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Abstract

We show how to triangulate a three dimensional poly�
hedral region with holes� Our triangulation is optimal
in the following two senses� First� our triangulation
achieves the best possible aspect ratio up to a constant�
Second� for any other triangulation of the same region
into m triangles with bounded aspect ratio� our trian�
gulation has size n � O�m�� Such a triangulation is
desired as an initial mesh for a �nite element mesh re�
�nement algorithm� Previous three dimensional trian�
gulation schemes either worked only on a restricted class
of input� or did not guarantee well�shaped tetrahedra�
or were not able to bound the output size� We build on
some of the ideas presented in previous work by Bern�
Eppstein� and Gilbert� who have shown how to trian�
gulate a two dimensional polyhedral region with holes�
with similar quality and optimality bounds�

� Introduction

Triangulation of polyhedral regions is a fundamental ge�
ometric problem for numerical analysis� In particular�
if one wishes to solve an elliptic boundary value prob�
lem on a three�dimensional domain� it is necessary to
discretize the domain with a mesh� If the domain is
su�ciently complicated� then the method of �nite el�
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ements is commonly used� In this method the domain
is divided into small convex polyhedral regions with a
�xed number of faces called elements� A common choice
for an element in three dimensions is the tetrahedron�
Thus� a triangulation of the domain is required�

For numerical stability in the �nite element method�
it is necessary that the tetrahedra have bounded aspect
ratio� This means that the angle between any adjacent
pair of edges of the tetrahedron� or between any edge
and a ��dimensional face not containing it� is bounded
below by a constant� For information about aspect ra�
tio bounds in numerical analysis� see Babu	ska and Aziz

��
���

Our algorithm generates a triangulation for a noncon�
vex bounded polyhedral domainwith holes� In addition�
the triangulation is optimal in two respects� In partic�
ular� the best possible aspect ratio is achieved for the
tetrahedra� and the number of tetrahedra is within a
constant factor of the best possible for any triangula�
tion with bounded aspect ratios�

Our work is closely based on earlier work by Bern�
Eppstein and Gilbert 
������ who solved the correspond�
ing problem for two�dimensional polyhedral domains�
Our running time bounds are probably not the best pos�
sible� this is discussed further at the end of the paper�
Our optimality condition is slightly stronger than Bern
et� al��s condition� In particular� they show that over�
all the number of triangles they generate is no more
than a constant above optimal� The triangles used in a
particular region of the domain� however� could be arbi�
trarily smaller than what is needed for the triangulation
to achieve good aspect ratio� In our triangulation� no
tetrahedron is ever more than a constant factor smaller
than the tetrahedron at the same location in the best
possible triangulation�

Other authors have considered three�dimensional re�
gions� but� to our knowledge� no previous work has si�
multaneously addressed the problems of optimality� as�
pect ratio and of complicated nonconvex regions� In�
deed� as far as we know� there is no previous algo�
rithm to triangulate a nonconvex three�dimensional re�



gion with guaranteed aspect ratio �regardless of the op�
timality of the triangulation�� Our technique is based
on an octree partitioning of the domain� This technique
has been used before� for example� by Carey� Sharna and
Wang 
������ Chazelle and Palios 
����� consider opti�
mality but are not interested in angle bounds� Chew

����b� presents an algorithm for two�dimensional poly�
hedral regions� but does not address the problem of op�
timal number of triangles� Moore and Warren 
�����
address the problem of adaptive mesh generation for
box�shaped regions� Mitchell 
���
� and 
����� consider
the problem of adaptive mesh generation of complex re�
gions in regard to �nite element error bounds� Because
of the importance of mesh generation� the literature on
this problem is very extensive� see for example� the con�
ference proceedings edited by Hauser and Taylor 
������

Recently� Bern and Eppstein 
����� have surveyed the
literature on triangulations� giving more details about
earlier work�

Our optimality proof is based on characteristic length
functions� Similar functions have been used before by
Miller and Thurston 
������ Miller and Vavasis 
������
and Miller� Teng and Vavasis 
������ We have not seen
them used� however� to analyze the construction of a
triangulation�

The remainder of this paper is organized as follows�
In Section � we discuss the formation of the octree� In
Section � to Section � we we discuss the steps necessary
to produce a triangulation given an octree� In Section
� to Section 
 we provide the optimality proof� For the
remainder of this introduction� we describe our assump�
tions�

Our triangulation is denoted �OCT � We assume we
are given a three�dimensional polyhedral region as fol�
lows� There is a list of vertices with coordinates speci�
�ed� There is also a list of edges and faces� The three
lists are mutually linked� The list of edges for each ver�
tex is ordered as they occur around the vertex� Similar
orderings are assumed for the other lists� We assume
that P is connected� if not� each component could be
triangulated separately�

A face of P � or another polyhedral region� can have
either zero dimensions� called a vertex� one dimension�
called an edge� or two dimensions� called a facet� In some
circumstances we want to regard P itself as the three�
dimensional face� Note that the containment relation
induces a partial order on faces�

We assume that the polyhedral region is nondegener�
ate in the following senses� Every two�dimensional face
of P has the interior of the polytope on exactly one side�
Every one�dimensional edge is incident on exactly two
two�dimensional faces� For every zero�dimensional face
�vertex� v� for every small enough open neighborhood
N of v� the set �N �P ��fvg has exactly one connected
component� These assumptions may be dropped in fu�

ture work�
Interior Angle� We de�ne the interior angle or an�

gle between two faces F and G in the cases where F and
G are a facet and an edge� two facets� or two edges that
have a common intersection v� We additionally require
that one face is not a subset of the other� We say that
two rays r�� r� with a common endpoint v can see each
other if there are points v�� v� on r�� r� each at distance
t � � from v such that the sector vv�v� lies in P �
The interior angle between two faces F and Gmeeting

at a vertex v is the minimumover all rays r�� r� from v of
the angle of the sector vr�r�� Here we require that r� �
F and r� � G and vr�r� � P in a small neighborhood
about v� The interior angle between two facets meeting
at an edge is the dihedral angle between those facets
interior to P � A more detailed de�nition appears in the
full paper�
An important constant describing a nonconvex poly�

hedron P is �� the minimum interior angle between any
pair of faces of P �
A useful measure of the shape of a tetrahedron is its

aspect ratio� which we de�ne to be the ratio of the ra�
dius R of the smallest containing sphere� to the radius
r of the largest inscribed sphere� The aspect ratio of a
three dimensional triangulation is the maximimum as�
pect ratio of a tetrahedron in the triangulation�
It can be proved that the aspect ratio of a tetrahedron

is bounded above and below by constant multiples of
the reciprocal of the sharpest interior angle �as de�ned
above� in the tetrahedron� We can also show that the
aspect ratio of any triangulation of P is bounded by
k��� where k is a constant�

� Subdivision of P into cubes�

the octree

The main data structure we use for our algorithm is an
octree� We commonly refer to each node of the tree as a
box� We associate with each box� b� a polyhedral region
of IR� called the embedding of the box and denoted I�b��
During the generation of the octree� I�b� is exactly a
three dimensional cube� Later boxes are warped and
triangulated� changing their geometric structure�
An octree node is either a leaf� or has eight children�

The embedding of the eight children of a node are the
eight cubes obtained by dividing the embedding of the
box in half in each of the three dimensions� We say a
node is split if it is not a leaf� The process of creating
the eight children of a node is called splitting�
Duplicate� Some boxes in the octree will be du�

plicated into the original node and several new nodes�
called duplicates or duplicate boxes� We create dupli�
cates whenever the intersection of the box with P has
more than one connected component� Each duplicate



represents the same geometric cube in IR�� but is associ�
ated with one connected component of P �I�b�� We use
the notation P � b to denote the component of P � I�b�
assigned to a particular box b�
Whenever we split a box b� if P � b is nonconvex a

child box b� may have more than one component �i�e��
�P � b� � b� might have more than one component even
though P � b consists of one component�� Whenever a
box is split� we immediately determine whether any of
its children contains more than one component of P �
and if so� we make duplicates of the child box�
If a P face is incident upon P � b for a box b� we

say that a box contains the face� We maintain pointers
between each box and the faces it contains�
Extended Box� For a given box b� we de�ne the

extended box of b� ex�b�� such that I�ex�b�� is the cube
concentric with I�b� and with each dimension expanded
by a factor of �� We use the notation P �ex�b� to denote
the component of P � I�ex�b�� that contains P � b� The
extended box contains only the P faces of P � ex�b��
Note that ex�b� is not a box of the octree� but may be
constructed from boxes of the octree�
Adjacent� Two boxes are called neighbors if their

embeddings intersect non�trivially� and one is not a du�
plicate of the other� The size of a box b is the length of
an edge� which we denote by h�b�� We say that box b�
is adjacent to box b� if they are neighbors and there is a
point of P common to both� i�e� if �P�b����P�b�� �� ��
In certain cases such as when a box contains faces meet�
ing at a re�ex angle� a box may be adjacent to two
duplicates of a second box� We say b�� b� are balance�
adjacent if they are neighbors and there is a point of
P common to one of the boxes and the extended box
of the other� i�e� if �P � ex�b��� � �P � b�� �� � or if
�P � ex�b���� �P � b�� �� �� Boxes that are adjacent are
balance�adjacent� but not all balance�adjacent boxes are
adjacent �
Balance Condition� If we split a box� we imme�

diately split other boxes to maintain the following in�
variant called the balance condition� No box is balance�
adjacent to a box more than twice its size� Certain
boxes containing vertices or edges of P are called pro�
tected boxes� and are exempt from being split by the
balance condition later in the algorithm� Nonetheless�
the ratio of the size of an adjacent box to a protected
box is bounded below by a constant that depends lin�
early on �� as we observe below�
We generate the octree by selectively splitting and

duplicating nodes� The goal of splitting and duplicating
boxes is to make the boxes small enough so that the
intersection of P with the embedding of any box is as
simple as possible� However� boxes should not be made
too small� as this would lead to an excessive number of
tetrahedra in the �nal triangulation�
It is easy to state the conditions under which we du�

Figure �� Here a box is duplicated for two components�
and one duplicate box is split because it is crowded�

plicate b� namely� whenever P � I�b� has more than one
component� Nonetheless� the box duplication process
is actually the most computationally complicated part
of the octree generation algorithm� because determin�
ing components of P�I�b� is a nontrivial computational
task� The duplication process is built upon standard al�
gorithms from computational geometry including point�
in�polygon testing and planar sweeps� See below�
On the other hand� for splitting� the conditions under

which a box is split are more complicated� but the com�
putational tasks are straightforward� The octree gener�
ation algorithm is divided into three phases� the vertex
phase� the edge phase� and the facet phase� We now
describe the various steps of the splitting algorithm�
How �nely we split boxes during the vertex phase

depends on the following de�nition�
Vertex Cone� A vertex cone of a box b is a set of

P faces� F�� F�� � � � � Fk� that satisfy the following� F�
is a vertex lying in b� and F�� � � � � Fk are the superfaces
of F�� Moreover� F�� � � � � Fk are exactly the P faces
incident upon P � ex�b��
Vertex Crowded� We say that a box b is vertex

crowded if the following is satis�ed� There is a P vertex
v in b� but the superfaces of v are not the only P faces
incident upon P � ex�b�� Equivalently� a box is vertex
crowded if P � b contains a vertex that is not the apex
of a vertex cone�
We recursively split and duplicate boxes� maintain�

ing the balance condition at each step� until every box
containing a vertex contains exactly one vertex cone�
Clearly this procedure will terminate once the box sizes
become a constant factor smaller than the minimum
path length in P between a vertex and a face that does
not contain that vertex�
The details of the procedure for determining whether

a box b should be split are straightforward given an enu�
meration of the P faces bounding P � ex�b�� Such an
enumeration is obtained from the procedure for deter�
mining whether a box should be duplicated described
below�
The conclusion of the vertex phase is a special one�

time reorganization of the boxes so that each vertex of
P is far from the boundary of the box that contains it�
The value of this property will become clear in Section
� and later sections� In particular� after reorganization



the distance between a vertex and any box face is at
least h�b���� where b is the box containing the vertex�
This step involves splitting every box at most one more
time� and merging the box containing b with some of
its neighbors� This is called the centering step and its
details are in the full paper�
Once the vertex is centered in its box b� this box is

protected� meaning that it is never split again during the
course of the algorithm� Also� protected boxes are never
considered to be part of the extended box of another
box�
The next phase of the octree generation algorithm

focuses on edges of P � and is analogous to the vertex
phase� The details of this case are in the full paper�
An unprotected box contains an edge cone if it contains
an edge� and if the edge and its two facets are the only
P faces contained in P � ex�b�� We de�ne an unpro�
tected box to be edge crowded if it contains an edge�
and there is some face bounding P � ex�b� that is not a
superface of the edge� We recursively split edge crowded
boxes and enforce the balance condition until the only
unprotected boxes containing edges are boxes with edge
cones� Then we protect all edge cone boxes� and boxes
balance�adjacent to them� We do not reorganize in the
same way as vertices� relying instead on Section ��
The third phase of the octree generation algorithm

focuses on facets of P � An unprotected box b contains
a facet cone if it contains a facet� and that is the only
P face incident on extended P � ex�b�� We say that a
box is facet crowded if it contains a facet� and if the
facet is not the only P face incident upon P �ex�b�� We
split unprotected boxes until any box containing a facet
contains a facet cone� Boxes containing a facet are then
protected� The details are in the full paper�

��� The duplication process

Recall that we duplicate b whenever it is determined
that P � I�b� has more than one component� In this
section we explain how to identify the components of
P � I�b�� This same techniques allow us to determine
the components of P � I�ex�b��� which is necessary for
determining whether boxes are crowded� and when to
propagate the balance condition�
The �rst part of the duplication algorithm is a pre�

processing algorithm� Before the octree generation be�
gins� we identify the separate components of �P � One
component is the exterior component� we call all the
other components �oaters� For each facet� edge� and
vertex� we can determine which component contains it
with a standard graph search� This takes total time
O�n�� where n is the total number of facets� edges and
vertices of P �
Once the components are identi�ed� we now perform

a second procedure in which we identify a tether for

Figure �� Floaters and tethers for a two dimensional
polygon�

each �oater� First� for each �oater C� we identify the
point v with the largest x coordinate on C� which we
call the base of the tether� From v we shoot a ray in
the positive x coordinate direction and identify the �rst
point v� of �P encountered� which we call the head of the
tether� The head cannot be on the same �oater as the
base� A head exists� since the ray must eventually pass
through the exterior component� The directed segment
from v to v� is called the tether for C� See Figure � for
a two dimensional example of the tethering structure of
a polygon�

Note the following two properties of tethers� ��� Each
tether is contained completely in P � ��� When regarded
as a digraph on the components of �P � the tethers form
an in�tree rooted at the exterior component�

Now we discuss the procedure for determining when
a box should be duplicated� Consider the P faces con�
tained in the box� A particular P facet F in the box
may intersect the box in more than one component if
the facet is nonconvex� We therefore must �rst deter�
mine all the components of each facet passing through
the box� This may be done by sweeping a line seg�
ment across the facet� requiring O�m logm� steps if m
is the number of vertices of the facet� The total time
for identifying all components of all facets for a box is
O�n logn��

Then we perform a combinatorial graph search to
identify the various components of �P � I�b�� Let these
components be called sheets� There are two kinds of
sheets� those that intersect the boundary of I�b�� and
those that are completely internal to I�b�� Note that a
sheet entirely inside I�b� must be a �oater� such a �oater
is called an internal �oater for b� The other sheets are
called external sheets� Note that a �oater that intersects
I�b� is an internal �oater if and only if it lies entirely in
I�b�� otherwise it is one or more external sheets�

Clearly any sheet is incident upon a single connected
component of P �I�b� since the sheet itself is connected�
Thus� the remaining task is to determine which sheets
are connected to each other in P � I�b��
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Figure �� Determining the components of a box� Sweep�
ing the boundary determines two components� and fol�
lowing tethers determines that all internal �oaters be�
long to the same component�

For external sheets� the following algorithm exactly
determines how they are connected� We consider the
intersection of each sheet with the boundary of I�b�
�the surface of a cube�� This intersection is a collection
of disjoint simple polygons� We form the list of poly�
gons for all sheets� We call these polygons the �rims��
Note that these polygons break across edges of the cube�
We then sweep over the boundary of I�b� by the sum
of x� y� z coordinates� forming a tree indicating which
rim polygons are contained in others in O�n logn� time�
From the sweep we can build a rooted tree indicating
the containment hierarchy among the polygons� The
reader unfamiliar with point�in�polygon tests and plane
sweeps should consult Edelsbrunner 
���
� or Preparata
and Shamos 
������

Thus� from an O�n logn� procedure we can determine
exactly which external sheets are in the same compo�
nents of P � I�b�� This leaves the problem of determin�
ing the component of P � I�b� for an internal �oater C�
This is determined from the tether �v� v�� of C� If the
head v� is inside I�b�� then the �oater lies in the same
component as the facet containing v� �because the entire
tether is in P �� This facet might be a facet of another
internal �oater� but because the tethers form an acyclic
graph� eventually we will reach a point v� on an external
sheet� See Figure ��

The other case is that the tether�s head v� lies out�
side I�b�� In this case we �nd the point v�� where the
tether intersects the surface of I�b�� If we knew where
in the polygon tree v�� lay� then we could determine the
component containing v�� �which is the same component
containing the �oater�� The polygon regions containing
v�� are easily determined if� before starting the polygon
containment sweep� we �rst insert v�� into the list of
polygons as a singleton polygon� This should be done
for all tethers� This does not change the running time
bound of O�n logn��

Thus� in time O�n logn� we can determine all the
components of P � I�b�� Moreover� it is easy to see that

the rims allow us to determine which neighboring boxes
are adjacent to a given duplicate box�
Finally� we need to determine the facets adjacent to

P � ex�b� for testing crowdedness� This is done by run�
ning the component�determination algorithm on ex�b��
and then saving the component of P �I�ex�b�� that con�
tains a point in P � b� This also allows us to determine
which neighboring boxes are balance�adjacent to b�
We now consider the running time of constructing the

octree� We believe that our current running time analy�
sis is suboptimal� so we omit some of the details� First�
there is a slight addition to the algorithm as described
so far that gives us a better bound� If a box with ver�
tex v is vertex crowded� in time linear in the number of
P faces in the extended box� we determine the closest
face to v that is not a superface of v� and immediately
split the box down to a size smaller than this distance�
Similarly if the box is edge or facet crowded�
This allows us to claim that the total number of boxes

constructed by the octree algorithm is bounded by a
constant multiple of the number of leaf boxes that con�
tain a point of P � From the warping and triangulat�
ing rules to follow� each such leaf box leads to at least
one tetrahedron� In particular� the number of such leaf
boxes is bounded by �� the size of the output� Finally�
the total amount of time spent on each box is at most
n logn� where n is the number of faces of the polyhe�
dral region P � Thus� a bound on the running time is
O��n logn�� Note that this subsumes the O�n�� prepro�
cessing to �nd tethers� since � � ��n�� See Section �
for more remarks on this bound�
We claim that after the octree algorithm is �nished�

we have the following result for relative sizes of boxes�

Theorem � Let B be any box of the octree whose em�
bedding contains a point of P � and b an adjacent box�
Then

h�b� � k � � � h�B��
where k is a constant�

The proof of this theorem involves many lemmas and
is contained in the full paper� The general idea is as
follows� If a protected vertex box is adjacent to a box
with an edge� E� then that edge box could be much
smaller than the vertex box� However� if it is much
smaller� this means that there is another face� F � not
containing E� but very close to E as it emerges from the
protected vertex box� But F is in the extended vertex
box� and hence both it and E must be a superface of
the vertex in the protected vertex box� That is� we have
an interior angle de�ned between E and F � Recalling
that their common vertex is far from the boundary of
the protected vertex box� the edge box is only small
when this interior angle is small� It is surprising that
the result also holds for boxes with facets adjacent to a



protected vertex box� The proof for that case requires
extensive analysis and appears in the full paper�

� Warping box faces

Warping consists of moving box vertices� We warp the
faces of a box away from P faces to achieve good aspect
ratio when we triangulate� It is only necessary to warp
box faces that are close to P faces� where the de�nition
of �close� is below� Note that P vertices are already
guaranteed to be well separated from box faces because
of the special reorganization at the end of the vertex
phase� Thus� we only need to warp for P edges and P
faces�
The warping is done in two passes� The �rst warping

pass is for box edges close to P edges� We say that a box
edge E is close to a P edge F if the distance from E to
F is less than h��� Here� h is the size of the smallest box
sharing the box edge E� Note that the boxes containing
E are all edge�protected� since they are all adjacent to
a box containing F � This means that the sizes of these
boxes are all within a factor of two from each other�
For every close edge E� we move it away from F as

follows� We move every point on the edge� including
the endpoints� by distance h�� in the direction that is
orthogonal to E and F � oriented away from F � �If E
and F happen to be parallel� we move the points of E
in the direction orthogonal to E and coplanar with F ��
Even though the boxes after warping have compli�

cated shapes� we still let the �size� of a box b be its
prewarped edge length� and we continue to use nota�
tion h�b� for this size�
The second warping pass is for box vertices close to P

facets� We say that a box vertex v is close to a P facet
F if the distance between them is at most h���� where
h is the size of the smallest box containing v� For such
a vertex� we move it distance h��� away from the facet
in the direction orthogonal to the facet�
An unfortunate consequence of moving box vertices

is that for some box facets� the vertices of the facet are
no longer coplanar� This inconsistency is removed when
we triangulate box facets in the following section�

� Two dimensional triangula�

tion

After warping� we triangulate facets of boxes� This is a
preliminary step to the three dimensional triangulation
algorithm of the next section� Suppose two boxes b� b�

are adjacent� and suppose their intersection is a facet
S� If we assume that h�b� � h�b��� then S is a facet of
b�� Under these circumstances� we always triangulate S
by considering it a facet of b�� not b� �If b� b� are the

same size� we break ties arbitrarily�� This means that
we can always assume that when triangulating a square
S� there is no box vertex in the interior of S� There are
four box vertices at the corners of S� and there may be
additional box vertices at points along edges of S�
Note that a protected vertex box �after the centering

step described in the full paper� is always adjacent to
boxes the same size or smaller� This means that� with�
out loss of generality� we do not have to triangulate and
warp facets of a protected vertex box� instead we can
triangulate and warp the facets of the boxes adjacent to
it as in the last paragraph�
We now describe the triangulation of a box facet S�

Note that after warping� the points of S are not neces�
sarily coplanar� although the points are nearly coplanar
because the warping distances are small�
The triangulation of a box facet S breaks down into

four cases� and cases C and D have two subcases� The
cases depend on which P faces pass through the facet�
Note that we only have to triangulate the portion of S
interior to P � which we call �� Note that � is bounded
by a closed path of line segments� We can think of �
as a �perturbed polygon� �since the vertices are nearly
coplanar�� The six subcases are illustrated in Figure ��
the regions � are shaded� Each vertex of � is the inter�
section of a P edge with a box facet� or the intersection
of a P facet with a box edge� or a box vertex�
Case A� no P faces pass through the facet S� In this

case� we put in a new point v at the center of the pre�
warped box facet� and we connect v to every segment
along the boundary of S�
Case B� two P facets F�G and their common edge E

pass through facet S� Let v be the � vertex where E
passes through the prewarped version of facet S� Then
we connect v to all segments on the boundary of ��
triangulating ��
Case C� one P facet F passes through �two edges of�

the facet S� Let x� y be the two points where F passes
through two edges of S� and let v be the midpoint of
x� y� Let c be the center of S �before warping�� Let h
be the edge length of S �before warping��
Subcase C�� v is within h�� of c� Then we connect v

to every segment along the boundary of �� This divides
the region into triangles�
Subcase C�� v is further than h�� from c� Then

we connect c to every segment along the boundary of
�� This divides polygonal region � into triangles and
quadrilaterals� Then we insert a diagonal �arbitrarily�
into each quadrilateral� triangulating ��
Case D� two P facets F�G pass through facet S� but

no P edge� Let x� y and x�� y� be points where F�G
respectively cross through the boundary of S� Let v� v�

be the midpoints of these segments� Let c be the center
of S �before warping�� Let h be the edge length of S
�before warping��
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Figure �� The six cases for triangulating a box facet�

Subcase D�� v or v� is within h�� of c� Say v is within
h�� of c� Then we connect v to every segment along the
boundary of �� This divides � into triangles�
Subcase D�� v and v� are both further than h�� from c�

Then we connect c to every segment along the boundary
of �� This divides � into triangles and quadrilaterals�
Then we insert a diagonal �arbitrarily� into each quadri�
lateral� triangulating ��
In the full paper� a case analysis of the smallest pos�

sible distance between � vertices and an analysis of the
angles at v or c subtended by an edge of � results in the
following theorem�

Theorem � Let B be a box� For any triangle T on a
facet of B� let r be the radius of the largest inscribed
circle� Then r � k � � � h�B�� where k is a constant�

General results have been obtained for two�
dimensional triangulations with guaranteed inscribed�
circle radius bounds� Bern� Edelsbrunner� Eppstein�
Mitchell� and Tan 
����� have a result concerning opti�
mal two�dimensional triangulation of polygons� assum�
ing new points cannot be introduced� Bern� Dobkin� and
Eppstein 
����� have similar results in the case that new
points can be introduced� We have not been able to in�
corporate these algorithms in the present version of our
triangulation algorithm because we need to introduce
new points� but the new points have to be introduced
in a carefully controlled fashion�

� Three dimensional triangula�

tion

We now describe how to form tetrahedra from the trian�
gles in the last section� We triangulate on a box by box
basis� The details of how we triangulate depends on a
case analysis of what is contained in a box� and how it

intersects the box� However� the general principle is to
�nd a central vertex� and then form one tetrahedron or
prism for each triangle in the box by taking the convex
hull of this vertex and the triangle� The organization
of the argument is very similar to the two�dimensional
triangulation in the last section� We cover two of the
possible cases here� all the cases are enumerated in the
full paper�

Vertex box tetrahedra� For a box b containing a
vertex of P � the three�dimensional triangulation is par�
ticularly easy� We take as the central vertex v the P
vertex itself� For each of the triangles of � on the sur�
face of b� we form a tetrahedron by taking its convex
hull with v�

Facet box tetrahedra� Consider a box b containing
one P facet F � We introduce a central vertex v at the
centroid of the prewarped box� If v is within distance
h�b��� to F � then we move v to the closest point of F
to v�

We now have three cases� The �rst case is if v lies
in the interior of P � but not on F � For each � triangle
on the boundary of the box we form a tetrahedron by
taking its convex hull with v� We also triangulate the
polygonal region of F � �P � b� and form a tetrahedron
for each triangle of F � �P � b� by taking its convex hull
with v� This polygonal region is nearly convex �it would
be convex if the triangles on each the surface of the box
were coplanar�� To form a triangulation of F � �P � b��
we make a new vertex centrally located in the region
and take its convex hull with each edge of the region� as
in Case A of the two dimensional triangulation�

The second case is that v lies on F � We take the
central vertex v� and proceed as if it were a vertex of
P � That is� for each � triangle of I�b�� we generate a
tetrahedron by taking the convex hull of it and v�

The third case is if v lies outside of P � For each �
triangle of I�b� we form a tetrahedron by taking the
convex hull of it with v� These tetrahedra are clipped
by F into �prisms� with nonparallel sides� and a trian�
gular top and bottom� Zero� one or two of the vertices
of the top may also be vertices of the bottom� If two
vertices are shared� then a prism is a tetrahedron� If
one vertex is shared� a prism is split into two tetrahe�
dra by introducing a facet between the shared vertex�
and one distinct vertex of the top and one distinct ver�
tex of the bottom� If no vertices are shared between the
top and bottom� a prism is split into three tetrahedra by
introducing two facets� One facet is between two of the
top vertices and the opposite bottom vertex� The other
facet is between the opposite bottom vertex� one of the
other bottom vertices� and the opposite top vertex�



� Aspect ratio of tetrahedra

Our triangulation is optimal in two respects� First� the
maximum aspect ratio among tetrahedra of our trian�
gulation is optimal up to a constant multiple� Second�
compared to all other triangulations of �xed aspect ra�
tio� our triangulation has the minimumnumber of tetra�
hedra up to a constant multiple� In this section we
establish the �rst optimality property� focusing on the
optimality of the aspect ratio�
Recall that the tetrahedra we form are either the con�

vex hull of a central vertex and a triangle on the surface
of a box or a facet of P � or else a portion of a prism� We
now want to argue about the aspect ratio of all tetra�
hedra arising in the algorithm of the previous section�
There are three types of tetrahedra arising in the tri�

angulation� A Type A tetrahedron has one vertex v
centrally located in the box� and the other vertices on a
box face� This type of tetrahedron arises in the cases of
triangulating a box with a vertex� a box with an edge�
or a box with a facet in which the vertex v in the last
section lies near the center of the box� is in P � and is
not close to the second facet �if the box has two facets��
Also some of the tetrahedra arising from the case of two
facets in a box and v on one of the facets are of this
type�
A Type B tetrahedron arises only in the two�facet case

described in the full paper�
AType C tetrahedron arises from a vertex v in the last

section outside P � This happens only with boxes with
one or two facets and no edges� This causes P � b to be
divided into prisms� and then each prism is divided into
tetrahedra� These tetrahedra arise in cases analogous
to triangles in cases C� and D� in Figure ��
Intuitively� all three types of tetrahedra have aspect

ratio at most ���� because they involve a base �the
base being a triangle� whose inscribed radius is between
k��h�b� and k�h�b�� and the apex is well�centered over
the base� and is distance between k��h�b� and k�h�b�
from the base� Here� k�� � � � � k� are constants�
The aspect ratio computations are very technical and

involved� In the full paper we prove aspect ratio bounds
for all types of tetrahedra by constructing an inscribed
and a containing sphere� These proofs are omitted here�
The containing sphere has radius no more than the box
size� and the inscribed sphere has radius at least a con�
stant times the size of an adjacent box�
Hence the result is that we can prove a theorem show�

ing that the aspect ratio of any tetrahedron in our tri�
angulation is bounded by a constant multipled by the
ratio between h�b� and h�b��� where b� b� are adjacent
boxes� We already know from Theorem � that this ra�
tio is bounded above by k���
We can also show that any triangulation of P must

have a tetrahedron of aspect ratio at least k�� by

considering the tetrahedron that must �t �inside� the
sharpest interior angle of P � The details are in the full
paper�
Let T be a three dimensional triangulation� Let A�T �

be its aspect ratio� de�ned to be be the maximum over
all tetrahedron t � T � of the aspect ratio of t� We may
now state the theorem concerning the optimality of the
aspect ratio of our triangulation of P �

Theorem � �Aspect ratio optimality�

A��OCT � 	 kA����

where k is a true constant� independent of P and ��
and �OCT is the triangulation of P arising from our
algorithm� and �� is any other triangulation of P �

� Optimality of the cardinality

of �OCT

In this section we prove that the number of tetrahedra
in our triangulation is no more than a constant factor
larger than any other triangulation with a bounded as�
pect ratio� The reasoning in this section is as follows�
We �rst prove that any triangulation with bounded as�
pect ratio� which we denote ��� has certain geometric
properties concerning how fast the sizes of the tetrahe�
dra can change� We use these geometric properties to
derive upper bounds on how large the tetrahedra of ��

can be in terms of the boxes of our octree� We also give
lower bounds on how small the tetrahedra of our trian�
gulation�OCT can be compared to the size of boxes in
our octree� Comparing these two sets of bounds shows
that our triangulation is within a constant factor of op�
timal�
Conformal� Any triangulation �T of P � including

our triangulation� that we consider in this paper must be
conformal to P � This means that the following condition
must hold� Let x be a point on a P face F � Let F � be
the lowest dimensional face of �T containing x� Then
F � 
 F �

Characteristic length function� We de�ne fT �
P � IR to be the characteristic length function of a
triangulation�T � This function is de�ned as follows� If
x is a point of P � then we de�ne fT �x� to be the longest
edge among all tetrahedra that contain x�
Aspect ratio bound� We let A denote the maxi�

mum aspect ratio of all tetrahedra of��� In rest of this
section there will be many constant factors that depend
on A� usually denoted c�� c�� � � � �

The following is one of many lemmas that we prove
in the full paper relating aspect ratio to how the char�
acteristic length function of �� may change over P �
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Figure �� An illustration of case �� in Theorem ��

Lemma � Given a bounded aspect ratio triangulation
��� two points x� y� and any two faces F�G containing
x� y respectively� de�ne H � F�G� If H �� �� then there
exists a constant c� depending on A such that f��x� �
c� � f��y��
Geodesic distance� We let distP �F�G� denote the

geodesic distance in P between two closed subsets F�G
of P � In other words� this is the length of the shortest
path in P between a point of F and a point of G� This
distance is always at least as great as the Euclidean
distance�
We now state the following theorem about the

geodesic distance between points on faces in a triangula�
tion� The theorem has two cases� depending on whether
the faces have a common point or not� See Figure ��

Theorem � Let F�G be two faces of ��� Let H �
F �G� Let x� y be two points such that x � F � y � G�
Then there exist constants c� and c� depending on A�
such that

�� If H �� � and distP �x�H� � t� then distP �x� y� �
c�t�

�� If H � �� then distP �x� y� � c�f��x��

Combining the previous theorem and lemma shows the
following�

Theorem � For a triangulation �� with aspect ratio
bound A� there exist constants c� and c� dependent on
A such that for all x� y � P �

f��x� 	 max�c� � f��y�� c� � distP �x� y���

An observation about our triangulation�OCT is that
the characteristic length function at a point in a box is
always bounded below by a constant multiple of the size
of an adjacent box� Thus from Theorem � and Theorem
�� we have that the characteristic length function at a
point in our triangulation is always at least the size of
the box containing that point times a constant multiple
depending on A�
We can prove that any triangulation �� with aspect

ratio bounded by A has its characteristic length function
bounded above by a constant multiple of the box sizes

in our octree� where this constant depends on A� We
�rst note that if a box b containing a point x on a P face
F was split to a certain size� then we may �nd another
P face G that does not contain F � and a point y � G
such that distP �x� y���

p
�h�b��

Consider a vertex x of P � We may apply Theorem �
Case � to the P faces F and G of the last paragraph
�F is x� and G is disjoint from F � to show that f��x�
is at most a constant factor larger than the size of the
box containing x� As in Theorem �� this constant factor
depends on A� From Theorem � and Lemma � we can
show that this result also holds for an arbitrary point
in a protected vertex box�
For a point x on a P edge F � we use a similar argu�

ment� We �nd a distinct P face G and y � G as in the
vertex case� By conformality� there are two faces of ��

contained in the two faces F and G of P � respectively�
that contain our points x and y� We use Theorem � and
Theorem � applied to these triangulation faces� and the
fact that we have proved the result for P vertices� to
conclude that f��x� is at most a constant factor larger
than the size of the box containing x� Again this con�
stant factor depends on A� The result generalizes to an
arbitrary point of P in a protected edge box� Similar ar�
guments prove the result for points in a protected facet
box� and �nally for an unprotected box �containing no
P faces�� The full proof appears in the full paper�
Thus� we show that the tetrahedra in�OCT are never

more than a constant factor smaller than those in ���
A straightforward volume counting argument then gives
the following result�

Theorem � For all polytopes P and constants A� there
exists a constant c��� dependent only on A and �� such
that

j �OCT j 	 c��j �� j�
where j�� j denotes the number of tetrahedra of �� and
similarly for j �OCT j�

	 Conclusions

An important open question is the running time� We
demonstrated a running time bound of O��n logn� for
our algorithm� which is inferior to Bern� Epstein and
Gilbert�s running time of O�n logn� �� for two dimen�
sional regions� However� we have recently found out
by private communication with those authors that this
bound does not actually hold for the algorithm that
they propose for two�dimensional nonconvex polygons�
Therefore� it is not clear what is the best possible run�
ning time for triangulation of nonconvex polyhedral re�
gions in either two or three dimensions�
It would be interesting to generalize our algorithm

to work for higher dimensional regions� Also� the non�



degeneracy conditions on the input region could be re�
laxed�

Another open question concerns optimizing the tetra�
hedra for properties other than aspect ratio� For ex�
ample� is there an algorithm for triangulating a three�
dimensional nonconvex polyhedral region to maximize
inscribed sphere radius of the tetrahedra�

Finally� we have plans to implement this algorithm�
The two�dimensional analog of this algorithm has been
implemented by the �rst author in C���
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