellc2 is dual to both nodes x and y, and 1-cellc1 is dual to both edgeseandf. Right, adding pillow-sheets removes this, bu
adds many elements.

Figure 12. A two-dimensional example of sheet-moving (chord-moving) to remove through-cells:bc2 is a boundary-through-
2-cell. We movec1 so that it goes around the vertices ofc2, wherec2 is the non-boundary through-2-cell adjacent toc1.
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Consider the 3-cells on either side of the through-2-cell. Typically, one of these cells is aboundary-through-3-cell: all
of its vertices are either on the surface mesh or on the through-2-cell. If not, then we must resort to pillowing.
Otherwise, we move the sheet containing the through-2-cell so that it surrounds the vertices of the other, non-bo
through-3-cell. In practice, there is usually a series of through-2-cells on a sheet, and we move all of these
simultaneously. Occasionally a through-2-cell will pass over another. We can detect which is farther from the s
mesh, and move that one first.

6. Examples

The following small examples are good-quality, totally automatic Whisker Weaving meshes of real-world parts. W
small, these parts exhibit true 3D character; to mesh these parts with a sweeping-type algorithm would requi
decomposing the geometry by hand, which is quite difficult in some cases.

Figure 13. Left: Two views of the bent-pipe example. It has 130 hexes and the scaled jacobian ranges from 0.54 to 0.9
original model, the flat faces of the pipe are next to sweepable parts. Right: Two views of a complicated nugget in
model, courtesy of Clay Fulcher. It has 499 elements. The scaled jacobian ranges from 0.12 to 0.99.

Figure 14. Left: Two views of the macaroni. It has 320 elements and the scaled jacobian runs from 0.26 to 0.95. Righ
views of a single component of a metal grain. It has 173 elements. The scaled jacobian runs from 0.18 to 0.8.

Figure 15. Left: two views of a non-sweepable geometry. It has 1320 elements and the scaled jacobian runs from 0.18
Right: Two views of the bathtub courtesy of Ford. It has 1041 elements and the scaled jacobian runs from 0.001 to 0
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these

bians.

.

The following are Whisker Weaving meshes of large, complex surface meshes and geometries. Typically 2%
of the hexes have negative jacobians at nodes, making them unusable for most FEMs. Despite this, we feel 
examples demonstrate proof-of-concept

Figure  16. A view of a blower geometry complements of Rick Garcia. It has 105,999 elements and 575 negative jaco

Figure  17. A single view of another component of a metal grain. It has 240,724 elements and 33 negative jacobians
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7. Extensions: Contracting Self-Intersecting Curves, Non-ball Geometry.

We have algorithms for handling the self-intersection case using basic weaving operations. These are curren
worked out on paper, but appear to require not much more effort to implement than the simple curve shrinkin
algorithm. Progress is measured by reducing the number of self-intersections. After all self-intersections are re
the simple curve contraction algorithm takes over. Note that the problem of simplifying self-intersecting polyg
curves has been considered in a computational setting.[9][27] However, these approaches concentrate on the g
of the shrinking. In our case, we are interested in the topological events of the shrinking, e.g. keeping the num
events to a minimum, and, except for the initial surface-mesh loop, we have no geometry for the sheets.

We also have various algorithms on paper for reducing non-ball geometries to a small collection of meshable ba
geometries. These algorithms have various degrees of efficiency, sophistication and provable properties. So
geometric and some are purely topological. The common theme is to cut the handles of the geometry until onl
remain.

Figure  18. A view of a throw arm for a crank shaft, courtesy of Ford. It has 622,209 hexes and 15,652 negative jacob
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We are also focused on overcoming the quality problem. We wish to post-process the mesh by optimizing the p
of nodes in tandem with improving connectivity regularity, as is commonly done in triangular, tetrahedral, and
quadrilateral meshing. This requires research in mesh positioning, namely weighted and boundary-term smo
This also requires research on hex mesh connectivity swapping. Currently, poor quality concentrates around
with too many or too few hexes attached, where we want to swap hexes between nodes. Few swapping opera
known for hexahedral meshes, unlike for tetrahedral meshes. We plan to develop swap operations using the
information provided by the STC. The key difficulties are finding swapping operations that are local and do not
the surface mesh, and finding a complete set of operations. We have had some preliminary success by movi
surfaces for a special case which occurs near the bounding surface mesh; see section 5.2.

8. Conclusions

We have presented algorithms for contracting curves. These guide Whisker Weaving’s basic operations and
provable hexahedral mesh generation on paper. We have implemented a local pre-processing algorithm that
the surface quad mesh so that the dual curves are simple. We have implemented the simple-curve version o
contraction, blended it with local geometry and connectivity rules, and implemented heuristics to improve the
surface arrangement so that it dualizes to a hexahedral mesh. The result is that, given the freedom to perturb the
mesh, we can reliably generate a hexahedral mesh conforming to the surface mesh. The hex meshes often h
unacceptable quality in isolated regions, and our current research is focussed on overcoming this problem.

We are also currently extending our implementation to weave from a fixed surface mesh whose dual curves 
non-simple. The extension appears straight-forward. Unfortunately, surface-mesh quads where dual loops se
intersect are closely related to the formation of degenerate hexes calledknivesinside the volume. Knifes appear to be
acceptable FEM elements, [4] but it would be better to avoid them. On paper knives are avoidable if the surface
has an even number of quads, but it is unclear if there are practical ways to avoid or remove all knives.
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