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This report will discuss our progress to date in converting a two 
dimensional, coupled multi-physics simulation AMR code into a three 
dimensional ASC level code. We have tried to adopt a consistent Fortran 
90/95 syntax, adapt the code to run in a massively parallel environment 
and incorporate new and improved computer science techniques. (U) 

Introduction 
 
We are responsible for a two dimensional, coupled multi-physics simulation AMR 

code that helps maintain the reliability of the United States nuclear stockpile.  The code 
has been used for many years in a serial version, where we are constantly improving its 
capabilities through the inclusion of an ever widening suite of physics packages to model 
relevant phenomena in greater detail and to address new physical regimes. 

In order to maintain, update, and improve this legacy code, we have traditionally 
adopted an evolutionary approach.  This is because small but steady improvements 
integrate over time into large, but manageable improvements. 

However, once and a while it becomes necessary to adopt a more revolutionary 
approach and attempt to generate large amounts of substantial changes in existing code 
over a small period of time. This is the state that we find ourselves in with our code. 

Fortran 90/95 Syntax and Perl Scripting 
 
We feel that the adoption of modern syntax is extremely important because it insures 

the viability of the code into the foreseeable future.  The most important reasons for 
looking at a modern variant of Fortran are staffing, features, and performance. 

It is becoming ever more difficult to attract new team members who are familiar and 
comfortable with a traditional Fortran code structure.  Also, it is obvious that the 
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limitations of Fortran 77 are restricting the introduction of better computer science 
techniques that would greatly improve the capabilities and maintainability of the existing 
code.  Changing the code to Fortran 90/95 allows us to take advantage of improvements 
in the language, replacing obsolete and clumsy code with cleaner and better defined 
procedures. 

Identifying the types of code that can be easily changed to modern Fortran syntax is 
fairly straightforward.  The real problem is replacing the old syntax with new constructs 
which is extremely tedious and prone to error. 

This problem was overcome by applying Perl scripting which identified specific 
constructs and replaced them with modern syntax. This technique had the additional 
advantage of allowing us to ‘practice’ on a current copy of the code, perfecting the 
technique and fixing unforeseen and detrimental code replacement patterns.  Once we 
were satisfied with the replacements produced by a particular script we stored it in a 
‘master Perl script.’ Later this script is applied to the approved version of the code which 
became the ‘new’ code. 

 

Adapting the code to run in a massively parallel environment 
 
The approach that our team has taken to convert our legacy code from serial to 

parallel operation is to work within the existing Fortran framework of array variables and 
‘do loops’.   This decision dictated that we use subroutines to update the physics 
variables across processes at the conclusion of the appropriate do loops when we send the 
newly updated physics variables to the correct processes. 

We developed a set of data communication subroutines, called L7, that are called 
after relevant physics variables are recalculated during the course of the simulation.  L7 
provides a light-weight, efficient parallel processing data sharing abstraction that is 
especially appropriate for physics simulation applications that operate on unstructured 
meshes that change throughout the simulation. 

With the goal of implementing high quality scientific algorithms, the focus for most 
code developers on our team must be on the hard science, with as little intrusion of the 
computer science issues as is possible while still effectively addressing them.  The L7 
communication library provides such a capability. 

Just as was done for the syntactical replacements, Perl scripting was used to insert the 
thousands of calls to L7_UPDATE.  We then operated on the most recent version of the 
serial code, identifying poor and sometimes disastrous replacement patterns and fixing 
the script.  The resulting script got better and better to the point that we felt confident of 
the script’s robustness and that it correctly inserted L7_UPDATE calls on the right arrays 
for the appropriate do loops. 
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The general effect on our code is the insertion of calls to L7_UPDATE which 
perform the data transfer for each array.  A code fragment would look as follows; 

!  This subroutine call informs L7 about the details of the data decomposition and 
dependencies called at the beginning of the simulation.  

       CALL L7_SETUP ( … ) 
           … 
           … 
     DO I=1, NUM_IN_ARRAY 
!   Perform computations, modifying arrays A and V: 
          A = F ( I ) 
          V = G ( A ) 
           … 
           … 
          A = J ( A, V ) + E (G) 
      END DO 
!   Subroutine L7_UPDATE is called to collect the data needed by the processes 
       CALL L7_UPDATE ( A, … ) 
       CALL L7_UPDATE ( V, … ) 
 
We had observed that sometimes the Perl script added superfluous calls to 

L7_UPDATE which sent variables across process that did not need to be updated.  We 
accepted this undesirable effect as the cost of gaining a huge payoff by automating the 
L7_UPDATE insertions.  All agreed that the hit in performance that these unnecessary 
calls produced could be fixed manually and that code performance would only get better 
as we massaged the code.  The serial code was then ‘converted to parallel’ and the 
process of debugging has begun. 

Debugging is being performed using the Etnus TotalView™ debugging tool.   We 
started by running the now parallelized code on one process.  After satisfying ourselves 
that the code set up the problem correctly and ran on one process, we moved to multiple 
processes with NO AMR meshing and began to add physics modules of ever greater 
complexity on severely simplified problems (i.e., checker board meshes).   
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Recently, we have been working on the AMR meshing routines which do not convert 
directly to parallel with the insertion of the L7_UPDATES.  We have modified the 
existing code to ‘sort of work’ under the old meshing subroutines, but it has turned out to 
be suboptimal. 

We are now investigating improvements in the parallel code by incorporating a 
completely different approach to finding neighbors on and off process that relies on the 
hierarchical data structure of our AMR meshing scheme. 

 

Incorporating New and Improved Computer Science Techniques 
 
Continual advances in computer science must be incorporated into the legacy code.  It 

is sometimes a difficult balance between the practicality of replacing massive amounts of 
working code and the desire, or need, for measurable improvement in capability and 
performance. 

We needed to begin this process by using new computer science techniques to fix 
parts of the code that did not transfer well from serial to parallel.  As a case in point the 
routines that determined the zonal neighbors as mentioned above. The original fix was to 
have L7 query the other processes multiple times to gain off process neighbors.  We will 
use an alternative approach to reduce the number of queries to one. 

 

One shot neighbor queries 
 
One of the most important issues related to parallelizing unstructured (i.e., AMR) 

meshes is how to minimize the effort of finding zonal neighbors off process.  The 
methodology is critical and a great deal of time and effort has gone into addressing this 
issue. 

Interprocess communication costs are a delicate balance between the number and size 
of the messages being sent and the type of broadcasts being performed by the code.  Big 
payoffs await the clever use of data hierarchy and the choice of algorithm.  In our AMR 
scheme we capitalize on the data hierarchy associated with each zone by using a level 
unique identifier called indx. 

The identifier indx and its associated level provide unambiguous information about 
each particular zones position in the global computational mesh. We begin by describing 
how individual zones are identified. 
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Consider diagrammatically a zone at some level; 

β 

κ 

nz

 
Figure 1 AMR Mesh Terminology 

The indx of this zone is determined by the level of AMR refinement and the zonal 
coordinates of the lower left corner of the zone, point nz (κ, β), then 

 
indx = κ + (β – 1)  kmax·2 level ,                  (1) 
 
where kmax is the level zero discretization along the abscissa.  Note that the number 

generated, indx, is ONLY unique for the level of AMR refinement of that zone. 
Because indx designations for a given level are unique, we have the capability to 

systematically generate any possible larger, smaller, and same sized neighbors in any 
principal direction and for this number to remain valid across process.  To do this we 
must be able to efficiently generate neighbors from only the indx designation and the 
level of AMR refinement. 
β is the row that indx resides in and is calculated as follows; 

 
β= INT ((indx (nz)-1)/γ) + 1   (   γ = kmax·2 level (nz) ) (2)

 
Then the position of indx in the top most row is given by κ; 

 
κ = indx (nz) – (β-1) γ        (3) 
 
As an example, for indx at level one there are β-1 rows below the row on which indx 

resides and κ-1 columns before indx.  If we want to determine the daughters of indx we 
can say that there are 2(β-1) rows of kmax·2 level (nz)+1 or   4(β-1) γ finer zones to count 
before we get to the row on which indx resides. 
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On the row that indx resides there are 2(κ-1) finer zones before the position of indx.  
So the correct indx for the lower left quadrant (Q1) for the first daughter (δ) is; 

 
δ = 4(β-1) γ + 2(κ-1) + 1 = 2[indx (nz) – 1 + (β-1) γ] + 1   (4) 

 
 
 
 
 
so given indx(nz), level, and kmax 
we can compute indx’s daughters 
(see Figure 2) as follows; 
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                                                          Figure 2 indx’s Daughter Hierarchy 
where ε = δ + 2 γ.        (5)  

 
 
 
Understanding this hierarchy allows us to 
formulate a table (Table 1) and a diagram 
(Figure 3) that defines the nearest principal 
direction contemporary and daughter 
neighbors for indx. 
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   Figure 3 Finer Zoned Neighbors 

 φ = ε + 2 γ                                            (6) 
 
 τ = δ - 2 γ                                    (7) 
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Table 1.  Neighbor Designations 

Direction 
of  

Principle 
Neighbor 

Same level 
(Contemporary

) 

Finer level
(Daughter)

   
right indx(nz) + 1 δ + 2, ε + 2

left indx(nz) - 1 δ – 1, ε - 1 
top indx(nz) + γ φ, φ + 1 

bottom indx(nz) - γ τ, τ + 1 

 
We require the neighbor routine to determine multiple depth zonal connectives.  

While the depth of this zonal association is wholly dependent on the type of physics 
being modeled, the process of finding a zonal neighbor remains the same. 

To find a neighbor at a coarser level we must first determine which quadrant of the 
parent zone the current zone lies in.  This is because in our AMR scheme not all 
neighbors can be at a coarser level than the existing zone since we require that zones can 
only be rolled back into their parent and not combined into another grouping.  Obviously 
the concept of parent is only meaningful if the zone exists at a level greater then zero. 

    
 

 
                 

Figure 4 Zonal Quadrant 
Designations 

 

 
 

 
 
For a given zone, indx, at a given level, 
we need a simple way of determining 
which of its parent’s quadrants it exists 
in.  Let us first look at how the indx 
designations changes as the levels 
increase and decrease. 
Using inductive reasoning we can 
define two simple tests that will 
unambiguously define the appropriate 
quadrant. 
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Start with a level zero mesh (Figure 5), say 5x4 
 

   
   Figure 5 Level 0 Mesh 

 
If we look at resolving the bottom row zones (1-5) into level 1 zones, we get; 
 

 
Figure 6 Bottom Row Refined to Level 1 

 
which have the correspondences; 
 

 
 
Figure 7 Correspondences between Level 0 Zones 1 and 3 and Daughters at Level 1 
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Level 0 Row 1 

Level 1 Row 2 
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Level 1 Row 1 

Figure 8 Formal Relationships between Level 0 Row 1 and Refined Level 1 Rows 
 
The row designation is given by β.  By induction we determined that the quadrant 

designations have the following unique characteristics (Table 2); 
Table 2 Quadrant Designations 

indx β Quadran
t 

Odd Odd 1 

Even Odd 2 

Odd Even 3 

Even Even 4 

  
Once the quadrant for a particular zone is established in its parent, the possibilities for 

coarser zoned neighbors can be defined.  Below are four diagrams that show the 
allowable coarser neighbors for each of the four quadrants;                                                                               
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Quadrant 2 
 

Figure 9 Allowable Coarse Neighbors by Quadrant 
 
So to calculate coarser zoned neighbors’ existent around nz we begin by calculating 

the parent zonal indx of nz using the formula; 
Π = INT ( (κ+1)/2 ) + ( INT ( (β+1)/2 )  – 1 )γ/2     [8] 
Applying the restrictions observed in the four quadrant figures, we outline the 

possible coarser level zones based upon the quadrant of indx; 
 

Table 3 Allowable Coarser Neighbors 

Neighbor Quadrant 
1 

Quadrant 
2 

Quadrant 
3 

Quadrant 
4 

Left Π - 1  Π - 1  

Right  Π + 1  Π + 1 

Top   Π + γ/2 Π + γ/2 

Bottom Π - γ/2 Π - γ/2   

 
At this point we have established an unambiguous and simple method for calculating 

possible neighbors in each of the principal directions.  But how do we establish which 
one is actually present? 

In our scheme every zone is stored in a level dependent hash table.  This makes 
finding a zone quick since trying to determine if it exists is simple.  We hash the required 
indx designation and go to the correct level dependent hash table and see if its there.  If it 
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is in the hash table, it also points to the location of the physical data associated with that 
zone so that no additional searching or sorting is required. 

So if one were trying to find the left hand neighbor of indx at some level, the code 
calculates the same and finer level zones possibilities and after checking the quadrant of 
indx determines if a coarser level zone is possible to the left of indx.  As the table above 
shows, this could only happen if indx lies in quadrants 1 or 3. Thus the code checks the 
same sized zone possibility first, followed by the finer resolved zones, and then it checks 
for coarser zones. 

During the coarse of the neighbor checks, the code tries to “fill in” logical 
counterparts in the neighbors.  In other words, if we determine that indx has a left hand 
neighbor, НЖ, then it points to indx as the right hand neighbor of НЖ.  While the 
implementation of this approach is not that simple, this does adequately illustrate the 
general methodology of accelerating the search for neighbors. 

If all zones are on one process the search for neighbors will always fill in the required 
connectivity template since all zones, by definition, must be on process.  The searching 
becomes problematic when we must go across multiple processes and when degenerate 
conditions exist in which zonal associations span multiple processes. 

Consider the following figure where zone НЖ is looking for its principal neighbors.  
To the left is zone Л which is on the same process, as is the top neighbor Т. When we 
look for the right hand neighbor Р it exists on a second process and the bottom neighbor 
Б exists on yet a third process. 

 

Figure 10 Neighbors on Three Processes 
 
So how can we efficiently query for off process neighbors, zones we call shadows? 
We know that we need to optimize the message size since setting up communication 

between processes is computational expensive and that the number of communications 
must be minimized. 

Only the indx’s number and the zone’s level really need to be ‘brought together.  To 
do this we have chosen is to take advantage of our hierarchical data structure and process 
all edge zone indx’s and relevant neighbors (to a user determined depth of connectivity) 
together on process zero and then inform each process what they need to send to other 
processes to provide them with all needed physical data. 

Т 

НЖ Л 

Б 
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So what’s involved? 
Step 1 - Each process assembles a list of active edge zones (on process) and level 
designations. 
Step 2 – Each active edge zone is made negative and stored in a level dependent hash 
table along with the process id. 
Step 3 - Each active edge zone identifies all active neighbor zones (on process) to the 
user defined depth of connectivity. 
Step 4 - Each active neighbor zone identified in Step 3 and not an active edge zone is 
stored in the same level dependent hash tables along with its process id.  Note that 
their indx is NOT made negative.  
Step 5 – Each process sends lists to process zero where they are combined. 
Step 6 – Each active edge zone searches for neighbors to the level of neighbor 
connectivity appropriate for the physics being simulated.  All zones that are identified 
as being needed and not on its process have their indx, level, and process id tuple 
placed into a list for that active edge zone’s process. In this instance a tuple is a row 
of information associated with a zone. 
Step 7 – We then replace the original process id in each tuple with that of the zone 
identified as needing it as a shadow zone. 
Step 8 – Tuples are then sent to the process from which it originally came. A zone 
needed by more then one process will have more then one tuple produced.   
Step 9 – Each of these modified tuple lists are then sent to their originating process 
which assembles a data packet for each zone that needs to be sent off-process. 
Step 10 – Each process sends its data packets to the appropriate processes in an 
optimally sized message. 
Step 11 – After all the processes have sent their data packets, all active edge zones 
originally identified as NOT having a complete template are reprocessed with the 
newly acquired shadow zones. 
Step 12 – The simulation continues until the shadows need to be updated. 
If the mesh does not need to be modified, the processes only send the new data 
packets with the updated information. 
If the mesh needs to be modified only those zones that have been changed are sent to 
Process Zero and Steps 6 through 12 are repeated. 
Process Zero maintains the original tuples list which will be updated as needed by 
information sent from the others processes as the simulation proceeds. 
 
From a data communications standpoint, this algorithm has; 
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(1) one send from each process to process zero (tuples only) 
(2) one send from process zero to each process (tuples only) 
(3) one send from each process to one or more processes (physical data) 

Reference 
Barrett, R. F., The L7 Communication Library: User Guide, Reference Manual, and 

Developer Guide, Los Alamos National Laboratory, Los Alamos, NM, LA-UC-03-
2179 (2003). 
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