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� Introduction

A triangulation of a �nite set of points S in �� is a maximally�connected� straight�line planar graph
with vertex set S� Each bounded face is a triangle� and the triangulation includes the boundary of
the convex hull� Triangulations �nd use in areas such as �nite element analysis �BeEp��� StFi�	
�
computational geometry �PrSh��
� and surface approximation �DLR�

� Applications typically re�
quire triangulations with �well�shaped� triangles� meaning�for example�that triangles with very
small or large angles should be avoided� Taking a worst�case approach� one can de�ne the quality of a
triangulation to be the quality of its worst triangle� Interesting algorithmic questions then arise when
we ask for a triangulation of a given point set that optimizes some quality criterion� These questions
take the form of minmax or maxmin problems� where the �rst quanti�er is over all triangulations of
the point set� and the second is over all triangles in the triangulation�

The problem of automatically generating optimal triangulations has been a subject for research
since the ���
�s �see e�g� the discussion in �Geor��
�� In spite of this attention� very little is known
about constructing optimal triangulations in polynomial time� Exhaustive search can be ruled out
since a set of n points has� in general� exponentially many triangulations� Greedy approaches �such
as eliminating triangles from worst to best� are ruled out by the NP�completeness of the following
decision problem �Llo��
� given a collection of points and edges� decide whether a subset of the edges
de�nes a triangulation of the points�

Most positive results are related to the Delaunay triangulation �Del	�
� It has been shown that
among all triangulations of a given �nite point set� the Delaunay triangulation optimizes various crite�
ria� The Delaunay triangulation maximizes the minimum angle �Sib��
� minimizes the maximum cir�
cumscribing circle �D�AS��
� and minimizes the maximum smallest enclosing circle �D�AS��� Raj��
�
E�cient algorithms for constructing Delaunay triangulations are abundant in the literature and
based on such diverse algorithmic paradigms as edge��ipping �Laws��� Laws��
� divide�and�conquer
�ShHo��� GuSt��
� geometric transformation �Brow��
� plane�sweep �For��
� and randomized incre�
mentation �GuKS�

�

Recently� Edelsbrunner� Tan� and Waupotitsch devised a polynomial�time algorithm that mini�
mizes the maximum angle �EdTW��
� This algorithm constructs a minmax�angle triangulation by
iteratively inserting a new edge� removing old edges crossed by the new edge� and then retriangulating
the polygonal �holes� on either side of the new edge�

This paper presents an abstraction of the minmax�angle algorithm� which we call the edge�

insertion paradigm� and applies it to obtain polynomial�time algorithms for some other optimal
triangulation problems� The speci�c new results are an O�n� logn��time algorithm that constructs
a triangulation with maxmin triangle height� an O�n���time algorithm for minmax triangle eccen�
tricity �distance from circumcenter�� and�most signi�cantly�an O�n���time algorithm for �nding
a triangulated surface� interpolating given points in ��� with minmax gradient� All three criteria are
mentioned in a survey article on �systematic� triangulations �WaPh��
�

Section � formulates the edge�insertion paradigm� which locally improves a triangulation ac�
cording to a generic criterion� When instantiated to a speci�c criterion� the basic paradigm gives
a local optimum in time O�n��� Section 	 states two abstract conditions for quality criteria� the
�rst strictly weaker than the second� Section � proves that even the weaker condition su�ces to
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show that the edge�insertion paradigm computes a global optimum� the argument is rather delicate�
Section � discusses re�nements of the basic paradigm with improved running times� here we show
that the weaker condition implies an O�n���time algorithm and the stronger condition implies an
O�n� logn��time algorithm� �We do not yet know of any quality criteria globally optimized by the
O�n�� basic algorithm� but not by the O�n�� algorithm�� Sections �� �� and � prove that the three
speci�c optimization criteria mentioned above satisfy one or the other of the two conditions� Section
� o�ers some concluding remarks�

� The Edge�Insertion Paradigm

We start with some de�nitions� A triangulation of a �nite point set S in �� is de�ned above as a
maximally�connected� straight�line planar graph with vertex set S� A constrained triangulation is a
maximally�connected� straight�line planar graph restricted to lie within a given connected polygonal
region� the vertex set of the triangulation includes the vertices of the polygonal region along with
any interior point �holes�� Thus� a triangulation of a point set S is the special case in which the
polygonal region is the convex hull of S� Another special case is polygon triangulation in which there
are no holes�

We denote by xy the relatively open line segment that connects the points x� y � ��� For
x� y� z � ��� xyz is the open triangle with corners x� y� z� For a given �nite point set S in �� and
x� y� z � S� we call xyz an empty triangle if all other points of S lie outside the closure of xyz�

Let � be a function that maps each triangle xyz to a real value ��xyz�� called the measure of
xyz� We restrict our attention to minmax criteria� that is� for each � we consider the construction
of a triangulation that minimizes the maximum ��xyz� over all triangles xyz� Maxmin criteria can
be simulated by considering ��� The measures of particular interest in this paper are largest angle�
height �actually� negative height� since we desire maxmin height�� eccentricity� and the gradient on
a triangulated �nonplanar� surface�

The measure of a triangulation A is de�ned as ��A� � maxf��xyz� j xyz a triangle of Ag� If A
and B are two triangulations of the same point set then B is called an improvement of A� denoted
B � A� if ��B� � ��A� or ��B� � ��A� and the set of triangles xyz in B with ��xyz� � ��B� is
a proper subset of the set of such triangles in A� A triangulation A is optimal for � if there is no
improvement of A�

The edge�insertion paradigm uses a natural local improvement operation� not surprisingly called
an �edge�insertion�� Given a triangulation A of a point set S� the edge�insertion of qs� for q� s � S�
goes as follows�

Function Edge�insertion�A�qs�� triangulation�
�� B �� A�
	� Add qs to B and remove from B all edges that intersect qs�

� Retriangulate the polygonal regions P and R constructed in step 	�
�� return B�

For now we assume that polygonal regions P and R �see Figure ���� are retriangulated in an
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Figure ���� Inserting qs leaves two polygonal regions P and R�

optimal fashion �minimizing the maximum ��� e�g� by dynamic programming �Klin�

� The basic�
most general� version of the edge�insertion paradigm is given below� it tries all possible edge�insertions
and halts when no edge�insertion improves the current triangulation�

Input� A set S of n points in ���
Output� An optimal triangulation T of S�

Algorithm� Construct an arbitrary triangulation A of S�
repeat T �� A�

for all pairs q� s � S do

B �� Edge�insertion�A� qs��
if B � A then A �� B� exit the for loop endif

endfor

until T � A�

The edge�insertion paradigm can be viewed as a generalization of the edge��ipping paradigm that
computes a Delaunay triangulation �Laws��� Laws��
� An edge��ip inserts the diagonal of a convex
quadrilateral formed by two neighboring triangles� the process halts when no edge��ip improves the
current triangulation� The simpler edge��ipping paradigm� however� fails to compute global optima
for maximum angle� height� eccentricity� and slope� as we show in later sections of this paper�

We now argue that the basic algorithm above terminates after timeO�n��� A single edge�insertion
operation takes time O�n�� when retriangulating by dynamic programming �Klin�

� assuming the
measures of any two triangles can be compared in constant time� The for loop thus takes time O�n��
per iteration of the repeat loop� Finally� the repeat loop is iterated at most O�n�� times� because
there are only

�n
�

�
triangles spanned by S� and each iteration permanently discards at least one of

them when it �nds an improvement of the current triangulation�

Remark� The edge�insertion paradigm can be extended to constrained triangulations by limiting
the edge�insertion operation to edges ab that lie in the interior of the restricting polygonal region�
As a consequence� a triangulation that lexicographically minimizes the decreasing vector of triangle
measures can be constructed in the non�degenerate case� that is� when ��abc� �� ��xyz� unless
abc � xyz� Details can be found in �EdTW��
�
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� Two Su�cient Conditions

We now formulate two conditions on measures �� su�cient to show that the edge�insertion paradigm
computes a global optimum �i�e� minmax ��� They are also su�cient to imply algorithmsmuch faster
than O�n��� these will be given in Section ��

Let S be a set of n points in ��� let B be a triangulation of S� and let xyz be an empty triangle
in S� We say that B breaks xyz at y if it contains an edge yt with yt� xz �� �� Note that if B breaks
xyz at y then it cannot break xyz at x or z�

We call vertex y an anchor of an empty triangle xyz in point set S� if every triangulation B of S�
with ��B� � ��xyz�� either contains xyz or breaks xyz at y� For example� if ��xyz� is the measure
of the largest angle in xyz� and the largest angle has vertex y� then y is an anchor� Intuitively
speaking� if a triangle has an anchor� it will be the triangle�s �worst vertex�� We can now give the
two conditions on quality measures ��

�Weak Anchor Condition� For each triangulation A� and each triangle xyz of
A with ��xyz� � ��A�� there is an anchor vertex of xyz�

�I�

In other words� B can be an improvement of A only if it breaks a worst triangle of A at its anchor�
Since B cannot break a triangle at two vertices� a triangle�s anchor is unique in triangulations A with
��A� larger than the minimum� Thus� if xyz is an empty isosceles triangle with two largest angles�
then no triangulation can have minmax angle less than this largest angle�

�Strong Anchor Condition� For each triangulation A and each triangle xyz of
A� there is an anchor vertex of xyz�

�II�

Notice that � equal to the measure of the largest angle satis�es �II�� since the largest angle in any

triangle xyz�not just a worst triangle�must either appear in a triangulationA with ��A� � ��xyz��
or be subdivided by it� An important di�erence between the weak and strong conditions is that in
�I� the triangulation A that contains xyz plays an important role� while in �II� A is insigni�cant�

� Proof of Correctness

The Cake Cutting Lemma �below� asserts that if A is not yet optimal for measure � satisfying
condition �I�� then there is an edge whose insertion leads to an improvement� speci�cally an edge
breaking a worst triangle at its anchor� In �EdTW��
� this lemma is proved for the maximum angle
measure using an argument that rotates edges of an optimal triangulation of S� While this argument
works for angles� we need a di�erent argument for the general class of measures that satisfy �I��

Before continuing� we remark that the regions P and R �created in step � of an edge�insertion�
are not necessarily simple polygons in the usual meaning of the term� Although their interiors are
always simply connected� there can be edges contained in the interiors of their closures� as shown in
Figure ���� Nevertheless� each such edge can be treated as if it consisted of two edges� one for each
side� which then allows us to treat P and R as if they were simple polygons�
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As usual� a diagonal of a simple polygon is a line segment that connects two vertices and�except
at its endpoints�lies interior to the polygon� An ear is a triangle bounded by two polygon edges
and one diagonal�

Lemma ��� �Cake Cutting� Assume � satis�es condition �I�� Let T � A be two triangulations
of point set S� Let pqr be a triangle in A but not in T with ��pqr� � ��A�� let q be an anchor of
pqr� and let qs be an edge in T that intersects pr� Let P and R be the polygons generated by adding
qs to A and removing all edges that intersect qs� Then there are triangulations P and R of P and
R with ��P� � ��pqr� and ��R� � ��pqr��

Proof� We prove the assertion for P � and by symmetry it follows for R� The plan is to use the
edges of T to locate ears of P with small � value� thereby obtaining P � Each connected component
of an edge of T intersected with P �that is� a segment seen through the �window� P � is called a
clipped edge� As P is not necessarily convex� several clipped edges can belong to the same edge of
T � A clipped edge partitions P into two polygons� the near side supported by qs and the far side

not supported by qs�

If no clipped edge exists in the window� then P has only three vertices and therefore must be a
triangle of T � This triangle is not in A� which implies that its measure is less than ��A�� because
any triangle of T with measure ��A� is also a triangle of A� So assume the existence of at least one
clipped edge� Denote by q � p�� p�� � � � � pk� pk�� � s the sequence of vertices of P �

Claim �� For � � j � k� if � pj��pjpj�� � � then pj��pj�� is a diagonal of P �

Proof �of Claim ��� By construction of P � it is possible to �nd non�intersecting line segments pj��x
and pj��y� both inside P � so that x and y lie on qs� �If j � �� then x � pj�� � q� if j � k� then
y � pj�� � s�� The �possibly degenerate� pentagon xpj��pjpj��y is part of P � and because the
interior angles at pj � x� and y measure less than �� edge pj��pj�� is a diagonal of the pentagon and
therefore also of P �

Claim �� There is at least one clipped edge whose far side is a triangle�

Proof �of Claim ��� Let xy be a clipped edge so that its far side� F � contains no further clipped
edge� Consider the triangle in T that lies on the same side of xy as F � Polygon F must be a subset
of this triangle� and since all vertices of F�except possibly x and y�are points in S� F must be a
triangle xpiy�
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Figure ���� A �maximally far� clipped edge locates a good ear of P �
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An ear pi��pipi�� so that xy is a clipped edge with far side xpiy can now be removed from P �
leaving a polygon P � with one less vertex� Claims � and � remain true for P � because the removed ear
is not supported by qs� Hence we can iterate and compute a triangulation P of P � Symmetrically�
we get a triangulation R of R� Let B be the thus obtained triangulation of S�

Claim �� ��abc� � ��pqr� for all triangles abc in P and R�

Proof �of Claim 	�� Let abc be a triangle in P or R with maximum �� Assume without loss of
generality that abc is a triangle of P and that a � pi� b � pj � c � pk with i � j � k� At the time
immediately before abc was removed by adding the edge ac there was a clipped edge xy with far side
xby� as shown in Figure ���� Hence� T does not break abc at b� and by construction� A breaks abc
at b and therefore neither at a nor at c�

If xy � ac �as in the leftmost picture in Figure ����� then abc is a triangle in T that is not in A�
and therefore ��abc� � ��pqr�� So assume xy �� ac� and assume for the sake of contradiction that
��abc� 	 ��pqr� � ��A� 	 ��T �� Since we chose abc to have maximum � in P or R� this means that
��abc� � ��B�� Then condition �I� requires abc to have an anchor� However� b cannot be the anchor
of abc� because T neither contains abc nor breaks abc at b� Similarly� neither a nor c can be an
anchor of abc because A neither contains abc nor breaks abc at a or c� This contradiction completes
the proofs of Claim 	 and Lemma ����
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Figure ���� Triangle abc cannot have an anchor�

The Cake Cutting Lemma now shows that the basic edge�insertion paradigm cannot get stuck in
a local optimum for � satisfying condition �I��

Lemma ��� Assume � satis�es condition �I�� Let A be a non�optimal triangulation of point set S�
Then there is an edge�insertion operation that improves A�

Proof� Let B be an improvement of A and consider a triangle pqr in A with ��pqr� � ��A� that
is not in B� Condition �I� requires pqr to have an anchor� say q� so B must contain an edge qs with
qs � pr �� �� Let P and R be the polygonal regions generated by adding qs and deleting the edges
that intersect qs� The Cake Cutting Lemma implies that there are polygon triangulations P and R
of P and R with ��P� and ��R� both smaller than ��pqr��

Remark� Lemmas ��� and ��� remain true for constrained triangulations provided the optimization
criterion satis�es �I� or �II� in this more general setting� This is indeed the case for all criteria
considered in this paper�
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� Re�nements of the Paradigm

The re�ned versions of edge�insertion di�er from the basic paradigm in two major ways� First� edge�
insertions are restricted to candidate edges qs that break a worst triangle pqr at its anchor q� Second�
the two polygonal regions created by adding edge qs are retriangulated by repeatedly removing ears
�as in the proof of the Cake Cutting Lemma�� rather than by dynamic programming�

Outline of re�nements� Let A be a triangulation with worst triangle pqr� that is� ��pqr� � ��A��
and let q be the anchor of pqr� We denote by qs�� qs�� � � � the sequence of candidate edges� This
order may be arbitrary for the O�n�� re�nement� but for criteria satisfying condition �II�� a carefully
chosen order speeds up the running time to O�n� logn�� Both re�nements are specializations of the
algorithm given below� We use the notation si�� � next�si��

Algorithm� Construct an arbitrary triangulation A of S�
repeat T �� A�

�nd a worst triangle pqr in A� let q be its anchor� and set s �� s��
while s is de�ned do

B �� A� add qs to B� and remove all edges that intersect qs�
�partially� triangulate the two polygonal regions P and R

by cutting o
 ears xyz with ��xyz� � ��pqr��
if P and R are completely triangulated then

A �� B� exit the while�loop
else s �� next�s�

endif

endwhile

until T � A and all worst triangles pqr in A have been tried�

In an implementation of the algorithm we would not really copy entire triangulations� Instead
of the assignment T �� A� we would use a �ag to check whether an iteration of the repeat�loop
produced an improved triangulation� The assignment B �� A can be avoided by making changes
directly in A and undoing them to the extent necessary� The remainder of this section explains some
of the steps in greater detail and analyzes the complexity of the two re�nements�

Triangulating by ear cutting� Suppose an edge qs has been added to B and the edges that inter�
sect qs have been removed� thus creating two polygonal regions P andR� Let q � p�� p�� � � � � pk� pk�� �
s be the sequence of vertices of P and let q � r�� r�� � � � � rm� rm�� � s be the corresponding sequence
for R� As in the proof of the Cake Cutting Lemma� the two regions are �partially� triangulated by
repeatedly removing ears with measures less than ��pqr�� As implied by the proof� the sequence in
which the ears are removed is immaterial so long as only the last is supported by qs� This method
may be implemented using a stack for the vertices of P �R�� so that it runs in time linear in the size
of P �R�� In the case of P � the stack is initialized by pushing p� and p�� After that� for i �� � to
k� � we push vertex pi� and whenever the three topmost vertices� z � pi� y� x� de�ne a triangle with
��xyz� � ��pqr� we pop y� the second vertex from the top� The triangulation is complete if� at the
end of the process� pk�� � s and p� � q are the only two vertices on the stack�

Theorem ��� Let S be a set of n points in �� and let � be a measure that satis�es �I��
��� A constrained or unconstrained triangulation of S that minimizes the maximum triangle measure
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can be constructed in time O�n�� and storage O�n���
��� In the non�degenerate case �i�e� when ��xyz� �� ��abc� unless xyz � abc� the �unique� triangula�
tion that lexicographically minimizes the decreasing vector of triangle measures can be constructed
in the same amount of time and storage�

Proof� To achieve the claimed bounds� we use the algorithm above� along with two data structures
requiring a total of O�n�� storage� First� the quad�edge data structure of Guibas and Stol� �GuSt��

stores the triangulation in O�n� memory and admits common operations� such as removing an edge�
adding an edge� and walking from one edge to the next in constant time each�

Second� to record the status of candidate edges� we use an n�by�n bit array whose elements
correspond to the edges de�ned by S� If the insertion of a candidate edge qs is unsuccessful� that is�
the triangulation of P or R cannot be completed� then we know by the Cake Cutting Lemma that qs
cannot be in any improvement of the current triangulation� We then set the bit for qs� so that we do
not attempt the insertion of qs again� If the insertion of qs is successful� we set the bit for the edge
pr� because every improvement breaks pr �by condition �I��� it cannot be in any later improvement�
The bit array can also be used to compute the sequence of candidate edges qs�� qs�� � � �� scan the row
corresponding to q and take all edges qs that intersect pr and whose �ag has not yet been set�

Each edge�insertion� whether successful or not� causes a new �ag set for one of the
�n
�

�
edges

de�ned by S� Therefore� at most
�n
�

�
edge�insertions are carried out taking a total of O�n�� time�

Part ��� of the claim follows because an initial triangulation can be constructed in time O�n logn��
most straightforwardly by plane�sweep �see �Edel��� section ��	��
��

To obtain a triangulation that lexicographically minimizes the entire vector of triangle measures
we solve a sequence of constrained triangulation problems as in �EdTW��
� The �rst constraining
region is de�ned by the points and edges on the boundary of the convex hull of S with the other
points forming holes� After computing an optimal triangulation as in ���� we remove the worst
triangle �which is unique by non�degeneracy assumption� from the constraining region and iterate
until the region is empty� The time is still O�n�� because each edge needs to be inserted at most
once during the entire process�

A special order of insertions for condition �II�� For measures � that satisfy �II� we de�ne
a special sequence qs�� qs�� � � � � qsl of edge�insertions� as in �EdTW��
� The �rst edge� qs�� has the
property that it intersects pr� but otherwise it intersects as few edges as possible� If any edge at all
intersects pr� then qs� is unique� As we explain below� each subsequent si�� � next�si� lies on a
particular side of qsi� and on this side� the set of edges in the current triangulation B that intersect
qsi�� is the smallest proper superset of the edges that intersect qsi� The index l is the smallest
integer for which qsl leads to an improvement or sl�� is unde�ned�

On the insertion of qsi� the retriangulation process either completes its task or it gets stuck
because all ears of the remaining regions have measure at least ��pqr�� Let us now consider the case
where the triangulation of P cannot be completed� as this is the case for which we need to de�ne
next�si�� In this case� the stack contains k� � 	 	 vertices q � p�� p�� � � � � pk� pk�� � si de�ning the
remaining region P � 
 P � each ear pj��pjpj�� of P � has measure at least ��pqr��
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Lemma ��� Let T be an improvement of B for � satisfying condition �II�� and let P � be the un�
completed part of P as above� Then all edges of T that intersect P � also intersect qsi� In particular�
all edges of T incident to q avoid P ��

Proof� As in the proof of the Cake Cutting Lemma we consider P � as a �window� through which
we see clipped edges of T � Now suppose the claim is not true� that is� there is a clipped edge
that does not have one of its endpoints on qsi� Then� as in the proof of the Cake Cutting Lemma�
we can �nd a clipped edge xy whose far side is a triangle xpjy� But now condition �II� implies
��T � � ��pj��pjpj��� if pj is an anchor of the ear pj��pjpj��� and ��B� � ��pj��pjpj��� if pj�� or
pj�� is an anchor� This contradicts the assumption that P � has no such ear�

It is interesting to observe that the proof of Lemma ��� breaks down if we assume that � satis�es
only �I�� since pj��pjpj�� need not be a worst triangle�

As we search for an insertion� we maintain an open wedge W containing all the remaining
candidate insertion edges� Initially� W is the wedge between the ray �qp �starting at q and passing
through p� and the ray �qr� If the edge�insertion of qsi turns out to be unsuccessful because the
triangulation of P cannot be completed� then Lemma ��� allows us to rede�ne W as the part of
the old W on R�s side of �qsi� Similarly� if the triangulation of R cannot be completed then W can
be narrowed down to P �s side of �qsi� �As a consequence� if neither P nor R can be completely
triangulated� then it is impossible to improve the current triangulation by breaking pqr at q��

As soon as one of P or R has been found to be non�completable� wedge W is updated and an
edge�insertion is attempted with si�� � next�si�� If it is P that could not be completed �the R case
is symmetrical�� then we choose si�� by looking �rst at the triangle on the far side of rmrm�� �the
last edge of R� from q� If the third vertex s of this triangle lies in wedge W � then we choose si�� to
be s� If this is not the case� then we move on to the next triangle sharing an edge with rmrm��s�
and test whether its far vertex z lies in the wedge� We eventually either run out of triangles �then no
edge�insertion at q is possible�� or we �nd a vertex si�� such that the set of edges in B that intersect
qsi�� is the smallest proper superset of the edges that intersect qsi� See Figure ����

When we move from qsi to qsi��� most of the work done to triangulate P and R can be saved�
Assume that qsi has failed because P could not be completely triangulated� Because qsi�� intersects
rmrm�� all ears cut o� P remain the same and do not have to be reconsidered� On the other hand�
rm�� is no longer a vertex of R� so all ears cut o� R that are incident to rm�� must be returned to
R�s territory� When we move to qsi�� some additional edges are removed from B which� in e�ect�
expands P and R� The new vertices can be pushed on their respective stacks� one by one� so that
the triangulation process can continue where it left o��

The only place where we waste time in this process �i�e� where time spent is not proportional
to good ears found� is when ears cut o� R are returned to R� Since ears are returned for only
one polygon� we can limit the waste by strictly alternating between cutting an ear of P and one of
R� This way� for each returned ear �except maybe the last� there is a permanently removed ear�
Therefore� the total number of operations performed while edge�inserting qs�� qs�� � � � � qsl is linear in
the number of edges in B that intersect qsl�

As in the proof of Theorem ���� a successful edge�insertion� complete with retriangulation� takes
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Figure ���� The next candidate qsi�� must lie in wedge W �

time linear in the number of old edges intersected by the new edge� We now prove that the old edges
removed will never be reinserted in any later successful edge�insertion�

Lemma ��� Assume � satis�es condition �II�� let A be a triangulation of S with worst triangle pqr�
and let B be obtained from A by the successful insertion of edge qsi� Then no edge xy in A that
intersects qsi can be an edge of any improvement of B�

Proof� Lemma ��� implies that every improvement of B has an edge qw that lies inside the wedge
W computed when qsi is inserted into A� Every edge xy in A that intersects qsi also intersects every
other edge qt with t � W � In particular� xy � qw �� � which implies that xy is neither in B nor in
any improvement of B�

Theorem ��� Let S be a set of n points in �� and let � be a measure that satis�es �II��
��� A constrained or unconstrained triangulation of S that minimizes the maximum triangle measure
can be constructed in time O�n� logn� and storage O�n��
��� In the non�degenerate case �i�e� when ��xyz� �� ��abc� unless xyz � abc� the �unique� triangula�
tion that lexicographically minimizes the decreasing vector of triangle measures can be constructed
in the same amount of time and storage�

Proof� As before� the algorithm uses the quad�edge data structure of �GuSt��
 to store the tri�
angulation� The bit array� however� is replaced by a priority queue that holds the triangles of A
ordered by measure� It admits inserting and deleting triangles and �nding a triangle with maximum
measure in logarithmic time �CLR�

� Lemma ��	 implies that only O�n�� edges and triangles are
manipulated in the main loop of the algorithm� which thus takes time O�n� logn�� Lemma ��	 also
implies a quadratic upper bound on the number of iterations of the repeat�loop� which implies that
the total time needed to �nd worst triangles pqr is also O�n� logn�� This proves part ���� and part
��� follows from the same argument as in Theorem ����



Edge Insertion for Optimal Triangulations ��

� Maximizing the Minimum Height

The height ��xyz� of triangle xyz is the minimum distance from a vertex to the opposite edge� A
maxmin height triangulation of S maximizes the smallest height of its triangles� over all triangulations
of S� Although the maxmin height� the maxmin angle� and the minmax angle criteria all tend to
avoid thin and elongated triangles� they do not necessarily de�ne the same optima� Indeed� four�point
examples can be constructed to show that the three criteria are pairwise di�erent�

The edge��ipping strategy �Laws��� Laws��
 applied to the maxmin height criterion does not
always succeed in computing an optimal triangulation� Consider a regular pentagon abcde and the
circle through the �ve points� Perturb a slightly to a point outside the circle and c and d slightly
to points inside the circle so that h�c� db� � h�d� ec� � h�b� ca� � h�e� ad� � h�a� be�� where we
write h�x� yz� for the minimum distance between a point x and a line through points y and z� See
Figure ���� The maxmin�height triangulation uses diagonals ac and ad� If the current triangulation
uses be and ce� however� no edge��ip can result in a better triangulation�

�

�

��

�

a

b

cd

e

Figure ���� Flipping either be or ce locally decreases the minimum height� Thus� the edge��ip method cannot
change this triangulation into the optimal one�

We now show that �� satis�es condition �II�� when we de�ne the vertices of xyz with maxi�
mum angle to be anchors� It follows that maxmin height triangulations can be constructed by the
O�n� logn��time implementation of the edge�insertion paradigm�

Lemma 	�� Let xyz be a triangle of a triangulation A of S and let ��xyz� � h�y� zx�� Then
��T � � ��xyz� for any triangulation T of S that neither contains xyz nor breaks xyz at y�

Proof� The height ��xyz� � h�y� zx� is the distance between y and a point s � zx� Assume that
xyz is not in T and that T does not break xyz at y� Therefore� there exists a triangle uyv in T so
that either u � x and uv � yz �� � �rename vertices if necessary�� or uv intersects both yx and yz�
In both cases� ��uyv� � h�y� uv� � ��xyz� because uv � ys �� ��

It should be clear that Lemma ��� also holds for constrained triangulations of S� Theorem ���
then implies that a maxmin height triangulation� and in the non�degenerate case a triangulation
lexicographically maximizing the increasing vector of heights� can be computed in time O�n� logn�
and storage O�n��
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	 Minimizing the Maximum Eccentricity

Consider a triangle xyz and let �c�� ��� be its circumcircle� with center c� and radius ��� The
eccentricity of xyz� 	�xyz�� is the in�mum over all distances between c� and points of xyz� Clearly�
	�xyz� � 
 i� c� lies in the closure of xyz� Note that eccentricity is related to the size of the maximum
angle� 
�xyz�� only with large triangles counting more� Speci�cally� unless 	�xyz� � 	�abc� � 
�


�xyz� � 
�abc� i�
	�xyz�

��
�

	�abc�

��

where �� is the radius of the circumcircle of abc� The triangulation of the pentagon in Figure ��� can
be used to show that edge��ipping does not always succeed in minimizing the maximum eccentricity�

Eccentricity is our �rst example of a measure satisfying condition �I�� but not �II�� As in the
cases of minmax angle and maxmin height� we must de�ne y to be an anchor �to be more precise� a
�candidate anchor�� of xyz if y is the vertex of a largest angle in xyz� �Actually it does not matter
how we de�ne candidate anchor for triangles with all angles at most �
�� If for some obtuse triangle�
however� the candidate anchor is not de�ned to be the vertex with angle larger than �
�� then we
can create a four�point counterexample to condition �II� using this obtuse triangle and one more
vertex�� Not every candidate anchor will be an anchor� Consider Figure ���� In this �gure� vertex v

lies very close to yz� so that the circumcircle of xyv is signi�cantly smaller than the one of xyz� and
	�xyv� � 	�xyz�� In fact� 	�xyz� exceeds the eccentricity of every triangle of the minmax�eccentricity
triangulation T � even though T does not break xyz at its vertex with largest angle� y� We now show
that 	 satis�es the weaker condition �I��

�

�

� �

�

x z

y

v

w

Figure ���� T is the triangulation with diagonals vx and vw� and A the one with diagonals zx and zy� Then
��A� � ��xyz�� but T does not break xyz at y� in contradiction to condition �II��

Lemma 
�� Let xyz be a triangle of a triangulation A of S� such that 	�xyz� � 
� and let y be a
vertex with maximum angle in xyz� Then maxf	�A�� 	�T �g � 	�xyz� for every triangulation T of S
that neither contains xyz nor breaks xyz at y�

Proof� Assume that T neither contains xyz nor breaks it at y� Therefore� T must contain a triangle
uyv so that u � x and uv � yz �� � �renaming vertices if necessary�� or uv intersects yx and yz�
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as in Figure ���� Let �c�� ��� be the circumcircle of xyz� If neither u nor v are enclosed by this
circle then 	�xyz� � 	�uyv� � 	�T �� Otherwise� assume that v is enclosed by �c�� ��� and consider
the line segment c�v� It intersects a sequence of edges of A� ordered from c� to v� For an edge
ab in this sequence let abc be the supporting triangle so that c and c� lie on di�erent sides of ab�
Assume that ab is the �rst edge in the sequence so that �c�� ��� encloses c but not a and not b� Then
	�A� 	 	�abc� � 	�xyz��

� �

�

� �

�c�

u v

y

x z

Figure ���� The triangle xyz in A is neither contained in T nor is it broken at y by T � Therefore� T contains
a triangle uyv that intersects xyz as shown� There must be a triangle with eccentricity greater than ��xyz�
intersecting c�v�

Theorem ��� thus implies that a minmax�eccentricity triangulation of n points can be constructed
in time O�n�� and storage O�n��� In the non�degenerate case� the same time and storage su�ce to
construct a triangulation lexicographically minimizing the decreasing vector of eccentricities�


 Minimizing the Maximum Slope

Consider a function f � �� � � de�ning a surface x� � f�x�� x�� in ��� The gradient of f is
the vector rf � � �f

�x�

�f
�x�

�� each component of which is itself a function from �� to �� De�ne

r�f � � �f
�x�

�� � � �f
�x�

��� and call
p
r�f at a point �x�� x�� the slope at this point�

Let S be a point set in �� and let �S be the corresponding set in �� where each point of S has a
third coordinate called elevation� For a point x of S� we write �x for the �lifted� point� that is� the
corresponding point in �S� Analogous to the de�nitions in ��� �x�y denotes the relatively open line
segment with endpoints �x and �y� and �x�y�z denotes the relatively open triangle with corners �x� �y� �z�
We can think of �x�y�z as a partial function f on ��� de�ned within xyz� At each point in xyz� the
gradient is well de�ned and the same as for any other point in xyz� We can therefore set ��xyz�
equal to the slope at any point of xyz� and call it the slope of xyz� For a triangulation A of S de�ne
��A� � maxf��xyz� j xyz a triangle of Ag� as usual� A minmax�slope triangulation of S minimizes
the maximum � of any triangle�

Triangulations are commonly used to compute surfaces interpolating point set data with ele�
vations� Rippa �Rip�

 recently proved that� regardless of elevations� the Delaunay triangulation
minimizes the integral �over the convex hull of S� of r�f among all triangulations of S� See �DLR�


for other interesting optimization criteria�

The �ve�point example of Figure ��� again shows that the edge��ipping strategy does not in
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general compute a minmax�slope triangulation� Just imagine that points a� b� c� d� e are not perturbed
and thus form a regular pentagon� Let the elevations of a� b� c� d� e be �� ��� 
� �
� 
� in this sequence�
The optimal triangulation is de�ned by the diagonals ac and ad� and the current triangulation �with
diagonals be and ce as shown� cannot be improved by a single edge��ip�

Observe that the direction of steepest descent at any point on a triangle xyz is given by � � �rf
at that point� We call the vertex y a candidate anchor of xyz unless the line y���� � � �� intersects
the closure of xyz only at y� In other words� a candidate anchor is a vertex �rst hit when sweeping
with a line perpendicular to the direction of steepest descent� In the non�degenerate case xyz has
only one candidate anchor� but if � is parallel to an edge then there are two candidate anchors�
Call the intersection of the closure of �x�y�z with the plane parallel to the x��axis through y � �� the
descent line 
�xyz� of xyz� assuming y is an anchor of xyz�

As in the case of eccentricity� we can show that � does not satisfy the strong condition �II��
Simple four�point examples force us to de�ne anchor as above� Figure ��� gives a �ve�point example
in which an improvement T of A� does not break a triangle xyz with ��T � � ��xyz� at its anchor�

�
�

� �

�

�x� 
 �z� 


�y� �

�v� �


�w� �


Figure ���� Triangulation T with diagonals vx and vw is an improvement of A with diagonals zx and zy� T has
no triangle with slope as large as ��xyz�� but does not break xyz at y�

The remainder of this section shows that � does satisfy the weak condition �I�� For technical
reasons it is necessary to assume that no four points of S are coplanar� Indeed� the strict inequality
in Lemma ��� is incorrect without this assumption� �This general position assumption� however�
does not diminish the generality of our algorithm� because a simulated perturbation of the points
can be used to enforce general position �EdM�u�

��

� �

�

� �

�u �v

�y

�x �z


�

Figure ���� The triangle xyz with candidate anchor y in A is neither contained in T nor is it broken at y by T �
Therefore� T contains a triangle uyv that intersects xyz as shown� It is possible that u � x or v � z� but not both
at the same time�



Edge Insertion for Optimal Triangulations ��

Lemma ��� Let xyz be a triangle of a triangulation A of S� and let the intersection of line y� ��
with the closure of xyz be strictly larger than point y� Then maxf��A�� ��T �g � ��xyz� for every
triangulation T of S that neither contains xyz nor breaks xyz at y�

Proof� The slope of xyz� ��xyz�� is also the slope of the descent line 
� � 
�xyz�� Assume without
loss of generality that 
� descends from �y down to where it meets the closure of �x�z� �If it ascends� we
use the same argument only with the x� axis reversed�� Assume also that T neither contains xyz nor
breaks it at y� It follows that T contains an edge uv so that either u � x and uv � yz �� � �rename
vertices if necessary�� or uv intersects both yx and yz� If ��uyv� � ��xyz� then ��T � � ��xyz� and
there is nothing to prove�

Otherwise� the edge �u�v must pass above 
� in ��� By this we mean that there is a line parallel to
the x��axis that meets �u�v and 
� and the elevation of its intersection with �u�v exceeds the elevation
of its intersection with 
�� as in Figure ���� Then at least one of �u and �v must lie above the plane
h� through points �x� �y� �z� say �v lies above h�� Consider the triangle yvz� and note that it is not
necessarily a triangle of A or T � nor even an empty triangle of S� We have ��yvz� � ��xyz� because
the x��parallel projection of 
� onto the plane h� through �y� �v� �z is steeper than 
� but not steeper
than 
� � 
�yvz�� We distinguish three cases depending on which vertex is the candidate anchor of
yvz� that is� through which one a line of steepest descent on �y�v�z passes�

Case �� v is a candidate anchor of yvz� Then 
� connects �v with a point on the closure of �y�z�
Consider the intersection of A with a plane parallel to the x��axis through 
�� This intersection
includes a polygonal chain that connects �v with that same point on the closure of �y�z �since yz is an
edge in A�� One of the segments in the chain must have slope at least the average slope of the chain�
hence one of the triangles abc in A has ��abc� 	 ��yvz� � ��xyz�� and ��A� � ��xyz��

Case �� z is a candidate anchor of yvz� Then 
� connects �z with a point on the closure of �y�v� Then
we use the same argument as in Case �� only applied to T � Since yv is an edge in T at least one of
the triangles abc in T that intersect the projection of 
� has ��abc� 	 ��yvz� � ��xyz�� and therefore
��T � � ��xyz��

Case �� y is a candidate anchor of yvz� In this case 
� connects �y with a point �w on the closure of �v�z�
Furthermore� it is impossible that 
� descends from �y to �w because �w lies above h�� which contradicts
��yvz� � ��xyz�� Thus� it must be that 
� descends from �w down to �y� Then ��uyv� � ��yvz�
because �u�v passes above 
�� But ��yvz� � ��xyz�� so we have shown ��T � � ��xyz��

Note that Lemma ��� also holds for constrained triangulations of S� We can therefore apply
Theorem ��� and obtain an O�n���time and O�n���storage algorithm for constructing a minmax
slope triangulation� and in the non�degenerate case for constructing a triangulation lexicographically
minimizing the decreasing vector of slopes�

Remark� It would be interesting to �nd other optimality criteria for point sets with elevations�
that are amenable to edge�insertion� However� we know that several natural measures� e�g� ��xyz�
equal to the maximum angle on the lifted triangle �x�y�z� do not satisfy either �I� or �II�� A six�point
counterexample can be formed with the vertices of a regular hexagon� There are two triangulations
of the hexagon with an equilateral triangle in the middle� no single edge�insertion transforms one into
the other� By appropriately setting elevations� one can make these two triangulations local optima�
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� Conclusion

The main result of this paper is the formulation of the edge�insertion paradigm as a general method
to compute optimal triangulations� and the identi�cation of two classes of criteria for which the
paradigm indeed �nds the optimum� The paradigm is an abstraction of the algorithm introduced in
�EdTW��
 for computing minmax angle triangulations�

Though usually simple to verify� conditions �I� and �II� are somewhat restrictive� It would be
interesting to �nd conditions weaker than �I� even though the price to pay may be implementations
of the paradigm that take more than cubic time� Listings of optimality criteria can be found in
�Barn��� BeEp��� Lind�	� Schu��
� Furthermore� implementations for criteria satisfying �I� and �II�
that run in time o�n�� and o�n� logn� are sought�
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