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Abstract

We consider bounding the cardinality of an arbitrary
triangulation with smallest angle �� We show that
if the local feature size �i�e� distance between disjoint
vertices or edges� of the triangulation is within a con�
stant factor of the local feature size of the input� then
N � O�����M� where N is the cardinality of the
triangulation and M is the cardinality of any other
triangulation with smallest angle at least �� Previ�
ous results ��� �	 had an O�������� dependence� Our
O����� dependence is tight for input with a large
length to height ratio� in which triangles may be ori�
ented along the long dimension�

� Introduction

We consider a triangulation used as a mesh for a 
�
nite element method� The important properties of
such a triangulation are the shape and the number
of its elements� Shape a�ects the accuracy of the nu�
merical results� and the number of elements a�ects
the running time� We measure shape by the small�
est angle� Every triangulation must have an angle no
larger than the smallest input angle� and this is tight
up to small constant factors due to integrality �
� �	�
Typically many vertices are added to an input to

produce a triangulation� Proving a lower bound on
the number of vertices �cardinality� needed to achieve
a given smallest angle is the main topic of this pa�
per� By considering a long thin rectangle� it is ob�
vious that the number of triangles necessary to en�
sure that all angles are at least some 
xed � depends
on the geometry of the input� Bern� Eppstein and
Gilbert ��	 compared the cardinality of their triangu�
lation with the smallest angle in a Delaunay trian�
gulation of the input� In three dimensions� Mitchell
and Vavasis ��	 were able to de
ne the cardinality
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of their tetrahedralization in terms of a theoretical
lower bound for the given input� Their tetrahedral�
ization has cardinality N and smallest angle �� and
any tetrahedralization with cardinality m and small�
est angle at least � has M � Nc���� where c��� is a
function of �only� �� This bound depends upon the
notion of local feature size� distance to disjoint ver�
tices or edges� Ruppert ��	 used the same technique
to bound triangulation cardinality in two dimensions�
and showed that local feature size could be extended
to a continuous function in the plane� related to the
second�order Voronoi diagram ��	�
Up until this present work� this approach had a se�

rious �aw� The analysis of Ruppert ��	 derives a c���
that is very large� about ����� and reveals that the
analysis of Mitchell and Vavasis ��	 has c depending
doubly exponentially on ����
In this paper we show that the relationship be�

tween local feature size and cardinality is quite tight�
In particular� we derive a c��� depending linearly on
��� which is tight up to �reasonable� constant fac�
tors� This improves the bounds on the algorithm of
Ruppert ��	� This is also in good agreement with the
intuition of practitioners� Advancing front algorithms
often use a notion of local feature size when deciding
the size of elements to introduce ��	�

��� Overview

Local feature size at a point z� lfs�z� roughly measures
the largest possible size of a triangle containing z in
a triangulation with all triangles nearly equilateral�
In Section 
 we show that if triangles with angle �
are allowed� then an edge of a triangle containing z in
a valid triangulation has length O�lfs�z�������We re�
late this to the extent of a Voronoi cell� and show that
the integral of ��lfs� over points near a vertex of a
triangulation scales only linearly with ���� For PSLG
and polygon with holes input� we prove a similar re�
sult for points near an edge of the triangulation� By
integrating over the entire input� we obtain a lower
bound on the cardinality of a �theoretically best� tri�
angulation� In Section � we show that an �algorithmi�
cally generated� triangulation has cardinality at most



a constant factor times its local feature size integral
�independent of ��� Thus to prove that an algorithm
produces a triangulation with reasonable cardinality�
one need only show that the triangles produced are
large compared to the local feature size of the input�

� De�nitions

We consider several types of input� point sets� planar
straight�line graphs� and polygons with holes� Each
of these we denote by P �
Local feature size� We de
ne local feature size in

P at a point z� or lfsP �z�� as the radius of the smallest
circle centered at z that contains points of disjoint
faces of P � Most often we will be concerned with local
feature size de
ned by the faces of a triangulation�
lfsT � which is necessarily smaller than lfsP � By faces
we mean vertices and edges for PSLG or polygon with
holes input� and just vertices for point set input� We
call the integral of ��lfs� the local feature size integral�
Voronoi cell� We make use of the Voronoi di�

agram of the vertices of a triangulation ��	� The
Voronoi diagram partitions the input into a set of
convex cells� Each cell Vor�V � consists of the points
closer to the given vertex V than any other vertex�

� Lower bounds on cardinality

Here we show that any triangulation with minimum
angle bounded by �must have at least a certain num�
ber of vertices� depending on the local feature size of
the input and linearly on ����
In a triangulation with bounded smallest angle� the

longest length of an edge at a vertex is bounded in
terms of k��� and the shortest edge at the vertex�
where k � � cos�� � � k � �� We extend this to
bound the maximumextent of a Voronoi cell in terms
of k��� and the minimumextent of the cell� Local fea�
ture size at a point in a Voronoi cell can be bounded
by the the point�s distance to the Voronoi cite� or by
the minimum extent of the cell� For PSLG or poly�
gon with holes input� we also consider zones for edges
akin to the Voronoi cells for vertices� We then show
that the local feature size integral over a cell or zone
is O������ Integrating over all of the triangulation
shows that the cardinality of any triangulation times
O����� is larger than the local feature size integral
over P �

We 
rst bound the ratio of the length of an edge at
a vertex in terms of the length of the smallest edge
at that vertex� see Figure ��
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Figure �� We bound how quickly triangles and
Voronoi cells can grow�

Theorem � At any vertex V of a triangulation with

all angles at least �� we have

jEj

jF j
� k

� EF
� �

where E and F are edges at V� and k � � cos�� Note
� � k � � and � EF�� � ��

Proof� We use induction on the number of edges be�
tween E and F at V � The base case is if there are no
edges between E and F � that is if E and F are in a
common triangle T � Let G be the third edge and e� f
and g the angles opposite E�F and G�
From the law of sines� jEj�jF j � sin e� sin f� This

may be expressed as sin�g � f�� sin f � cos g �
sin g cos f� sin f� For any triangle angle � we have
� � � � �� which implies cos � � cos�� Hence the
above is less than k

�
�� � sin g

sin f
��

If f � g� then this is less than k� Otherwise� the
worst case is when f � �� If g � � as well� then the
above equals k� Furthermore� since sin�g � ��� sin�
is a more slowly growing function of g than is kg���
we have that sin�g � ��� sin� � kg�� for all g � ��
For the induction step� let H be any edge between

E and F� By induction the theorem is true for the
number of edges between E and H and between H

and F � Thus jEj
jF j

� jEj
jHj

jHj
jF j

� k
� EHk

� HF � k
� EF �

Note that this is a contrapositive version of the key
theorem of Mitchell ��� �	� Our current theorem has
two advantages� First� it is tight for integer � EF���
Second� its proof is much simpler than the seven page
proof of Mitchell ��	�
We may extend to the following theorem bounding

the extent of a Voronoi cell� again see Figure ��

Theorem � For every point z � Vor�V �� dist�z�V �
jF j

�

k
�
���� where F is any edge containing V and � is the

angle between zV and F �

Proof� In the given triangulation� z lies in the sector
de
ned by two consecutive edges V W and V X at V �
where W is the vertex that lies in the sector zV F�
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Figure �� Bounding dist�z� V ��

We have two cases� If � zV W � � then the fact
that z is closer to V than to W implies zV is short
compared to V W � Otherwise� we we replace �XVW
with�z�V W �z� de
ned below� see also Figure �� and
show that this triangle has all angles at least �� so
that Theorem � applies�
Suppose � zV W � �� Since z � Vor�V �

is closer to V than W � we have dist�z� V � �
dist�V�W ��� cos� � zV W � � dist�V�W ��k� Thus

dist�z� V �

jF j
�

dist�z� V �

dist�V�W �

dist�V�W �

jF j

� k
��� zVW

� �� � k
�
����

Otherwise� replace �VWX by �z�V W� where
z� lies on the ray from V to z and dist�z�� V � �
�dist�z� V �� see Figure �� By assumption � zV W �
� z�V W � �� Now X lies outside the circle with di�
ameter z�V � hence outside the circle with diameter
VW � so � � � V XW � � V z�W� If dist�z�� V � �
jV�W j then the theorem easily follows by an argu�
ment similar to the 
rst case� Otherwise � z�V W �
��� � XVW ��� � �� Thus �z�VW has all angles at
least �� and hence Theorem � applies� dist�z� V � �
���dist�z�� V � � ���jF jk

�
� � jF jk

�
����

��� Point set input

For point set input� we now relate local feature size to
the minimum and maximumextent of a Voronoi cell�
Let lfsT denote the local feature size de
ned by the
vertices T of the triangulation under consideration�
Since T � P � lfsT � lfsP �

De�nition l� Let l denote the shortest possible
length of an edge F at V from Theorem �� given the
longest edge E�

Theorem � For point set input� any point z �
Vor�V � has lfsT �z� � max�dist�z� V �� l����

Proof� Consider the circle � de
ning local feature
size at z� Then V lies inside �� Hence lfsT �z� �
dist�z� V �� Also another vertex V � lies on the bound�
ary of �� Hence �lfs � dist�V� V ��� We may replace
the given triangulation with the Delaunay triangula�
tion �DT� ��	 of its vertices� This does not decrease
the smallest angle �the DT maximizes the minimum
angle�� and places an edge between V and V � �the DT
places an edge between vertices that share an empty
circle�� Since l is de
ned to be the theoretical min�
imum edge length� and there is now an actual edge
between V and V �� we have dist�V� V �� � l�

Theorem �Z
z�Vor�V �

dz

lfs��z�
�
�� ln k

�
� ��� � � ln���k��

�
���

�
� ����

Proof�We integrate radially about V� FromTheorem
� we have an upper bound on the distance of any
point in the cell to V� And Theorem 
 bounds lfs
below� Hence

Z
z�Vor�V �

dz

lfs�T �z�
� �

Z �

���

Z lk�����

r��

rdrd�

max��r� l���

� ��

Z l��

�

rdr

l���
� �

Z �

�

Z lk�����

l��

drd�

r

� � � �

Z �

�

�
� ln k

�
� ln���k��d�

�
�� lnk

�
� ��� � � ln���k���

By summing the integral over all Voronoi cells we
get the following�

Theorem � Any point set triangulation with small�

est angle at least � has at least M vertices with

M �
���

�
� ���� �

Z
P

�

lfs�
�

Note that the linear tradeo� between M and ���
is tight for the vertices of a long� thin rectangle and
� greater than the small angle between the diagonals
of the rectangle�
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Figure 
� Point z lies in the zone for edge E�

��� PSLG and polygon with holes in�
put

We now consider planar straight�line graph �PSLG�
and polygon with holes input� As before we consider
the local feature size determined by the triangulation�
lfsT � which is not larger than that determined by the
input� lfsP � However� local feature size is now deter�
mined by disjoint edges as well as vertices� Hence
we must consider the case that local feature size at
a point is determined by two disjoint edges� Because
of this we de
ne zones for edges as well as use the
Voronoi cells of the previous section� �Voronoi cells
de
ne vertex zones� but the medial axis ��	 bears lit�
tle resemblance to edge zones because edges must be
disjoint to determine feature size��
Edge zone� We place a point in an edge zone if its

local feature size circle � does not contain a vertex�
In this case� there will always be an edge E � UV
piercing � such that an edge F containing V and
an edge G containing U also pierce �� see Figure 
�
�Proof� Since we have a triangulation� neighboring
edges in � must share a vertex� If every edge shares
a common vertex� then there are no disjoint faces in
��� We place z in the edge zone for E�

Theorem � For a point z � zone�E�� lfsT �z� �
max�dist�z� E�� jEj sin�����

Proof� That lfsT �z� � dist�z� E� is obvious from the
fact that E passes through �� whose radius is lfsT �z��
For the second relation� the intuition is that the

circle contains most of the altitude of one of the tri�
angles containing E� One of the edges� say F� will be
tangent to � at f � see Figure 
� Let C be the circle
tangent to F at f and tangent to G� Let r � lfs�z� de�
note its radius� see Figure �� Let e be the point of E
that crosses either the radius to G or to F of C� From
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Figure �� lfsT �z� � r � jEj sin��

the triangle inequality �r � dist�e� F � � dist�e�G��
where F and G now represent the lines through F
and G if necessary� But also dist�e� F �� dist�e�G� �
dist�e� V � sin � EF �dist�e� U � sin � EG � jEj sin��

Theorem � For an edge E�Z
z�zone�E�

�

lfs�T
�

�

sin�
�

Proof� From Theorem � we haveR
z�zone�E�

�
lfs�
T

�
R
z�zone�E�

�
max��dist�z�E��jEj sin���� �

and if we integrate along the length of E and out to
in
nity�

�
R jEj
�

�
R jEj sin ���
�

�
jEj� sin� �

�
R�
jEj sin ���

�
dist��z�E�

�

� jEj� �
jEj sin � � �

jEj sin ���

Relating local feature size to the minimum extent
of a Voronoi cell is more complicated than in the point
set case because the edges of triangles opposite a ver�
tex contribute to local feature size� but not to the
Voronoi cell �considering the medial axis directly does
not appear helpful��

Theorem 	 For any triangle with vertex V and op�

posite edge E� dist�E� V � � l cos�� Recall l is the

lower bound on the minimum possible length of an

edge F at V from Theorem �� given the actual longest

edge E at V �

Proof� If the closest point of E to V is a vertex�
then their distance is an edge of the triangle� which
by de
nition has length at least l� Otherwise� their
distance is de
ned by the altitude A at V � Let F be
the shorter triangle edge containing V� We have two
subcases� If the angle between A and F is less than ��
then jAj � jF j cos � AF � l cos�� Otherwise� we may
add A as an edge of the triangulation and still ensure
all angles at least � �triangles not containing V may
be ignored�� This implies jAj � l from Theorem ��



Theorem 
 For PSLG or polygon with holes in�

put� for a point z � Vor�V �� lfsT �z� �
max�dist�z� V �� l cos�����

Proof� By de
nition� the local feature size circle �
contains V� so the 
rst relation is obvious� Since � is
the smallest circle at z containing a face disjoint from
V� we have that � contains a point of a triangle edge
opposite V� Hence �lfsT � dist�V�E�� By Theorem �
we have dist�V�E� � l cos��

Theorem �� For PSLG input�

Z
z�Vor�V �

dz

lfs�T �z�
�
�� ln k

�
� ��� � � ln���k cos���

�
���

�
� �����

For polygon with holes input�

Z
z�Vor�V �

dz

lfs�T �z�
�

��� lnk

�
� ��� � � ln���k cos���

�
�
��

�
� �����

Proof� Replace the use of Theorem 
 with Theorem
� in the proof of Theorem �� For polygon with holes
input� the angle between two edges at an input vertex
may be obtuse� up to ���

We may bound the local feature size integral over
P by summing the local feature size integrals over
the vertex and edge zones of the triangulation� Since
by Euler�s theorem there are at most three times as
many vertices as edges� we may combine Theorem �
and Theorem ���

Theorem �� Given a PSLG P � any triangulation

with all angles at least � has at least M vertices� with

M �
����

�
� ����� �

Z
P

�

lfs�P
�

For polygon with holes P � we have

M �
�
��

�
� ����� �

Z
P

�

lfs�P
�

Note that as in the point set case the linear tradeo�
between M and ��� is tight for a long� thin rectan�
gle and � greater than the small angle between the
diagonals of the rectangle�

� Upper bounds on cardinality

We now show that the number of vertices in an �al�
gorithmically generated� triangulation T is at most a
constant factor times the integral of ��lfs�T � We use
this to show that an algorithmically generated trian�
gulation is small if its local feature size is large com�
pared to the local feature size of the input� The fol�
lowing theorems hold for point set� PSLG and poly�
gon with holes input� Recall that lfsT is de
ned by
the faces of the triangulation� either its vertices �for
point set input� or by its vertices and edges �for PSLG
or polygon with holes input��

Theorem �� For any non�input vertex V�

Z
Vor�V ��P

�

lfs�T
� �����

Proof� Let R � lfsT �V � be the distance from V to
the closest point on a face disjoint from V � From the
triangle inequality lfsT �z� � dist�z� V � � R� Since V
is not an input vertex� it must lie interior to P or in
the relative interior of an edge on the boundary of
P � Hence Vor�V � � P must contain a semi�circle of
radius R��� Thus

Z
Vor�V ��P

�

lfs�T
�

Z �

�

Z R��

�

rdrd�

�r �R��

� ��ln



�
�

�



� � ������

We may easily extend to the following�

Theorem �� Any triangulation T has at most N �

non�input vertices� with

�����N � �

Z
P

�

lfs�T
�

Combining the results of the two sections we have�

Theorem �� Suppose a triangulation T with small�

est angle � has lfsT � k�lfsP � then the cardinality of

T is less than k� times the cardinality of any other

triangulation with smallest angle at least �� where
k� � k��O������

Proof� From Theorem �� Theorem ��� and Theorem
�
� N � � k�M with k� � O������ where M is the
cardinality of any triangulation with smallest angle at
least � and N � is the number of non�input vertices of
T � But jT j � N � N ��n � k�M �n � �k����M �
k�M�



Note k� � k���
����
� � 
���� for point set input� k� �

k���
	���
�

� �
��� for PSLG input and k� � k���
�	���
�

�
�
��� for polygon with holes input�
In Ruppert�s PSLG triangulation algorithm ��	 we

can show that for � � ���� k� � ��
x��� ����� from
Theorem ��� and ������ from Ruppert ��	�� For � �
����� k� � ���x��� ������ from Theorem ��� and ���
from Ruppert ��	�� This is quite large� and might
possibly be improved with better analysis of Ruppert
��	� but it still is much better than the factor of �x����

found in Ruppert ��	�

� Conclusions

We have proven tight bounds on the cardinality of
a triangulation in terms of local feature size and the
smallest angle� up to constant factors� We have also
shown that two triangulations with similar local fea�
ture size must have similar cardinality� up to a ���
factor� This factor is tight� between two parallel in�
put edges� a triangulation consisting of equilateral
triangles and a triangulation consisting of skinny tri�
angles aligned with the edges have the same local
feature size�
For future work� the results may be extended to

higher dimensions� We conjecture that in three di�
mensions c��� � O����� is tight for point set and
other convex input� but that c��� � O������ is tight
for non�convex polytopes due to the possibility of fan�
like edges emanating from a vertex�
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