
Abstract1

Consider mapping a regular i x j quadrilateral mesh of a rectangle
onto a surface. The quality of the mapped mesh of the surface
depends heavily on which vertices of the surface correspond to
corners of the rectangle. Our problem is, given an n-sided surface,
chose as corners four vertices such that the surface resembles a
rectangle with corners at those vertices. Note that n could be quite
large, and the length and width of the rectangle, i and j, are not
prespecified. In general, there is either a goal number or a
prescribed number of mesh edges for each bounding curve of the
surface. The goals affect the quality of the mesh, and the prescribed
edges may make finding a feasible set of corners difficult.

The algorithm need only work for surfaces that are roughly
rectangular, particularly those without large reflex angles, as
otherwise an unstructured meshing algorithm is used instead. We
report on the theory and implementation of algorithms for this
problem.

We also give an overview of a solution to a related problem called
interval assignment: Given a complex of surfaces sharing curves,
globally assign the number of mesh edges or intervals for each
curve such that it is possible to mesh each surface according to its
prescribed quadrilateral meshing algorithm, and assigned and user-
prescribed boundary mesh edges and corners. We also note a
practical, constructive technique that relies on interval assignment
that can generate a quadrilateral mesh of a complex of surfaces such
that a compatible hexahedral mesh of the enclosed volume exists.

1 Introduction

Currently, practical mesh generation can be a very time consuming
process. An experienced mesh generation software user may spend
six months or more meshing a large industrial model. The user must
supply goals (soft-sets) and constraints (hard-sets) on the sizes of
mesh elements throughout the model, either by specifying a sizing

 1Parallel Computing Sciences Dept., MS 0441, Sandia
National Laboratories, Albuquerque, NM 87185. E-mail
samitch@sandia.gov. URL http://sass577.endo.sandia.gov:80/
9225/Personnel/samitch/

Scott Mitchell was supported by the Mathematical, Informa-
tion and Computational Sciences Division of the U.S. DOE, Office
of Energy Research, and works at Sandia National Laboratories,
operated for the U.S. DOE under contract No. DE-AC04-
94AL85000. Sandia is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the U.S. DOE.

function or actual values on various vertices, curves, surfaces, and
volumes. The best software packages provide a toolbox of
algorithms. These algorithms have complex trade-offs in terms of
their automation, general applicability to complex geometries,
quality of the produced mesh, and speed and memory requirements.
Often the user must decide which algorithm to use for many subsets
of the model, the order in which subsets are meshed, and additional
parameters for each subset. Intelligent automation of these steps
greatly speeds the overall mesh generation process. We report on an
improved capability that automatically removes some order
dependence and automatically specifies some parameters. (The
automation of algorithm selection is also an important problem and
is being researched.)

In particular, in the CUBIT[1] quadrilateral and hexahedral mesh
generation toolkit, a common paradigm is an advancing front. This
requires us to first mesh the curves, then the surfaces, and finally
the interior of a volume. The user either specifies a soft-set goal or
a fixed hard-set number of mesh edges (called intervals) for each
curve. However, different quadrilateral surface meshing algorithms
require a certain relationship between the number of intervals on
each bounding curve. For meshing a surface with a mapping
algorithm, these constraints depend on some additional parameters,
namely which vertices are chosen as the corners of the mapping
primitive. Typically a curve is contained in two surfaces, and its
intervals are constrained in some way by both of them. If surfaces
are meshed one by one, then often we paint ourselves into a corner
and are left with a collection of surfaces that are unmeshable
because their bounding curves are incompatibly meshed. Instead,
we automatically and locally chose the corner parameters, then
globally find the number of mesh edges (intervals) for each curve
such that all surfaces can be meshed with their chosen algorithm
and corners. These problems are called corner picking and interval
assignment, respectively. Note that for a given choice of
algorithms, corners, and hard-set intervals, interval assignment may
be impossible (e.g. see Figure 1 and Figure 2). Simultaneously
choosing corners and intervals to allow surface meshing is an NP-
hard problem[2]. A structured or semi-structured volume meshing
scheme may impose additional constraints.

We also note that if we cut surfaces into topological disks, and
enforce that every curve has an even number of intervals, then any
quadrilateral mesh of the surfaces that is compatible with the
meshes of the curves admits a compatible hexahedral mesh of the
enclosed volume. Actually finding a hexahedral mesh is another
matter, particularly one with a quality guarantee.

Corner picking is a highly geometric problem, but is non-Euclidean
in that the length of a curve matters less than its user-specified
number of intervals, and whether these intervals are soft- or hard-
set. The interval assignment problem comes from geometric data,
but is essentially a combinatorial problem, usually solved by linear
programming[3] or more recently by network flow algorithms[2].

2 Corner Picking

“Map meshing a surface” produces some (hopefully isomeric) map
from an abstract structured quadrilateral mesh of an n-gon primitive
to a surface. Typical n-gons include triangles, rectangles and
pentagons. Mapping is valued as the fastest and least memory

 Choosing Corners of Rectangles for Mapped Meshing

 Scott A. Mitchell1

intensive surface meshing algorithm, but it is only applicable to
special geometries: The quality of the surface’s mesh depends on
how close the map is to a constant function. The quality of the map
depends heavily on the interior angles of the vertices of the surface
which are identified with corners of the abstract n-gon, the relative
number of intervals on sides, and whether any interior-angles are
reflex. Here for brevity we consider only the rectangle-primitive,
which is a regular i x j mesh (see Figure 11 left for a 5x5 example).
Our technique has been applied to triangle primitives and could be
applied to other n-gons as well.

Often the surface is composed of four curves, and the corners of the
rectangle primitive are uniquely determined by the geometry.
However, we can rectangle-primitive map a surface that resembles
a rectangle in a fuzzy sense, and is bounded by more or less than
four curves. Some of the rectangle sides may be composed of a
composite of several curves.

The interval assignment constraints are that opposite sides have
exactly equal intervals. The intervals on hard-set curves are fixed,
but the intervals on soft-set curves can be adjusted up or down to
satisfy these constraints. In the case of some curves having hard-set
intervals, the corner choice may also determine the feasibility of
mapping the surface, as in Figure 1. There is even a global problem
that is NP-complete[2] that we don’t address here: Some corner
choices may lead to the global interval assignment problem being
infeasible, as in Figure 2.

A previous method used in CUBIT is to pick as corners the vertices
with smallest interior angle. Obviously this can lead to a poor mesh.
Arkin et. al[4] presents a polygon-matching algorithm that defines
a metric for the shape-distance between two polygons in terms of
an integral involving the two polygons’ turning-functions. We can’t
immediately use this algorithm because one of our polygons is a
rectangle of indeterminate height and width, and because interval

assignment imposes different constraints and goals on which curves
are on sides opposite each other.

However, our method of choice is a heuristic loosely based on the
turning-function of Arkin et. al[4]. The heuristic has a provable
running time of O(n2), where n is the number of curves. It usually
gives a good solution, but has trouble finding any solution in the
case that many curves are hard-set and there are few feasible
choices of corners. If the heuristic fails, we fall back on a set of
algorithms that provably find a feasible set of corners, if one exists,
in time O(n2 log n). A post-processing heuristic shifts corners
incrementally, singly and in pairs, keeping feasible at all times,
searching for a local optima.

2.1 Heuristic Corner Picking
The algorithm makes two O(n2) passes. The first pass determines
opposite corners 1 and 3, the second pass determines corners 2 and
4. In the first pass, all pairs of vertices (a,b) are considered, and the
pair with the best (smallest) quality function value is chosen. The
quality function is a weighted sum of the corner_angle function, the
turn_angle function, and the interval_ratio function. The
corner_angle function depends on the interior angles at the corners
(ideally π/2), the turn_angle function on the amount the vector
tangent to the bounding curves turns strictly between successive
corners (ideally π/2, to leave room for another corner), and the
interval_ratio function depends on the ratio of intervals between
sides (ideally 1). The parameters for corners (a,b+1) can be
determined in O(1) time given their values for corners (a,b). These
functions are super-linear, the goal being to not vary too greatly
from a rectangle in any one sense.
See Figure 4 for the effect of the turn_angle function. For certain
pathological cases a possible improvement is to consider the
maximum deviation of the tangent vector, rather than just
comparing vectors adjacent to the corners. In addition to the
interval ratio, a pair of vertices is excluded if the hard-set intervals
preclude any possible mapping with those vertices as opposite
corners. Since corner 2 must lie between 1 and 3, and 4 between 3
and 1, the choice of corners 1 and 3 restricts the choice of corners 2
and 4. Hence the quality function also takes into account the best
corner-angles among the possible candidates for corners 2 and 4.
Corner with interior angles greater than a user-specified threshold
(usually π) can be excluded as well.

The second pass chooses corner 2 between 1 and 3, and corner 4
between 3 and 1. It is based on a similar quality function that
considers the interior angles at corners 2 and 4 (ideally π/2), the
ratio of intervals between opposite sides (ideally 1, for both pairs of
opposite sides), and the amount of turning between successive
corners (ideally 0).

If there are very few curves, say less than nine, then we forego the
above heuristic and just exhaustively try all (< 210) combinations
of four corners. We use similar functions to those described above,
picking the combination with the best quality function. This quality
function takes into account the fact that if a side must increase by
some number of intervals to match the opposite side and many
curves are hard-set, then the change must be distributed among the
remaining soft-set curves. For illustration, the examples in section
2.3 and most other examples don’t use the exhaustive search.

After intervals are assigned and curves are meshed, a similar
heuristic is used to decide where to place the corners for the actual
surface meshing. There is additional freedom, as any mesh vertex
can be a corner, not just a curve vertex. In some volume meshing
schemes, this freedom is not available. Usually the chosen corners
are the same, but not always. For example, the circle in Figure 3 has
only one bounding curve and no corners to chose before curve
meshing, and the union of circles in Figure 3 has only bad reflex
corners before curve meshing. Picking corners for surfaces with

Figure 1. The hard-set (boxed) intervals and choice of corners
leads to an infeasible interval assignment problem. First, the
opposite right and left sides are hard-set with unequal values.
More subtly, the top and bottom sides are also infeasible:
Since each curve must have at least one interval the bottom
side must have at least four intervals but the top side is hard-
set to three.

Figure 2. Local corner picking makes global interval assign-
ment impossible on this real-world geometry. We get a system of
equations that reduces to a+b = a, whose only solution has b=0,
but a curve must have at least one interval!

1 2

3
2

1 1 1 1

a

baa

b b

a+b
a+b

a+b

a+b

= corner picked

meshed curves takes time O(m), where m is the number of mesh
edges, since in each pass only the m/2 pairs of mesh vertices that
exactly divide the surface need be considered. (One could try all
possible quadruples of corners in time O(m2).)

The following pseudocode describes the basics of the three main
functions and their scaling with respect to each other.
turn_angle_function(turn_angle,

target_turn_angle)
return

 | turn_angle - target_turn_angle |1.7 / 2

corner_angle_function(corner_angle,
target_corner_angle)

ratio =
(corner_angle-target_corner_angle) /
target_corner_angle

smoothly blow up ratio as corner_angle
approaches a threshold (usually π).
return 2 * ratio1.7

interval_ratio_function(side_intervals,
opposite_side_intervals)

ratio =
 side_intervals / opposite_side_intervals
if (ratio < 1) then ratio = 1/ratio

return ratio - 1

2.2 Provable Corner Picking
Occasionally when there are many hard-set curves, the above
heuristic fails to find a set of corners that admits a feasible solution
to the interval assignment problem. In that case we can provably
find a feasible a feasible set of corners, if any exist, in time O(n2 log
n), where n is the number of curves bounding the surface. However
we can’t prove anything about the quality of the resultant mesh. For

example the angles at the corners may be large. There are four
cases, depending on the number of soft-set curves. We then apply
an incremental shifting heuristic to get a good quality set of corners.
Figures 6 to 9 illustrate these cases on an example.

Case three or more soft-set curves. We can find a feasible
solution (one always exists) in O(n) time. We put a soft-set curve
by itself on a side, say opposite a side that’s all hard-set, and the
remaining two or more soft-set curves on sides opposite each other.

Case two soft-set curves. If there is a solution with both soft-set
curves on the same side or on opposite sides, then there would also
be a solution if one of the soft-set curves were hard-set to one
interval. So we consider this a degenerate form of the one soft-set
curve case below, and here only consider solutions with soft-set
curves on adjacent sides.

Finding an adjacent-side solution if one exists takes time O(n2). If
there is a solution with soft-set curves S0 and S1 on adjacent sides
(sharing corner 2) then sliding corners 1 and 3 towards S0 and S1 is
also a solution. Thus we reduce to the following form: S0 is
immediately after corner 1, and S1 is immediately before corner 3,
and the sum of the hard-set intervals from corner 3 to 1 is greater
than the hard-set sum from 1 to 3. See Figure 5 left.

Finding corners 1 and 3 satisfying the hard-set sum constraint takes
linear time, and checking all possible pairs of corners c2 and c4 for
feasibility takes only O(n2) time if we incrementally update
parameters.

Case one soft-set curve. In this case any feasible corner solution
has two opposite hard-set sides with exactly the same interval sum
A. The remaining side s1 containing the soft-set curve S has a
smaller hard-set interval sum than its opposite side s2.

Finding a solution in time O(n2 log n) time is somewhat tricky.
Among all candidate sides H with interval sum A, there is a side h1
closest to S in the clockwise direction, and a side h2 closest in the
counter-clockwise direction. See Figure 5 right. If there is any pair
of candidate sides that do not overlap, then h1 and h2 do not
overlap. In addition, among all candidate sides H, choosing h1 and
h2 as opposite sides gives s1 with the smallest hard-set interval sum
and s2 with the largest hard-set interval sum. Hence, for a given A,
finding h1 and h2 is sufficient to determine if there is a solution. In
practice we find h1 for various A and as we encounter other H with
the same A, we stop when we have a feasible solution.

In particular, our algorithm is as follows: We consider all pairs of
corners not straddling S as candidate sides H. We first consider H
with smaller first corner. We keep a list of these H sorted by hard-

Figure 3. The left circle has no corners, and the left figure has
only bad corners, until after intervals are assigned and the
curves are meshed.

Figure 4. Without the turning function, the corner choices for
both octagons have the same quality function value, as oppo-
site-side intervals are equal and corner angles are all 3π/4. But
with the turning function the more regular mesh on the left is
preferred.

Figure 5. Left, the canonical form of a feasible solution with two
soft-set curves S0 and S1 on adjacent sides. Right, the canonical
form of a feasible solution with one soft set curve S. The Hs are
subsequences of hard-set edges, with interval count A. For a giv-
en A, if any pair of H form a feasible choice of corners, then the
pair h1 and h2 closest to S on either side does.

S1

S0

c1

c2 c3

c4

Si = soft-set curve i
ci = corner i

S

h1

H

H

h2

set interval sum A. If a second H is found with a given A, then using
stored data we can in constant time check if the two candidates form
a feasible solution. If they do, we’re done. If they don’t, then we
retain the first candidate (its h1 for A) and continue.

Case no soft-set curves. There is a O(n log n) algorithm in this
case. Any two pairs of corners that exactly divide the interval sum
in half are a feasible solution. All such pairs can be found by
advancing opposite corners in lock-step manner. However, we have
not implemented this since the heuristic (section 2.1) would have
found a feasible solution if one existed, albeit in O(n2) time.

2.3 Corner Picking Examples
The first set of examples, Figures 6 to 9, illustrates heuristic corner
picking, and each of the cases of the provable corner picking.

The second set of examples, Figures 10 to 18, shows the results of
corner picking and interval assignment on a sampling of surfaces.

3 Interval Assignment

We briefly give an overview of the interval assignment algorithm
for a general advancing-front hexahedral meshing algorithm. First
corners are picked for the primitive and semi-structured surface
meshing algorithms. Then the interval constraints for all surfaces
are assembled into a mixed-integer linear program (MILP). The

various surface meshing algorithms create two types of constraints.
First, more structured algorithms create constraints of the “intervals
on opposite sides are equal”, or “sum of intervals on two sides are
greater than the third” variety. Second, a quadrilateral mesh of a
surface must have an even number of mesh edges on its boundary,
so the unstructured algorithms create “sum of intervals on all sides
are even” constraints. The sum-even constraints force the problem

Figure 6. Heuristic corner picking works well on examples with-
out hard-set curves.

Figure 7. The heuristic and the exhaustive-search were turned
off to demonstrate the provable algorithm for the 3+ soft-set
curves case plus the incremental shifting heuristic.

All soft-set curves

2

5

6

3

3

key:

4 3

4 5

4 5

soft goal/assigned
= hard-set

2

4

3

3 4

6

3 soft-set curves

5 4

4 6

Figure 8. Provable corner picking plus heuristic improvement,
2-soft-set curves case.

Figure 9. 1-soft-set curve case.

Figure 10. Corner picking and interval assignment on a long sur-
faces, at two different densities.

Figure 11. Some more corner picking and interval assignment
examples.

2

3

5

4

4

64

3 7

4

2 soft-set curves

2

4

64

3

4

5

3 6

1 soft-set curve

to be mixed-integer. The intervals themselves must also be integer,
but this can often be obtained “for free” by careful MILP
formulation.

The problem set-up is as follows: The soft-set curve intervals are
the variables of the mixed-integer linear program (MILP). We add
two extra delta variables for each curve, that compute the positive
and negative difference of the assigned-interval to the goal-interval.
We weight the deltas inversely proportional to the interval goal (to
compute relative change). We add another variable M that
computes the maximum of the weighted deltas.

The solution process has two steps. In the first step we relax the
integer variables: We solve the LP with objective minimizing M.
We find a curve that forced M to be as large as it is, and fix that
curve’s intervals to be the nearest integer value and remove it from

the LP. We repeat until all curves are fixed or M is zero. At the end
of the first step we have an integer solution that satisfies all of the
constraints except the sum-even constraints.

In the second step we set tight bounds on the sum-even “k” and
curve variables, then solve the MILP minimizing the weighted sum
of intervals (for speed). The Branch & Bound procedure may take
too long (for a given set of bounds it may take exponential time). If
we don’t find a solution within an allotted amount of time, we try
less tight bounds. We have four sets of bounds. There is guaranteed
to be a solution for the least restrictive bounds, but since there is no

Figure 12. Abstract regular grid and mapping to planar sur-
face geometry.

Figure 13. Corner picking and interval assignment examples.

Figure 14. Corner picking and interval assignment examples.
The center pentagon is triangle-primitive meshed.

Figure 15. A real-world example where picking the four verti-
ces with the smallest angles would have lead to a poorer mesh.

Figure 16. In this tire-section model, choosing the four vertices
with smallest angles as corners would have lead to corners of
(abce) and an unacceptable mesh, whereas our heuristic chose cor-
ners (abde).

Figure 17. Left, rectangle-primitive meshes. Right, triangle primi-
tive meshes on the same geometry with the same interval goals.

Figure 18. Another comparison of rectangle and triangle meshing.

c

Right

Middle

Left

Left Middle Right

a b d e

c

ab

de

guarantee on running time, we might not find a solution within the
allotted time.

Our techniques give interval assignments that have very high
fidelity to the user-desired goals: Most previous work relies on
minimizing the sum of differences between assigned and goal
intervals, coupled with local adjustments as a pre-process, whereas
we essentially minimize the lexicographic vector of differences.
We have noted cases where we succeed but some commercial
packages fail to assign intervals compatible with meshing the
surfaces. However, our techniques are slower because we

iteratively solve the relaxed LP, taking time O(n3) rather than

O(n2).

Our techniques are practical for models with up to a few thousand
curves (or more if we’re lucky and certain goals and meshing
algorithms are chosen). To progress beyond that we conjecture that
the problem should be divided up into subproblems, as is typically
done with large LPs. Figure 19 shows some real-world models with
about 500 curves each.

3.1 Ensuring the existence of a compatible
hexahedral mesh
We consider the problem of generating a hexahedral mesh of a
volume that exactly matches a quadrilateral mesh of the surfaces
bounding the volume. Mitchell[5] notes that for such a compatible
hexahedral mesh to exist for a handlebody, there must be an even
number of quadrilaterals, and certain edge cycles (the ones
contractible to a point in the volume) must be even. Being able to
insert cutting disks along representative cycles is sufficient to show
the existence of a hex mesh. See also Thurston[6]. Eppstein[7]
gives a more constructive proof of the existence of a hexahedral
mesh, in the case that the quadrilateral mesh is even and two-
colorable. (Eppstein’s sufficient condition is stronger in that two-
colorable implies that every edge-cycle is even, yet weaker in that
it is not restricted to handlebodies.)

Here we give a practical way to construct a quadrilateral mesh
satisfying Eppstein’s sufficient conditions, ensuring that a
compatible hexahedral mesh exists. Thurston has also noted that a
mesh with every quadrilateral divided into four admits a compatible
hexahedral mesh. In essence, we reduce the existence problem to a
surface cutting problem and a trivial interval assignment problem.

First, each surface bounding the volume must be “cut” by inserting
two-sided curves, to reduce its topology to that of a disk; see
Figure 20. This is somewhat analogous to inserting the cutting
disks of Mitchell[5], but in a lower dimension and it does not
restrict us to handlebodies. Also, finding these cutting curves is a

much easier problem, perhaps solved by sweeping, particularly if
we restrict to the typical case that the volume is defined by
constructive solid geometry, and each surface is a subset of a plane,
a sphere, or a cone. In the general case, finding cutting curves could
be accomplished by forming a quadrilateral mesh of the surface,
then retaining as cutting curves some chains of mesh edges
connecting disjoint components of the surface boundary (one-sided
surfaces don’t bound a volume, so they need not be considered).

We can ensure that every curve (including the cutting curves) has
an even number of intervals or mesh edges, and simultaneously
satisfy the meshing algorithm requirements, by adding constraints
to the interval assignment MILP (see section 3). We mesh the
curves, then the surfaces with a quadrilateral meshing algorithm.
(Every surface admits a quad mesh, since the number of bounding

Figure 19. Left, a heat-sink meshed with a generalization of mapping. Right, a mostly unstructured mesh of a complex of 2d sur-
faces, courtesy of David Hensinger.

Figure 20. Cutting a surface into a topological disk by in-
troducing two-sided cutting curves.

cut

cut

mesh edges is even.) If there is an odd number of quadrilaterals,
then we add one e.g. by opening a pair of mesh edges sharing a
mesh node into a quadrilateral; see Figure 21. We claim the surface
mesh is two-colorable (see Theorem 1), so by Eppstein[7] a hex
mesh exists.

Theorem 1 If all bounding curves have an even number of
intervals, and every bounding surface is topologically a disk, then
any even quadrilateral mesh of the bounding surfaces admits a
compatible hexahedral mesh.

Proof. We claim the mesh of each surface is two-colorable red and
green, with vertices of the surface red, hence the surfaces taken
together are two-colorable. First, the mesh of the curves is two-
colorable with all vertices red, since any path between two vertices
is even (since curves only meet at vertices and curves have an even
number of mesh edges). For each surface, there is a two-coloring
that respects this coloring of the curves: First, each surface has the
topology of a disk, and hence any quadrilateral mesh of each
surface has a two-coloring[7]. Second, vertices are separated by an
even length chain of edges and hence must all be the same color, so
chose red.

4 Conclusions

First, we have demonstrated a practical and robust way of choosing
which four vertices of a surface correspond to corners of a rectangle
for the purposes of mapped meshing. This process takes into
account the user-required and user-desired number of intervals on
each bounding curve of the surface. This method has been extended
to triangle-primitive mapped meshing, and could be extended to
other n-gon primitive mapped meshing as well. Second, we have
outlined an implementation of a practical and robust way to solve
the problem of globally assigning intervals to a complex of
surfaces, so that each surface may be meshed according to pre-set
meshing schemes and corners if possible. Third, we have outlined
a practical scheme for generating a surface mesh suitable as a
starting point for an advancing-front hexahedral-meshing
algorithm.

A number of open problems remain. Among them are: Is there a
practical way to pick corners such that the interval assignment
problem is feasible? Möhring[2] answers this for one set of
meshing algorithms and notes that it is NP-complete. Also, corner
picking and interval assignment may be infeasible due to hard-set
intervals: automation would be increased if we could determine a
small set of hard-set intervals to relax to make the problem feasible.
Also, extending the interval assignment solution to take into
account the constraints imposed by semi-structured hexahedral
meshing algorithms such as sweeping is important. Another
practical problem is determining and implementing a way to “cut”
surfaces into topological disks, such that the cuts do not create
small features or otherwise complicate the meshing problem.

Acknowledgements

I wish to thank Sandia’s Discrete Algorithms Group (DAG) and
especially Jonathan E. Atkins for contributions to section 2.2.

 References

[1] T. D. Blacker, W. J. Bohnhoff, T. L. Edwards, J. R. Hipp, R.
R. Lober, S. A. Mitchell, G. D. Sjaardema, T. J. Tautges, T.
J. Wilson, W. R. Oakes, S. Benzley, J. C. Clements, L. Lo-
pez-Buriek, S. Parker, M. Whitely, D. White, and E. Trim-
ble. CUBIT mesh generation environment volume 1: users
manual. SAND94-1100, Sandia National Laboratories, Al-
buquerque, New Mexico, May 1994.

[2] Rolf H. Möhring, Matthias Müller-Hannemann, and
Karsten Weihe. Mesh refinement via bidirected flows:
Modeling, complexity, and computational results. Tech-
nische Universität Berlin, Department of Mathematics, Re-
port No. 520 / 1996. URL: http://www.math.TU-
Berlin.DE/~mhannema/projecteng.html

[3] T. K. H. Tam and C. G. Armstrong. Finite element mesh
control by integer programming, International Journal for
Numerical Methods in Engineering, vol 36, 2581-2605,
1993.

[4] Esther M. Arkin, L. Paul Chew, Daniel P. Huttenlocher,
Klara Kedem, and Joseph S. B. Mitchell. An efficiently
computable metric for comparing polygonal shapes, Cor-
nell University, Department of Computer Science, TR 89-
1007, May 1989.

[5] Scott A. Mitchell. A characterization of the quadrilateral
meshes of a surface which admit a compatible hexahedral
mesh of the enclosed volume, Proc. 13th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS
‘96), Lecture Notes in Computer Science 1046, pages 465-
476, Springer, 1996. Also http://sass577.endo.sandia.gov/
9225/Personnel/samitch/exist-abstract.html

[6] William Thurston. Hexahedral decomposition of polyhe-
dra. Posting to sci.math, 25 Oct 1993. Available online at
http://www.ics.uci.edu/~eppstein/gina/Thurston-hexahe-
dra.html.

[7] David Eppstein. Linear complexity hexahedral mesh gener-
ation. 12th ACM Symp. Comp. Geom., Philadelphia
(1996) 58-67. Also http://www.ics.uci.edu/~eppstein/

Figure 21. Adding a quad to a surface mesh.

