
UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

Modernizing a Legacy Code (U)

George M. Hrbek*, F.L. Cochran*, A.J. Scannapieco*,

Richard F. Barrett**

*Los Alamos National Laboratory, Los Alamos, New Mexico, 87545;

 ** Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks,
Alaska 99775

This report will discuss our progress to date in converting a two
dimensional, coupled multi-physics simulation AMR code into a three
dimensional ASC level code. We have tried to adopt a consistent Fortran
90/95 syntax, adapt the code to run in a massively parallel environment
and incorporate new and improved computer science techniques. (U)

Introduction

We are responsible for a two dimensional, coupled multi-physics simulation AMR

code that helps maintain the reliability of the United States nuclear stockpile. The code
has been used for many years in a serial version, where we are constantly improving its
capabilities through the inclusion of an ever widening suite of physics packages to model
relevant phenomena in greater detail and to address new physical regimes.

In order to maintain, update, and improve this legacy code, we have traditionally
adopted an evolutionary approach. This is because small but steady improvements
integrate over time into large, but manageable improvements.

However, once and a while it becomes necessary to adopt a more revolutionary
approach and attempt to generate large amounts of substantial changes in existing code
over a small period of time. This is the state that we find ourselves in with our code.

Fortran 90/95 Syntax and Perl Scripting

We feel that the adoption of modern syntax is extremely important because it insures

the viability of the code into the foreseeable future. The most important reasons for
looking at a modern variant of Fortran are staffing, features, and performance.

It is becoming ever more difficult to attract new team members who are familiar and
comfortable with a traditional Fortran code structure. Also, it is obvious that the

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

limitations of Fortran 77 are restricting the introduction of better computer science
techniques that would greatly improve the capabilities and maintainability of the existing
code. Changing the code to Fortran 90/95 allows us to take advantage of improvements
in the language, replacing obsolete and clumsy code with cleaner and better defined
procedures.

Identifying the types of code that can be easily changed to modern Fortran syntax is
fairly straightforward. The real problem is replacing the old syntax with new constructs
which is extremely tedious and prone to error.

This problem was overcome by applying Perl scripting which identified specific
constructs and replaced them with modern syntax. This technique had the additional
advantage of allowing us to ‘practice’ on a current copy of the code, perfecting the
technique and fixing unforeseen and detrimental code replacement patterns. Once we
were satisfied with the replacements produced by a particular script we stored it in a
‘master Perl script.’ Later this script is applied to the approved version of the code which
became the ‘new’ code.

Adapting the code to run in a massively parallel environment

The approach that our team has taken to convert our legacy code from serial to

parallel operation is to work within the existing Fortran framework of array variables and
‘do loops’. This decision dictated that we use subroutines to update the physics
variables across processes at the conclusion of the appropriate do loops when we send the
newly updated physics variables to the correct processes.

We developed a set of data communication subroutines, called L7, that are called
after relevant physics variables are recalculated during the course of the simulation. L7
provides a light-weight, efficient parallel processing data sharing abstraction that is
especially appropriate for physics simulation applications that operate on unstructured
meshes that change throughout the simulation.

With the goal of implementing high quality scientific algorithms, the focus for most
code developers on our team must be on the hard science, with as little intrusion of the
computer science issues as is possible while still effectively addressing them. The L7
communication library provides such a capability.

Just as was done for the syntactical replacements, Perl scripting was used to insert the
thousands of calls to L7_UPDATE. We then operated on the most recent version of the
serial code, identifying poor and sometimes disastrous replacement patterns and fixing
the script. The resulting script got better and better to the point that we felt confident of
the script’s robustness and that it correctly inserted L7_UPDATE calls on the right arrays
for the appropriate do loops.

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

The general effect on our code is the insertion of calls to L7_UPDATE which
perform the data transfer for each array. A code fragment would look as follows;

! This subroutine call informs L7 about the details of the data decomposition and
dependencies called at the beginning of the simulation.

 CALL L7_SETUP (…)
 …
 …
 DO I=1, NUM_IN_ARRAY
! Perform computations, modifying arrays A and V:
 A = F (I)
 V = G (A)
 …
 …
 A = J (A, V) + E (G)
 END DO
! Subroutine L7_UPDATE is called to collect the data needed by the processes
 CALL L7_UPDATE (A, …)
 CALL L7_UPDATE (V, …)

We had observed that sometimes the Perl script added superfluous calls to

L7_UPDATE which sent variables across process that did not need to be updated. We
accepted this undesirable effect as the cost of gaining a huge payoff by automating the
L7_UPDATE insertions. All agreed that the hit in performance that these unnecessary
calls produced could be fixed manually and that code performance would only get better
as we massaged the code. The serial code was then ‘converted to parallel’ and the
process of debugging has begun.

Debugging is being performed using the Etnus TotalView™ debugging tool. We
started by running the now parallelized code on one process. After satisfying ourselves
that the code set up the problem correctly and ran on one process, we moved to multiple
processes with NO AMR meshing and began to add physics modules of ever greater
complexity on severely simplified problems (i.e., checker board meshes).

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

Recently, we have been working on the AMR meshing routines which do not convert
directly to parallel with the insertion of the L7_UPDATES. We have modified the
existing code to ‘sort of work’ under the old meshing subroutines, but it has turned out to
be suboptimal.

We are now investigating improvements in the parallel code by incorporating a
completely different approach to finding neighbors on and off process that relies on the
hierarchical data structure of our AMR meshing scheme.

Incorporating New and Improved Computer Science Techniques

Continual advances in computer science must be incorporated into the legacy code. It

is sometimes a difficult balance between the practicality of replacing massive amounts of
working code and the desire, or need, for measurable improvement in capability and
performance.

We needed to begin this process by using new computer science techniques to fix
parts of the code that did not transfer well from serial to parallel. As a case in point the
routines that determined the zonal neighbors as mentioned above. The original fix was to
have L7 query the other processes multiple times to gain off process neighbors. We will
use an alternative approach to reduce the number of queries to one.

One shot neighbor queries

One of the most important issues related to parallelizing unstructured (i.e., AMR)

meshes is how to minimize the effort of finding zonal neighbors off process. The
methodology is critical and a great deal of time and effort has gone into addressing this
issue.

Interprocess communication costs are a delicate balance between the number and size
of the messages being sent and the type of broadcasts being performed by the code. Big
payoffs await the clever use of data hierarchy and the choice of algorithm. In our AMR
scheme we capitalize on the data hierarchy associated with each zone by using a level
unique identifier called indx.

The identifier indx and its associated level provide unambiguous information about
each particular zones position in the global computational mesh. We begin by describing
how individual zones are identified.

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

Consider diagrammatically a zone at some level;

β

κ

nz

Figure 1 AMR Mesh Terminology

The indx of this zone is determined by the level of AMR refinement and the zonal
coordinates of the lower left corner of the zone, point nz (κ, β), then

indx = κ + (β – 1) kmax·2 level , (1)

where kmax is the level zero discretization along the abscissa. Note that the number

generated, indx, is ONLY unique for the level of AMR refinement of that zone.
Because indx designations for a given level are unique, we have the capability to

systematically generate any possible larger, smaller, and same sized neighbors in any
principal direction and for this number to remain valid across process. To do this we
must be able to efficiently generate neighbors from only the indx designation and the
level of AMR refinement.
β is the row that indx resides in and is calculated as follows;

β= INT ((indx (nz)-1)/γ) + 1 (γ = kmax·2 level (nz)) (2)

Then the position of indx in the top most row is given by κ;

κ = indx (nz) – (β-1) γ (3)

As an example, for indx at level one there are β-1 rows below the row on which indx

resides and κ-1 columns before indx. If we want to determine the daughters of indx we
can say that there are 2(β-1) rows of kmax·2 level (nz)+1 or 4(β-1) γ finer zones to count
before we get to the row on which indx resides.

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

On the row that indx resides there are 2(κ-1) finer zones before the position of indx.
So the correct indx for the lower left quadrant (Q1) for the first daughter (δ) is;

δ = 4(β-1) γ + 2(κ-1) + 1 = 2[indx (nz) – 1 + (β-1) γ] + 1 (4)

so given indx(nz), level, and kmax
we can compute indx’s daughters
(see Figure 2) as follows;

indx(nz)

ε

ε +1

δ + 1

δ

 Figure 2 indx’s Daughter Hierarchy
where ε = δ + 2 γ. (5)

Understanding this hierarchy allows us to
formulate a table (Table 1) and a diagram
(Figure 3) that defines the nearest principal
direction contemporary and daughter
neighbors for indx.

indx(nz)

φ

φ + 1

ε + 2

δ + 2

τ + 1

τ

ε - 1

δ - 1

 Figure 3 Finer Zoned Neighbors

 φ = ε + 2 γ (6)

 τ = δ - 2 γ (7)

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

Table 1. Neighbor Designations

Direction
of

Principle
Neighbor

Same level
(Contemporary

)

Finer level
(Daughter)

right indx(nz) + 1 δ + 2, ε + 2

left indx(nz) - 1 δ – 1, ε - 1
top indx(nz) + γ φ, φ + 1

bottom indx(nz) - γ τ, τ + 1

We require the neighbor routine to determine multiple depth zonal connectives.

While the depth of this zonal association is wholly dependent on the type of physics
being modeled, the process of finding a zonal neighbor remains the same.

To find a neighbor at a coarser level we must first determine which quadrant of the
parent zone the current zone lies in. This is because in our AMR scheme not all
neighbors can be at a coarser level than the existing zone since we require that zones can
only be rolled back into their parent and not combined into another grouping. Obviously
the concept of parent is only meaningful if the zone exists at a level greater then zero.

Figure 4 Zonal Quadrant
Designations

For a given zone, indx, at a given level,
we need a simple way of determining
which of its parent’s quadrants it exists
in. Let us first look at how the indx
designations changes as the levels
increase and decrease.
Using inductive reasoning we can
define two simple tests that will
unambiguously define the appropriate
quadrant.

Quad 3

Quad 4

Quad 1

Quad 2

r

z

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

Start with a level zero mesh (Figure 5), say 5x4

 Figure 5 Level 0 Mesh

If we look at resolving the bottom row zones (1-5) into level 1 zones, we get;

Figure 6 Bottom Row Refined to Level 1

which have the correspondences;

Figure 7 Correspondences between Level 0 Zones 1 and 3 and Daughters at Level 1

3
11

1

12

2

15 16

6 5

11 12 13 14 15 16 17 18 19 20

10 9 8 7 6 5 4 3 2 1

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

1

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al.

We also observe that the finer level rows alternate between odd and even numbers as
follows;

Level 0 Row 1

Level 1 Row 2

 LA-UR-04-8451

UNCLASSIFIED

Level 1 Row 1

Figure 8 Formal Relationships between Level 0 Row 1 and Refined Level 1 Rows

The row designation is given by β. By induction we determined that the quadrant

designations have the following unique characteristics (Table 2);
Table 2 Quadrant Designations

indx β Quadran
t

Odd Odd 1

Even Odd 2

Odd Even 3

Even Even 4

Once the quadrant for a particular zone is established in its parent, the possibilities for

coarser zoned neighbors can be defined. Below are four diagrams that show the
allowable coarser neighbors for each of the four quadrants;

Quadrant 3

Quadrant 4

nz

ntop (nz)

nrht (nz)

ntop(nz)

nlft(nz)

nz

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

Quadrant 1

nz

nbot (nz)

nrht (nz)

nbot (nz)

nlft (nz)

nz

Quadrant 2

Figure 9 Allowable Coarse Neighbors by Quadrant

So to calculate coarser zoned neighbors’ existent around nz we begin by calculating

the parent zonal indx of nz using the formula;
Π = INT ((κ+1)/2) + (INT ((β+1)/2) – 1)γ/2 [8]
Applying the restrictions observed in the four quadrant figures, we outline the

possible coarser level zones based upon the quadrant of indx;

Table 3 Allowable Coarser Neighbors

Neighbor Quadrant
1

Quadrant
2

Quadrant
3

Quadrant
4

Left Π - 1 Π - 1

Right Π + 1 Π + 1

Top Π + γ/2 Π + γ/2

Bottom Π - γ/2 Π - γ/2

At this point we have established an unambiguous and simple method for calculating

possible neighbors in each of the principal directions. But how do we establish which
one is actually present?

In our scheme every zone is stored in a level dependent hash table. This makes
finding a zone quick since trying to determine if it exists is simple. We hash the required
indx designation and go to the correct level dependent hash table and see if its there. If it

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

is in the hash table, it also points to the location of the physical data associated with that
zone so that no additional searching or sorting is required.

So if one were trying to find the left hand neighbor of indx at some level, the code
calculates the same and finer level zones possibilities and after checking the quadrant of
indx determines if a coarser level zone is possible to the left of indx. As the table above
shows, this could only happen if indx lies in quadrants 1 or 3. Thus the code checks the
same sized zone possibility first, followed by the finer resolved zones, and then it checks
for coarser zones.

During the coarse of the neighbor checks, the code tries to “fill in” logical
counterparts in the neighbors. In other words, if we determine that indx has a left hand
neighbor, НЖ, then it points to indx as the right hand neighbor of НЖ. While the
implementation of this approach is not that simple, this does adequately illustrate the
general methodology of accelerating the search for neighbors.

If all zones are on one process the search for neighbors will always fill in the required
connectivity template since all zones, by definition, must be on process. The searching
becomes problematic when we must go across multiple processes and when degenerate
conditions exist in which zonal associations span multiple processes.

Consider the following figure where zone НЖ is looking for its principal neighbors.
To the left is zone Л which is on the same process, as is the top neighbor Т. When we
look for the right hand neighbor Р it exists on a second process and the bottom neighbor
Б exists on yet a third process.

Figure 10 Neighbors on Three Processes

So how can we efficiently query for off process neighbors, zones we call shadows?
We know that we need to optimize the message size since setting up communication

between processes is computational expensive and that the number of communications
must be minimized.

Only the indx’s number and the zone’s level really need to be ‘brought together. To
do this we have chosen is to take advantage of our hierarchical data structure and process
all edge zone indx’s and relevant neighbors (to a user determined depth of connectivity)
together on process zero and then inform each process what they need to send to other
processes to provide them with all needed physical data.

Т

НЖ Л

Б

Р

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

So what’s involved?
Step 1 - Each process assembles a list of active edge zones (on process) and level
designations.
Step 2 – Each active edge zone is made negative and stored in a level dependent hash
table along with the process id.
Step 3 - Each active edge zone identifies all active neighbor zones (on process) to the
user defined depth of connectivity.
Step 4 - Each active neighbor zone identified in Step 3 and not an active edge zone is
stored in the same level dependent hash tables along with its process id. Note that
their indx is NOT made negative.
Step 5 – Each process sends lists to process zero where they are combined.
Step 6 – Each active edge zone searches for neighbors to the level of neighbor
connectivity appropriate for the physics being simulated. All zones that are identified
as being needed and not on its process have their indx, level, and process id tuple
placed into a list for that active edge zone’s process. In this instance a tuple is a row
of information associated with a zone.
Step 7 – We then replace the original process id in each tuple with that of the zone
identified as needing it as a shadow zone.
Step 8 – Tuples are then sent to the process from which it originally came. A zone
needed by more then one process will have more then one tuple produced.
Step 9 – Each of these modified tuple lists are then sent to their originating process
which assembles a data packet for each zone that needs to be sent off-process.
Step 10 – Each process sends its data packets to the appropriate processes in an
optimally sized message.
Step 11 – After all the processes have sent their data packets, all active edge zones
originally identified as NOT having a complete template are reprocessed with the
newly acquired shadow zones.
Step 12 – The simulation continues until the shadows need to be updated.
If the mesh does not need to be modified, the processes only send the new data
packets with the updated information.
If the mesh needs to be modified only those zones that have been changed are sent to
Process Zero and Steps 6 through 12 are repeated.
Process Zero maintains the original tuples list which will be updated as needed by
information sent from the others processes as the simulation proceeds.

From a data communications standpoint, this algorithm has;

UNCLASSIFIED
Proceedings from the NECDC 2004

Hrbek, G.M. et al. LA-UR-04-8451

UNCLASSIFIED

(1) one send from each process to process zero (tuples only)
(2) one send from process zero to each process (tuples only)
(3) one send from each process to one or more processes (physical data)

Reference
Barrett, R. F., The L7 Communication Library: User Guide, Reference Manual, and

Developer Guide, Los Alamos National Laboratory, Los Alamos, NM, LA-UC-03-
2179 (2003).

	Introduction
	Fortran 90/95 Syntax and Perl Scripting
	Incorporating New and Improved Computer Science Techniques
	One shot neighbor queries
	Reference

