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Abstract

The spatial twist continuum (STC) is a powerful extension of the dual of a hexahedral
mesh[1]. The STC captures the global connectivity constraints inherent in hexahedral
meshing. Whisker Weaving is an advancing-front type of algorithm based on the STC[2].
During the Whisker Weaving agorithm, certain types of degenerate elements called
wedges[ 3] arise. This paper describes wedges and how they are formed, and presents
collapsing and driving, two strategies for removing these degeneracies.

1. Introduction

The spatial twist continuum[1] (STC) and the Whisker Weaving algorithm[2] were
recently introduced. The STC is a powerful way to represent the connectivity of a
hexahedral mesh, based on the mesh dual. The STC capturesthe global connectivity of the
mesh. Given a partial mesh, the STC provides insight into how the rest of the mesh must
beformed in order to be properly connected. In particular, aquadrilateral mesh of asurface
imposes numerous constraints about how a hexahedral mesh may fill the volume it
encloses.

Whisker Weaving is an advancing-front type of algorithm based on the STC. Starting with
asurface mesh, Whisker Weaving incrementally buildsthe STC one centroid (hexahedron)
at atime. Whisker Weaving takes advantage of the global constraints encoded in the STC
it order to generate valid connectivity. However, certain types of local degeneracies arise
during Whisker Weaving. These degeneracies can be easily detected from the STC. This

paper describes how to remove one type of degeneracy called a wedge, working entirely



within the STC. These wedges are strikingly similar to their hexahedral namesakes found
in Plastering[3].

Therest of this paper is organized as follows. Section 2 reviews the STC and Section 3
reviews Whisker Weaving. Section 4 presents adegenerate geometric entity called awedge
and describes its formation by Whisker Weaving and representation in the STC. Section 5
describes some algorithms for removing wedges and using them to refine amesh. Section
6 presents conclusions.

2. STC review

This section reviews the definitions of the STC entities. Any type of mesh admits adual,
but the dual of aquadrilateral or hexahedral mesh hasaspecial structurethat allowsit to be
represented as an arrangement of curves (chords) or surfaces (sheets). The STC is
described in full by Murdoch et. al[1], where sheets were called twist planes.

Asan introduction, the STC for aquadrilateral mesh is described first. The dual entities of
dimension 0, 1 and 2 are called STC centroids, STC edges, and STC 2-cells. Each mesh
guadrilateral has a STC centroid at its center. Two quadrilaterals that share a mesh edge
have a STC edge joining the corresponding centroids. Each mesh node is surrounded by a
STC 2-cell, apolygon of STC edges.

The STC contains al this standard dual information, plusa“higher level” interpretation of
the global connectivity of the mesh. Since each mesh element has four edges, each STC
centroid has exactly four edges, ordered around the centroid in the same way that mesh
edges are ordered around the quadrilateral element. A specia property exists for the dual
of aquadrilateral mesh: opposite edges can be considered to be part of the same continuous
curve, caled achord. This observation forms the basis for the STC. Identifying opposite
edges for centroids throughout the mesh, chords form either closed curves (blind chords)
or have both endpoints on the object boundary; see Figure 1. A centroid isthe simple, non-
tangent intersection of two chords.

For hexahedral meshes, the dual has an additional, three-dimensional entity called a STC
3-cell. STC 3-cells correspond to mesh nodes, for example the (+x,+y,+2z) octant
correspondsto the (+x,+y,+z) nodein Figure 4. In the 3D STC, 2-cells correspond to mesh
edges, STC edges correspond to quadrilaterals, and centroids correspond to hexahedra, as
enumerated in Table 1

Each centroid now has six edges. Analogous to the two-dimensional case, STC edges
passing through opposite hex-quadrilaterals are identified as belonging to the same chord.



Figure 1. A quadrilateral mesh and the corresponding chords of the STC, shown as
wide curves.

Mesh Entity Dimension STC Entity Dimension

Hex Element 3 Centroid 0
Face 2 Edge 1
Edge 1 2-Cdll 2
Node 0 3-Cdll 3

Table 1. Correspondence of hex mesh entitiesto 3D STC dual entities.

Analogous to the two dimensional case, this construction isonly possible for the dual of a
hexahedral mesh. A chord represents a column of hexes passing through the mesh; see
Figure 3.

Thereal power of the STC is demonstrated by the identification of two-dimensional sur-
faces called sheets. As seenin Figure 4, each chord perpendicularly intersects four 2-cells
at a centroid. These four 2-cells are identified as belonging to the same sheet. For exam-
ple, in Figure 4 the horizontal sheet cuts the four faces parallel to the z-axis. Each hexahe-
dron contains three such sheets and the STC centroid is actually the intersection of these
three. Similarly identifying 2-cells throughout the mesh, each sheet is can be thought of as
a smooth, continuous surface, extending until it closes on itself or hits the geometric
boundary; see Figure 5. Any topological type of manifold is theoretically possible for a
sheet. Holes appear as |oops on the surface mesh (see below). Whisker Weaving only cre-
ates sheets that can be combinatorially represented in a plane. A sheet has a standard |ogi-
cal projection in the plane called a sheet diagram, which is described below.

Surface Loop Chords

Whisker Weaving starts with (the STC of) a quadrilateral surface mesh and worksinward
to incrementally build the full three-dimensional STC of a hexahedral mesh. As such, the
chords (loops) of the two-dimensional surface mesh serve as the start of the three-dimen-
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Figure 2. A four hex mesh and its dual. The 2-cells divide the volume inside the mesh
into 3-cells, one for each hex node.
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Figure 3. A chord in the three-dimensional STC represents a column of hexahedra.

sional STC constructed by Whisker Weaving. In particular, each loop forms a component
of the boundary of a sheet. Note that all chords on a surface mesh form closed curves, i.e.
2D blind chords, called loops. Thisfollows from the fact that the object’ s surface encloses
avolume. A loop is drawn as a combinatoria circle in the plane, with the sheet repre-
sented in the disk enclosed by the circle. Thisdrawing is called a sheet diagram; see
Figure 6. A sheet diagram isacombinatorial representation of the loop and sheet. In particular, the spacing
of the chords around the circleis regular, regardless of where the corresponding faceslie in relationship to
one another. Only the sequence of facesisimportant.
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Figure 4. The 3D STC inside a single hexahedron.
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Figure 5. The STC of afour hex mesh. Like colored surfaces are the same sheet.

In thisdiagram, each segment initially perpendicular to the circle representsa 2D centroid,
where the loop crosses another loop (or itself) on the surface. That is, it represents a
quadrilateral of the surface mesh. In the three-dimensional STC, there will be achord
emanating from that quadrilateral and travelling into the interior of the mesh. Thus a
segment al so represents the beginning of achord. A chord isthe intersection of two sheets,
so each chord has a segment representing it on both of the sheet diagrams. The segment
itself is called a sheetchord, to distinguish it from the abstract chord of intersection that it
represents. The sheetchord of an uncompleted chordis called awhisker. Whiskersthat have
no other whiskers between them on the meshing front are called adjacent.

At some 2D surface centroids, aloop crossesitself. Thissituationisactually quite common:
the more irregular the surface mesh, the more centroids are the self-intersection of aloop.
The chord emanating from such a centroid is called a self-intersecting chord, and plays an
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Figure 6. A sheet diagram after some Whisker Weaving progress.

important role in Whisker Weaving. In particular, it is these chords which give rise to the
formation of wedges. It is important to note that even when aloop intersectsitself, it can
still bedrawn asacirclein the plane; see Figure 7. The centroids of self-intersection merely
appear twice on the combinatoria circle, once for each time the loop passes through the
corresponding face. The two segments representing a self-intersecting chord appear on the
same sheet, instead of on two different sheets. Before describing wedges, it isfirst
necessary to review the basic operations of Whisker Weaving.

3. Whisker Weaving basics

The whisker weaving algorithm isreviewed in this section. The goal of Whisker Weaving
isto create an all-hexahedral mesh of an arbitrary volume. Whisker Weaving first creates
athree-dimensional STC, and then convertsit to a hexahedral mesh. Whisker Weaving is
an advancing-front type of algorithm, constructing the STC starting from the geometric
boundaries and moving inward.

At the highest level, Whisker Weaving hasthe following outline. These steps are described
in more detail below.

1. Construct initial loops, sheets, chords and sheetchords from the given surface mesh.
While any chord remains uncompl eted:

2. Find three pairwise adjacent chords.

3. Construct a centroid (hexahedron) by crossing these three chords.

4. Join chords.

1. Forming loopsisthefirst step of the whisker weaving algorithm. The loops for agiven
surface mesh can be easily generated by traversing the meshes quadrilateralsin an ordered



Figure 7. A sdlf-intersecting loop on the “macaroni” test problem: Left isthe loop with
the input geometry/surface mesh, lower right is a drawing of the loop in the plane, and up-
per right is the loop’s sheet diagram. Letters W, X, Y, and Z are 2D centroids of self-inter-
section, while points 1-6 are only for reference. Arrows show the relative orientations of
the drawings. Note that since the loop passes through W, X, Y, and Z twice, they each ap-
pear twice on the sheet diagram in the upper right.

way. Loops are drawn as combinatorial circles, with the 3D chord emanating from each
loop centroid pointing towards the circle center.

Since the hexahedral mesh has not yet been created, each of these “chords’ isssmply a
small segment called awhisker. A chord is called completed if it has both ends on the
surface mesh, or closes upon itself to form a closed curve. Initially, no chord is complete.

2. The next main task isto find three chords, 1-2, 1-3 and 2-3, such that 1-2 is adjacent to
1-3, 1-3isadjacent to 2-3, and 2-3 is adjacent to 1-2 on some sheet diagrams. Here chord
1-2 isachord of intersection between sheets 1 and 2, etc. As atechnicality, sheet 1 and
sheet 2 are the same in the case of a self-intersecting chord. This corresponds to finding
three quadrilaterals on the meshing front that pairwise share edges. Note that this means
that the quadrilaterals are connected so as to form three faces of a hexahedron that share a
corner. Occasionally, no such triple of chords can be found. In this case, two chords that
are adjacent suffice, and the third chord is created. This third chord does not intersect the
surface mesh, and is called blind. This corresponds to finding only two quadrilaterals on



the meshing front that share an edge, and creating a third quadrilateral that forms a
hexahedron corner.

3. These three chords are then pairwise crossed, locally constructing the STC shown in
Figure 4. This corresponds to adding additional faces to the three previous facesto form a
hexahedron. Recall that a chord lies on two sheets, and a whisker hex on three sheets. In
the sheet diagrams, this means three pairs of whiskers are crossed to form 3 vertices. For
example, suppose hex 1-2-3 was just formed in the bottom center of Figure 6 by crossing
chord 1-2 and chord 1-3. Then similar figures appear on sheets 2 and 3: chord 1-2 crosses
some chord 2-3 to form hex 1-2-3 on sheet 2, and chord 1-3 crosses chord 2-3 to form hex
1-2-3 on sheet 3.

4. Whenever two chords are adjacent to each other on two sheet diagrams the chords are
joined. Note that both chords are necessarily the intersection of these two sheets. This
double adjacency corresponds to two quadrilaterals that share two edges, and joining the
chords corresponds to merging the two facesinto one. Thistype of operation is called
seaming[ 3] in the Plastering algorithm.

Occasionally chords are joined that are only adjacent on one sheet, where the second sheets
through the chords are different. Thisresultsin merging the two second sheetsinto asingle
sheet that resembles a cylinder (topological sphere with two holes). Before merging two
sheets, certain geometric tests are performed to determine if thisis agood idea.

If the chords that are joined start on aloop (i.e. start on the sheet boundary), then the
combined chord has both ends on the geometric boundary and the chord is complete.
Occasionally ablind chord will be joined to itself to form a closed loop, also completing
the chord. Completed chords are not crossed, so aggressively joining chords tends to lead
to earlier termination of the algorithm, and to adding fewer centroids (hexes). In most mesh
generation algorithms, the twin goals of small mesh size and good element shape compete.
However, in this phase of the whisker weaving algorithm there islittle geometric
information, so element shape is not a consideration. Hence the algorithm simply tries to
add as few elements as possible by joining chords whenever possible.

|deally, a self-intersecting chord is completed by joining it with some other self-
intersecting chord on the same sheet. However, in practice it is often the case that after
some weaving the two sheetchords for a self-intersecting chord are immediately adjacent
to one another. Thisimplies a certain type of degeneracy in the mesh called awedge; see
Section 4. In order to make progress, the algorithm (temporarily) joins these two
sheetchords and calls the chord completed. The degeneracy isresolved later; see Section 5.

Other types of improper connectivity are also detected and resolved in step 4, but these are
beyond the scope of this paper.



4. Wedge Formation

This section describes the connectivity of awedge. In the next section we discuss how to
remove wedges.

A wedge hexahedron occurs when the two sheetchords of a self-intersecting chord are
adjacent to each other. This chord is called the base chord of the wedge. Asis awaysthe
case, the last centroid on each of its sheetchords represent the same hexahedron (a chord
passes through certain hexahedron, regardless of which sheetchord one happensto be
looking at). Recall that a STC edge corresponds to a mesh face, as shown in Figure 1. Let
z be the face corresponding to the dangling end of the base chord beyond the last centroid.
Call the other hex’ s face that the base chord passes through, the face between the last and
second to last centroid, the base face and denoteit by y. Consider the four side faces of this
hexahedron, a, b, ¢, and d, perpendicular to the base chord; see Figure 8. Since the base
sheetchords are immediately adjacent, without loss of generality the STC edges
representing facesa and b arein the same 2-cell asfacez (theleft 2-cell in Figure 8 bottom).
Since a 2-cell represents a mesh edge, a and b share a mesh edge in common with face z
Moreover, z appears twice in this 2-cell, and thus two of its mesh edges are the samel!

Assuming that the meshing front of the base sheet containing ¢ and d is eventually
completed, facesc, d, and zwill bein another common 2-cell and will share mesh edges as
well. The side faces also appear (ordered abdc) around a 2-cell on another sheet, called the
side sheet; see Figure 8 lower right and upper |eft. The chords through ad and cb are called
the side chords.

A wedge is a specia kind of degenerate hexahedron: A wedge can be obtained from a
hexahedron by merging two nodes that are opposite each other on aface (). For obvious
reasons, the edges of degenerate face z are called the blade edgeq 3].

In order to save wedges for later and continue with weaving, the algorithm joins the two
base sheetchords. Technically, in order for the sheet to be a smooth surface, thereisasmall
singularity at the point where the sheetchords are “joined.” This singularity represents the
fact that achord of intersection (the base chord) terminatesinside the mesh: Along theline
of the base chord the sheet suddenly goes from crossing itself to not crossing itself; see
Figure 9. Thistransition isimpossible to make smoothly.

Figure 10 shows the completely woven sheet for the loop in Figure 7. Note that this sheet
contains two wedges, formed by self-intersecting chords W and Y respectively. Whisker
Weaving doesn’t always form wedges: chords X and Z were successfully joined to each
other during the course of the algorithm. The collapsing of wedge base chord W is
chronicled below.
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Figure 8. A wedge in three-dimensional space (top) and represented by sheet diagrams
(bottom). Lower case |etters denote faces. zis a degenerate face consisting of just two edg-
€s.
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Figure 9.  Coallapsing/driving a wedge. Faded lines shows how the base sheet intersects
the mesh. The chord in the center is the base chord, with the singularity at the arrow tip.

5. Wedge Resolution
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Figure 10. The completely woven sheet from the “macaroni”. Whisker Weaving joined
X to Z, and formed awedge for each of W and Y.

Whisker weaving resolves wedges in a separate pass, after the mesh is otherwise
completely woven. A wedge can be “moved” by one of two operations, collapsing or
driving[3]. Moving awedge destroysit and, generally, causes anew oneto be created next
toit. Either collapsing or driving must be repeated until the geometric boundary isreached,
where no new wedge is formed, and the wedge is said to be resolved. In very rare
circumstancesit is also possible to resolve awedge by driving it into the blade edges of
another wedge. Collapsing moves the wedge backwards by collapsing the base face.
Driving moves the wedge forward by opening the blade edges into a new face. Figure 9
shows how awedge moves asit is collapsed or driven. Note that there is often some
flexibility about which direction awedge can be driven, but acollapsed wedge must follow
its base chord.

When successful, driving tends to produce elements that are better shaped than collapsing.
However, awedge can only be drivenin afairly regular mesh: there must be two faces that
share an edge, each of which contains one of the blade edges. Collapsing, and then fixing
up the poor elements, promises to be much more robust.

A preprocessing step to resolve awedgeisto “un-join” the base sheetchords which were
artificially joined earlier to allow Whisker Weaving to continue. This step isshownin
Figure 11 upper left.

Collapsing a wedge

To collapse awedge in the STC:

* The three vertices representing the wedge are removed from the base sheet and side
sheet diagrams; see Figure 11 center.

* The side chords are rejoined in a new way as the base face is collapsed and the side
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faces are merged; see Figure 11 |eft.

Originally, side chords connect opposite side faces of the wedge (Figure 8). Removing the
wedge vertices breaks each of the side chordsinto two, leaving four dangling whiskers on
each of the sheets. The whiskers corresponding to side faces that share a blade edge are
adjacent to each other on the base sheet diagram; see Figure 11 center top. Asthe sidefaces
sharing a blade edge are merged into one, the whiskers corresponding to those faces are
joined.

C C C
D D D

Figure 11. Collapsing a wedge. Left shows the base sheet (top) and side sheet (bottom)
of the wedge before collapsing: Chords A-D, B-C, and W cross at the wedge. Center
shows the breaking of chords by the removal of the wedge centroid vertices from the base
sheet (top) and side sheet (bottom): Two whisker are left for each of A, B, C, D, and W.
Left shows the new way of joining side chords as the side faces are merged: A is joined
with B, and C isjoined with D. Note A-B and C-D do not cross.

Removing the wedge vertices shortens the base chord by one hex. The last hex of the base
chord becomes the new wedge; see Figure 11 left top. The old base face of the wedge gets
collapsed and becomes the blade edges for the new wedge; see Figure 9. Note that

Figure 11 |eft top bears a certain symmetry to Figure 11 right top: the wedge has moved
and is now ready to be collapsed again.

These two steps are repeated until the object’ s boundary is reached.

In this particular example, in Figure 11 lower right, a new type of degeneracy called a
degree-2 2-cell isformed. That is, thereisan STC 2-cell that is a polygon of only two
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Figure 12. The changesin the side chords as awedge is collapsed.

edges. This corresponds to two hexahedra sharing two quadrilaterals. Forming this type of
degeneracy is quite common when collapsing wedges. A robust strategy to remove all such
degeneracies will be described in future work.

Driving a wedge

When awedgeis driven its blade opens into a face and the wedge becomes a hexahedron;
see Figure 9. The STC changes are the reverse of what happenswhen awedgeis col | apsed:
First one STC edge in each of the 2-cells containing the whiskers of the base chord is
broken to form side whiskers. Second the side whiskers adjacent to a base whisker are
joined. This crossestwo chords on the side sheet, and the base whisker is extended to cross
the joined chords on the base sheet. The new vertices of crossing are the new wedge. For
an example, ssimply read Figures 11 and 12 from right to left.

When driving awedge, the segments of the side chordsthat are broken correspond to mesh
faces. Thispair of faces each contain ablade edge and al so share an edgein common. There
is often some choice as to which face pair to use. For example, in a completely regular
mesh, there are three choices (l€ft, right or straight). However, in an irregular mesh, often
the point is reached where no pair of faces meet these criteriaand it isimpossible to drive;
see Figure 13.

Figure 13. To drive, two faces must share an edge and each contain a blade edge (left).
Oftenit is not possible to drive (right).
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Reaching the surface.

Recall that when awedgeis collapsed or driven, the side chords are broken and rejoined in
anew way. The analogous changes happen to loops when a wedge eventually reaches the
surface mesh. Consider collapsing a wedge whose base face lies on the surface mesh.
Suppose mesh edges a, b, ¢ and d define the base face as shown in Figure 14. Also assume
that in collapsing the wedge, edge a is merged with b, and likewise edge c is merged with
d. There are three cases of what happens to the loop(s) when a surface face is collapsed,
depending ontheorder inwhich a, b, c and d are passed through by the loop(s). These cases
areillustrated in Figure 14.

Case 1:
a, b consecutive

driving a
Case2: -t C;
a, cconsecutive S X Sl /S > z
collapsing
Case 3: driving aN b
a, dconsecutive 0 &K AN\)e ) ) T 3
_____________ .»
: c d
collapsing hd
Collapsed

Figure 14. Splicing loops asafaceis collapsed or opened.

In Case 1 aloop breaks into two separate loops. In Case 2 the loop stays as one loop. In
Case 3 two loops are spliced into one.

Consider driving awedge whose blade edges lie on the surface mesh. This corresponds to
opening aface on the surface. There are three cases, which are just the reverse of the three
cases for collapsing facesin Figure 14.

Collapsing a wedge after Whisker Weaving always leads to Case 1 of Figure 14. The
reasons are as follows. In Whisker Weaving, the base chord of awedge always startsfrom
a surface face where aloop self-intersects. Hence Case 3 does not occur. Furthermore,
when collapsing a wedge, side chords A and B are joined and chords C and D are joined.
When the surface mesh is reached, this breaks the sheet into two; see Figure 15. Hence the
loop breaksinto two, whichis Case 1. The alternative of consistently joining A with C and
B with D leads to Case 2, but also always leaves a complicated degeneracy at the original
wedge blade. Thus Whisker Weaving avoids collapsing wedges in that way. Figure 15
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showsthe base sheet and Figure 16 showsthe surface mesh when base chord W is col | apsed
all the way to the surface of the “macaroni.”

Figure 15. Eventualy, a collapsing wedge reaches the object surface and its loop and
sheet are broken into two. The sheet diagrams are angularly scaled and smoothed so that
they resemble disks. The “broken” gap on each loop is next filled with aloop edge.

Wedges for refinement

In addition to finishing amesh of avolume, awedge may also be used to refine acompleted
mesh. To coarsen a mesh, a surface face is collapsed, forming awedge which is then
resolved by collapsing. This can aways be done, but element quality may suffer. To make
amesh more fine, two surface edges that share a vertex are opened into aface, forming a
wedge which isthen driven. In mapping algorithmsrefinement isusually propagated along
all three principle directions. However, wedges only propagate in one direction. In the case
of driving through afairly regular mesh, the direction of propagation may curve according
to the desires of an analyst. However, if the meshisirregular, the wedge may become stuck
in the middle of the mesh with nowhereto drive.

Any surface face may be collapsed: its chord need not be, and usually is not, the self-
intersection of aloop. Thisis Case 3 from left to right, which was forbidden for weaving.
However, once the face is collapsed, the loops join, splicing the sheetsinto one. Thus the
wedge still exists on a self-intersecting sheet. The base chord of the wedge is necessarily a
chord of some other intersection of the loops. When the chord is completely collapsed, the
sheet breaks into two again (by Case 1). Figures 17 and 18 illustrate this sequence for a
simple 4x4x4 mesh of a cube.
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Figure 16. The surface mesh after collapsing self-intersecting chord W. The loop con-
taining W was split into two. Note the degenerate faces formed near where W collapsed:
two surface quadrilaterals share two edges and look like triangles.

A A

7 7
7 7
. 7
y 4 7
ok [ e
// //
Z 4
B B
D D

Figure 17. Splicing two sheets by a face collapse (Case 3). Originally A connectsto D,
and B connects to C on the far side of the cube. After the wedge collapses, the loops split
back into two: on the far side, A connectsto B, and C connectsto D.

Note that a non-surface face of a completed mesh may also be collapsed. This creates two
wedges. In this case each base chord need not start at the self intersection of aloop.
However, the base chords are the self-intersection of a sheet: The sheets for the two loops
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Figure 18. A surfacefaceis collapsed, splicing two loopsinto one and creating a wedge.
The wedge is then collapsed, until the surface mesh is reached again and the loop breaks
into two again. Note that each final sheet contains pieces of both of the original sheets.
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arejoined smoothly between the two wedge singularities, but intersect each other along the
base chords.

Similarly, any surface edge pair that shares a node and are contained in two internal faces
that share an internal edge may be opened into the base face of awedge. Any one of the

three casesispossible. Most likely, a pair of loopswill be spliced into one by Case 1, then
split back into two by Case 3 when thewedgeisresolved. Figure 19 illustrates awedge that

>

/

/
. wed chor //
(

Figure 19. A regular mesh with awedge driven throughit.

isopened at Y, then driven in and curved back near its starting point to Z. Notethat the areas
of the sheet inside and outside of the thick base chord were originally on separate sheets
that were spliced together. Thereisalso another sheet with the same basic structure passing
perpendicularly through faces Y and Z. The intersection of these two sheetsformsthe thick
base chord in Figure 19.

6. Conclusions

The spatial twist continuum (STC) captures the connectivity of a hexahedral mesh. It also
compactly represents global connectivity information that is non-obviousin either a
hexahedral or simple dual representation of amesh. The STC is used to guide an
advancing-front type of algorithm called Whisker Weaving.

A certain type of degeneracy called awedge sometimes arises as Whisker Weaving builds
the STC. A wedge can be easily detected and two strategies (collapsing and driving) exist
for resolving it. Driving is not always possible, but yields well shaped elements when
successful. Although collapsing always removes the wedge, another type of degeneracy
called a degree-2 2-cell can result. Driving and collapsing wedges has been implemented
in the CUBIT mesh generation environment developed at Sandia National Labs. A robust
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algorithm to remove degree-2 2-cells will be described in future work. Once wedges are
resolved, the STC can be converted into a hexahedral mesh. Wedges can aso be used to
coarsen and refine a compl eted mesh.
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