SANDIA REPORT

SAND2012-3840
Unlimited Release
Printed May, 2012

Navigating An Evolutionary Fast Path
to Exascale — Expanded Version

R.F. Barrett, S.D. Hammond, C.T. Vaughan, D.W. Doerfler, M.A. Heroux

Center for Computing Research

Sandia National Laboratories

Albuquerque, NM 87185

email: rfbarre,sdhammo,ctvaugh,dwdoerf,maherou@sandia.gov

J.P. Luitjens, NVIDIA Corporation, 2701 San Tomas Expressway Santa Clara, CA,
95050 jluitiens@nvidia.com

D. Roweth, Cray UK Ltd, 2 Brewery Court, High Street, Theale, Reading, RG7
5AH, United Kingdom, droweth@cray.com

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2012-3840
Unlimited Release
Printed May, 2012

Navigating An Evolutionary Fast Path to Exascale —
Expanded Version

The computing community is in the midst of a disruptive architectural change. The
advent of manycore and heterogeneous computing nodes forces us to reconsider every aspect
of the system software and application stack. To address this challenge there is a broad
spectrum of approaches, which we roughly classify as either revolutionary or evolutionary.
With the former, the entire code base is re-written, perhaps using a new programming
language or execution model. The latter, which is the focus of this work, seeks a piecewise
path of effective incremental change. The end effect of our approach will be revolutionary
in that the control structure of the application will be markedly different in order to utilize
single-instruction multiple-data/thread (SIMD/SIMT), manycore and heterogeneous nodes,
but the physics code fragments will be remarkably similar.

Our approach is guided by a set of mission driven applications and their proxies, focused
on balancing performance potential with the realities of existing application code bases.
Although the specifics of this process have not yet converged, we find that there are several
important steps that developers of scientific and engineering application programs can take
to prepare for making effective use of these challenging platforms. Aiding an evolutionary
approach is the recognition that the performance potential of the architectures is, in a
meaningful sense, an extension of existing capabilities: vectorization, threading, and a re-
visiting of node interconnect capabilities. Therefore, as architectures, programming models,
and programming mechanisms continue to evolve, the preparations described herein will
provide significant performance benefits on existing and emerging architectures.

Acknowledgment

The breadth of our work has required special efforts from a variety of entities and staff
within the Department of Energy and our industrial collaborators. The test beds used for
this research are funded by the Department of Energy’s NNSA ASC program and the Office
of Science Advanced Scientific Computing Research (ASCR) program. We acknowledge sup-
port from AMD Inc, Cray Inc and NVIDIA for providing detailed information on hardware
platforms and information relating to optimization opportunities.

Ted Barragy of AMD Inc, and John Levesque and Jeff Larkin of Cray Inc, provided
invaluable information and suggestions.

The CapViz team and others at Sandia provided the special skills and attention required
to maintain and support the testbed systems used in this work.

Contents

1__Introduction| 9

(.1 Related workl. 11
2 Programming Models and Environments| 13
[3 Methodology| 15

[4 Case Study: Initial Porting of Mantevo Mini-Applications to Future Com- |

[puting Architectures| 17
4.1 Processor Core Performancel 17
4.2 Intra-node performance| 19

4.2.1 Finite difference stencilsf. o 20

422 MmbFFona GPU ... 21

[4.2.3 The Impact of Memory Speeds| 23

4.3 Inter-node performance] 24
431 Onthe XKO 25

[4.3.2 Mapping processes tO ProCessors| 26

[4.3.3 Alternative communication strategies|........................... 29

b Conclusions and Future Workl 33
[References 34

Appendix

[A Programming Environment| 39
N 5 T2 39
A2 CUTE . o oo 39
B3 GPU . .o 40
N) P 40
[A.5 Dual-Socket, Oct-core AMD 2.4GHz Magny-Cours 6136|. 40
[A.6 Dual-Socket, Quad-core Intel 2.93GHz Nehalem 5570 40

(B MiniMD code examples| 41

[C MiniGhost code examples| 45

mini tudy 49
DI Introductionlco o 49

(2 Characterizing the Sensitivity of Charon and MiniF'E to Variation in DDR |
| Interface Frequency on Workstation-Class Multicore Processor Architec- |

[_tures 53
EI Tntroduction] 53
E.2 Test Beds and Methodl. 53
E3TResulls . ..o 54
[£.4 Summary and Conclusions|. 55

(' Remapping the parallel processes in CTH| 61

G _More on Cielol 63

List of Figures

[3.1 Steps in an Evolutionary Path to Exascale Readiness|.................... 15

4.1 Performance of varying miniGhost problems on an XK6 node| 20

1.2 Speedup of miniFE CUDA Implementation (NVIDIA Fermi M2090 vs. Hex-

Core 2. 7GHz E5-20800.o 21
4.3 Strong and Weak Scaling ot MiniGhost on XK6[. 26
[4.4 Cielo process mapl. 27
4.5 Performance of MiniGhost with MPI-rank remapping on Cielo| 29
4.6 CTH boundary exchange and computation| 30
4.7 Performance of miniGhost Communication Strategies on Cielo| 31

[D.1 Speedup of miniFE CUDA Implementation (NVIDIA Fermi M2090 vs. Hex-

Core 2.7GHz FE5-26801. o o1
[E.1 Memory Bandwidth: miniFE Finite Element Mini-Application| o7
.2 Memory Bandwidth: Charon Device Simulation Application| 58
.3 Memory Bandwidth: miniF'E compared to Charon| 59
[F.1 Performance of CTH with MPI-rank remapping on Cielo.| 62
(G.1 Cielo XE6 architecture. Image courtesy of Cray Inc.|..................... 63
(G.2 The XEG6 compute node architecture. Images courtesy ot Cray, Inc.| 64
(G.3 The XE6 Gemini architecture. Images courtesy of Cray, Inc.|.............. 65

List of Tables

4.1 Speedup of manual vectorization for miniMD force calculation and full appli- |
| cation runtimel 18
4.2 Relative Runtime Slowdown of miniFE and Charon from Reduced Memory |
| Frequency (Relative to Memory Frequency of 1333MHz, Lower is Worse)|. ... 24
[4.3 miniGhost average hop counts on Cielo| 28
[£.1 Test Bed Descriptions| 54

Chapter 1

Introduction

High Performance Computing (HPC) architectures of the coming decade will be significantly
different in structure and design than today. We have already seen clock rates and node
counts stabilize, and core counts increase. Now emerging are increased vector lengths, greater
levels of hardware-enabled concurrency and new memory architectures that are strongly
non-uniform and may soon lose cache coherency. Adoption of new, potentially immature,
technologies presents many challenges including hardware reliability, scalability and, in the
case of many proposed technologies, programmability and performance portability. Since
proposed designs represent a radical departure from existing petascale technologies, new
research projects have started in order to identify and develop solutions for many of these
problems. One of the greatest concerns facing programs such as the Advanced Simulation
and Computing (ASC) initiative in the United States is how best to port full applications that
have been developed over nearly two decades. These applications are considerable in size,
with many comprising of millions of lines of source implemented in a variety of programming
languages (some of which use non-standard features) and utilize tens of supporting libraries.
ASC in particular, many of these applications codify significant bodies of knowledge which
have developed over multiple generations of scientists. Alongside the demands of porting
such large codes are the continued requirements associated with on-going programmatic-
level work. Put simply, science discovery cannot stop while applications and algorithms are
rewritten for future systems and re-validated to ensure correct scientific output.

In this context, many in the HPC industry question how full science applications will be
ported to new architectures. On one side of the debate is a view that significant application
rewrites will be required in order to obtain the full potential performance of new hardware.
On the other side is a view, described above, that the pedigree of existing code and the
complex science which it embodies must be gradually evolved and augmented over time for
new platforms so that scientific delivery can continue and the cost associated with porting is
reduced or at least amortized. We regard these views as the revolutionary and evolutionary
approaches to Exascale, respectively.

The work reported in this paper (and in expanded version in [5]) describes an initial
series of experiments performed in the evolutionary context. We note that studies using
revolutionary approaches are also underway and will be reported in future publications. Our
work focuses on three levels of porting which we expect to be commonplace choices for the
modification of codes on future platforms: (i) optimization within the processor core, typi-

cally investigating the improvement of vector-level parallelism and the modification of code
to exploit near memory subsystems; (ii) optimization of code for the compute node as a
whole using techniques such as thread-level parallelism, introduction of compiler directives
to drive compute offloading, data motion reduction and adaptation for node-level topolo-
gies such as non-uniform memory architecture (NUMA) domains, and, (iii), optimization
of inter-node communication to improve message pipelining or to utilize novel features in
advanced network interconnects.

The specific contributions of this work are:

e Documented porting and analysis of several key Sandia mini-applications (miniapps)
running on advanced computing architectures. The use of miniapps from the Mantevo
suite enables us to draw conclusions that are relevant to production codes used by
the National Nuclear Security Agency (NNSA) and ASC programs. We employ novel
technologies to aid in this porting including traditional OpenMP pragmas as well as
introduction of OpenACC directives to enable execution on GPUs, and intrinsic func-
tions to improve levels of compiler vectorization;

e Benchmarking the effects on runtime of changes in hardware and environment con-
figuration, in particular changes in memory bandwidth, MPI-rank placement and the
varying use of threads/MPI ranks to use available processor resources. Such studies en-
able us to investigate the opportunity for optimizations outside of traditional changes
in source code and reflects our on-going view that optimization of runtime encompasses
a wide range of options including software configuration as well as design. We note
that such options can have significant impact at scale and demonstrate the effect of
such options for runs of over 16,000 processor cores;

e Highlighting of several architectural parameters which serve as bottlenecks or limits to
further improvements in performance. A natural effect of early generations of hardware
is that a number of optimization opportunities is likely to still be present in the design.
In our work we use miniapps to identify these and discuss how, when addressed, these
may provide improvement in runtime performance.

Due to the various, non-uniform levels of maturity of the systems used for this work we do not
provide direct hardware-to-hardware comparison, instead preferring to use relative measures
of improvement for each experiment. As the hardware and software stacks associated with
platform develop further we will intend to provide future publications which will enable
direct performance comparisons to be made.

10

1.1 Related work

The number and breadth of challenges associated with preparing for multi-petascale and
exascale-class computing are significant and have helped to create a rich set of academic
investigations touching on comparison of computer architectures [19, 2], optimization for
specific classes of hardware [13, 8] and programming languages and mechanisms [25, 2T, [T6] 1] .

11

12

Chapter 2

Programming Models and
Environments

Programming models (abstractions used to reason about program design and implemen-
tation) and programming environments (compilers and tools used to implement software,
correlated in design to one or more programming models) are some of the most challenging
and dynamic elements on the path to exascale computing. Single program multiple data
(SPMD) built on top of MPI has by far been the dominant programming model and envi-
ronment pair since the ermergence of distributed memory computing two decades ago. There
is overwhelming evidence that single-level SPMD (statically assigning a process per core) is
insufficient to achieve optimal performance. Even more importantly, this approach will not
scale with the performance potential of future systems. If we are going to continue tracking
future performance trends, we need to augment or replace existing strategies.

Revolutionary approaches in this area arguably include Chapel [14], ParalleX [16] and
Swarm [I], since these languages or execution models, or both, would require a complete
redesign of an existing application. Although future systems may demand such efforts, most
application teams are using a more evolutionary approach, sometimes called MPI+X, by
combining SPMD (via MPI) with one or more node-level programming environments such
as OpenMP [12], Intel Threading Building Blocks (TBB) [23], CUDA [22] or C++11 threads.

Although MPI+X may appear incremental, it is in fact very challenging to implement.
In order to successfully scale on current and future heterogeneous and manycore nodes,
the computational kernels of an existing (MPI) application must be redesigned to support
dynamic partitioning and scheduling of work by the node-level runtime system. Typically this
is most easily done by encapsulating kernels in stateless functions that can be parametrized
to dynamically execute some runtime-selected portion of work such that, when scheduled to
a processing element, the computation is performed efficiently. All node-level programming
models and environments are compatible with this approach and some, such as TBB and
CUDA, explicitly require it.

Interestingly, by going through the above refactoring processing, we not only make
MPI+X work well, but we position ourselves well for any future programming and exe-
cution model. The effort of exposing and encapsulting parallelizable computations in this
manner is intrinsically valuable. Furthermore, by optimizing node-level performance for
runtime systems such as CUDA, we also move in the direction of hiding latency via task

13

concurrency. Optimizing occupancy rates in CUDA is a harbinger of the kind of reasoning
needed for efficient use of ParalleX and Swarm.

14

Chapter 3

Methodology

~
g 'R
o> - Tuning Port to Tune Tune © O
cn'§ Eélgggg Core & OpenMP/ for for Inter- @ :%
SR Cache OpenACC Node Node se
2 w £
=
w

Multiple-Socket /

hread Optimizaton MPI

Vectorization = Threading T

Figure 3.1. Steps in an Evolutionary Path to Exascale
Readiness

In this paper we document our experiences with attempting an evolutionary migration of
code from existing petascale machines to exascale-class prototype hardware. The focus is
therefore on maintaining as many of the existing investments in code as can be productively
retained and, where possible, adapting the structure for new classes of hardware. Towards
this end have empirically found our code modifications follow a largely similar path regardless
of the hardware technology being employed. Figure |3.1]| represents our migration strategy
that starts with our existing code and proceeds through a series of steps to port and optimize
this for future systems. In practice some of these steps may occur in parallel or out of the
order described. The principle steps of our porting have so far been the following:

1. Vectorization

2. Threading

3. Tuning for the Compute Node and

4. MPI/Inter-Node Parallelism
The stages of this process capture our intent to introduce improved levels of parallelism into
our code which will be essential for application performance in the coming decade. Whilst

the specifics of how this parallelism is presented to the compiler or the machine are unique to
each hardware platform, the locating of parallelism is primarily a property of the algorithm

15

being used. Our experience is that the knowledge of parallelism obtained through this process
can therefore be re-used between different compute architectures and programming models
reducing the time and cost associated with porting.

16

Chapter 4

Case Study: Initial Porting of
Mantevo Mini-Applications to Future
Computing Architectures

In this last section of the paper we describe a series of short case studies which describe the
value of mini-applications in assessing the capabilities and characteristics of future computing
architectures and programming models. In so doing we are able to survey state of the art
prototype computing architectures and provide initial commentary on how applications may
be mapped to them using evolutionary modifications to the application. In order to separate
the various levels of tuning being conducted, our results are split into three sections: (1)
optimization within the processor core; (2) optimization within a whole compute node and,
(3), optimization between compute nodes.

In this section we use the term core, processor, and node in a flexible context since precise
terminology is still being refined throughout the community. For purposes herein, we view
a core as being as a unit which is capable of performing calculation including traditional
processor cores or lightweight cores as found in new hardware types such as a GPU; we view
a processor as essentially being a socket and a node is a network endpoint.

4.1 Processor Core Performance

Future computing hardware is expected to provide increased parallelism in the processor core
through the availability of, and increased width of, vector registers which are able to perform
a single instruction over multiple pieces of data simultaneously. With the introduction of
MMX instructions by Intel in 1995 and subsequent additions in the form of SSE and latterly
AVX, many of the available floating-point operations in commodity processors require codes
to exploit high levels of data parallelism in order to achieve a high proportion of peak chip
performance. A well tuned compiler can very often detect opportunities for vectorization
providing the code is structured in a manner that the compiler can safely determine the
introduction of vectored instructions will not violate the original statement ordering. Where
code control is complex or inter-statement dependencies exist, compilers are often unable to
generate vectorized code resulting in slower execution. One potential approach to addressing

17

Table 4.1. Speedup of manual vectorization for miniMD
force calculation and full application runtime.

Force Total
(Speedup (x)) | (Speedup (x))

AMD A8 3850 APU, 2.90GHz, SSE4a
Single Precision 1.26 1.21
Double Precision 1.56 1.49
Intel Westmere 5690, 3.47TGHz, SSE4.2
Single Precision 1.57 1.43
Double Precision 1.42 1.33
Intel SandyBridge, 2.60GHz, SSE4.2
Double Precision \ 1.85 \ 1.60

this issue is for the programmer to employ manual vectorization through the introduction
of intrinsic operations — a library of routines which communicate how the developer would
like vectorization to occur. Such code constructs allow developers to easily express low-level
vector parameters and data operations that either expand directly to assembly instructions
or provide programmer intent to the compiler allowing it to manipulate these statements into
vectorized operations. Typically not for the faint of heart, we apply this approach herein in
order to illustrate the potential performance advantages with a view that maturing compiler
technology may provide additional opportunities for vectorization in the future and that the
performance identified helps us to assess what the hardware may in fact be capable of.

Our initial inspections into poorer than expected performance of miniMD on commodity
processors has shown that the force compute loop (which is responsible for up to 90% of
serial runtime) cannot be vectorized due to the complex pointer behavior being employed
as well as sparse operand loads from memory. The use of double pointer indirection to map
data structures into the compute kernel prevents the compiler from determining whether
vector instructions can be utilized without violating ordering constraints despite a valid
vectorization being possible from an algorithmic perspective.

The force function computes the interaction forces between each pair of atoms that
exist in a specific neighbor list. Due to the sparse nature of the atom information and the
condition operations associated with identifying whether the atom pair is within a cut-off
zone, vectorization of this code is particularly challenging. However, the high proportion of
execution associated with the function makes this a candidate for optimization. In order
to address the poor level of vectorization the main force compute loop was instrumented
with vector intrinsic operations enabling the compiler to generate code with increased levels
of vectorization. Table shows the speedup obtained through the use of SSE4 intrinsic
operations on several processors. Despite the SandyBridge being capable of executing AVX
instructions, we have provided results from our SSE ports to enable a comparison.

SSE provides a 128-bit wide vector unit (four single-precision operands or two double-
precision operands) enabling a maximum speedup of floating point calculations equivalent

18

to the vector width. Although each operation within the force kernel is vectorized using an
intrinsic operation, the speedup obtained is lower than the theoretical maximum as some
instructions over vector registers are serialized within the processor core and other architec-
tural bottlenecks such as memory operations are not executed in parallel. The output of the
vector intrinsic instrumented codes is not identical to non-vectored source as the operations
may lead to a change in rounding effects, but has been thoroughly tested to ensure the
results are acceptable to domain scientists. Our experience of rounding has shown that the
introduction of intrinsics can yield subtle changes in output and even execution behavior
and therefore careful design and post-implementation testing are required.

As we look forward the coming arrival of the Intel MIC architecture with an increased
vector width, we predict that the addition of intrinsics to key application kernels may be-
come more commonplace. We further expect the structure of the refactored intrinsic force
kernel to be reusable on MIC platforms moving forward with only minor changes to adapt
to the wide vector registers. Within the evolutionary context, adaption of key kernels using
intrinsics therefore allows us to migrate applications to new platforms and provide signifi-
cant improvement in execution speed with changes isolated to only short sections of code.
Although intrinsics are not available for the GPU in the same sense, the knowledge of al-
gorithm parallelism is fundamental to informing us of future ports to such architectures.
Furthermore, many of the improvements being prepared for future exascale-class platforms
can be reused on a number of our existing systems.

4.2 Intra-node performance

Effectively exploiting the performance potential provided by increasingly complex node ar-
chitectures is currently seen as one of the major challenges for on-going code development.
In this section we provide three examples illustrating several issues that the application de-
veloper may need to consider on an increasingly complex compute node. Specifically we
focus on : (1) the porting of miniGhost to NVIDIA GPUs using the recently announced
OpenACC compiler directive toolkit, demonstrating initial identification of parallelism in
the algorithm and the performance obtained from OpenACC; (2) the porting of the miniFE
Finite Element assembly phase to NVIDIA GPUs using CUDA which identifies the high level
of register spilling present in the code and discusses how this will be addressed in future GPU
systems and, finally, (3) a study of miniFE assembly and solve phase sensitivity to changes
in memory bandwidth. The issues raised in these small studies demonstrate the value of
mini-applications in identifying potential performance bottlenecks or sensitivities. The in-
formation being obtained through this work is able to drive analysis of larger applications as
well as hardware and can have real impact in informing our hardware selection choices and
subsequent optimization activities.

19

MPI+OpenMP (4 Ranks x 4 Threads)
MPI (16 Ranks) &x=<=
OpenACC messen
1.5
o
=
1] e
3 5 >
a 1r X > > -
> x] he
° 7 < <
15} o % %
2 * 9 ¢ : < < _
%] v < A 9 ;;] <] < <]
< > bt > ", " s,
X] \\ < < < 34 V; S
o8 /:\ :; 5’ <> \:; <>) ii 2
~ < < ;)] <] 3
<l 9] o))
s < < : /;/ s 3 2 {
* . g) y o) o
0 2 O
8 <8)) %,) . 2
7, é’g* *79(9* *955‘* *955* *955‘*5 *5/'9*5 *579*5 *579* 17 0o, 3
e TRy R 6 A A Y 05, g,

Mini-Ghost Problem Size

Figure 4.1. Performance of varying miniGhost problems
on an XK6 node

4.2.1 Finite difference stencils

Computation in MiniGhost is based on a triply nested loop, whereby each point in the
domain is updated as a function of the average over adjacent points. The simplicity of this
computation and the ability to easily configure varying levels of compute complexity let us
expose and explore numerous issues expected to significantly impact the performance of full
applications that employ difference stencils and the halo exchange.

The hybrid MPI + OpenMP version began with a straightforward wrapping of the outer-
most loop the !'$0MP PARALLEL DO directive. It was also then a straightforward port to
OpenACC, replacing this directive with the !$acc parallel loop directive. However, on
a node with a memory hierarchy, such as that on a dual-socket node, the memory affinity
is different: with OpenMP, the arrays should be physically distributed across the memory
hierarchy of the processing cores (via first-touch) while with a hybrid off-load system, the
entire array should be resident on a single processor’s memory so that the movement to the
device is straightforward. The MPI-everywhere version automatically maintains processor
core and memory affinity.

The stencil loop required no additional use of OpenMP directives. The OpenACC version
enabled the means for effectively mapping the data onto the GPU, required to achieve
acceptable performance. The Fermi processor is organized into 16 groups of 32 cores, so a
directive is used to map the computation as x — y slices of GRID to 16 blocks (num_gangs),
mapping them each as vectors (vector_length) of length 32 onto the 32 core warps.

20

Matrix Assembly m—
Matrix Generation besssse
CG Solve e

5 Overall T

Speedup over CPU (x)

10 20 30 40 50 60 70 80 9 100 110 120 130 140 150
N

Figure 4.2. Speedup of miniFE CUDA Implementation
(NVIDIA Fermi M2090 vs. Hex-Core 2.7GHz E5-2680

Single node performance on Curie of the MPI-everywhere, MPI4+OpenMP, and MPI+OpenACC
implementations, illustrated in Figure 4.1}, shows that the GPU gives a speedup over the MPI-
everywhere ranging from around 25% to 80% as the amount of work increases. However, if
the data to be operated on must be moved to and from the GPU, the advantage reverses. The
best MPI+OpenMP configuration of 4 MPI ranks per node each with 4 OpenMP threads
outperforms the MPI version by about 10%, but this quickly reverses as the problem size
increases, with performance decreasing to 80% of the MPI version. It is beyond the scope
of this paper examine this more closely, though its likely that this is an artifact of the first
generation Interlagos node architecture and thus its reasonable to expect that it will be
addressed in the next generation Trinity node.

Direct comparison of performance between the host and device is problematic since mem-
ory sizes differ significantly, a situation common to their sorts of architectures. On Curie,
the GPU device has significantly less memory that that available to the host (6 GBytes vs.
32 GBytes), and therefore the node can execute the larger problem shown on the graph
while the GPU cannot. From an application perspective, the ultimate comparison then is
multi-node strong scaling, examined in Section [£.3.1]

4.2.2 MiniFE on a GPU

MiniFE consists of three principle phases: generation of the matrix structure, assembly of
the finite-element matrix, and the solution of the sparse linear system using the Conjugate
Gradient method. Here we focus on key performance limiters in porting the matrix assembly
phase of the algorithm to an NVIDIA GPU. using the CUDA programming model.

21

The assembly phase involves computing the element operators for each element and then
summing the operators into a final matrix. We parallelize this phase by having threads
operate on separate elements with the computation of the element operator and the summa-
tion into the linear system performed within a single kernel. Although the computation of
the element operators is embarrassingly parallel, the summing into a linear system requires
synchronization to avoid data race conditions. The use of a single kernel is preferred in this
instance because it avoids having to store the state for the element operator and then having
to later re-read that state during summing into the linear system.

By using one thread per element we were able to leverage the original code for the
construction of the element operator subject to additions for compilation to a CUDA kernel
and a modification of the code to use the ELL sparse-matrix representation [7] of the original
compressed-row (CSR) form. Atomic addition operations are employed in the kernel to
prevent race conditions in updating the global matrix.

The computation of the element operator involves a number of floating-point heavy op-
erations including computing the matrix determinant and the Jacobian. The large number
of floating point operations suggest that the performance should be FLOP limited but anal-
ysis using NVIDIA’s compute profiler has shown that the performance is in fact bandwidth
bound due to register spilling.

The cause of this register spilling can be identified as the element operator which requires
a large thread state, including 32 bytes for node-IDs, 96 bytes for node coordinates, 512 bytes
for the diffusion matrix, 64 bytes for the source vector as well as data to store the Jacobian
and matrix determinant. The Fermi GPU architecture supports up to 63 32-byte registers per
thread limiting the total register storage to 252 bytes. As a result of this limit, any additional
state must be spilled to at least L.1 cache and potentially further to L.2 or memory. Since the
L1 cache can be up to 48kB in size but is shared by 512 threads this can result in as little as
96 bytes of L1 cache storage per thread. In addition, the L2 cache is 768kB shared by 8192
threads, again leaving only 96 bytes of storage per thread. Since L1 and L2 are insufficiently
sized to store the required operator state, registers are spilled to global memory causing the
computation to become bandwidth bound.

One method to improve the performance of bandwidth bound kernels is to increase the
occupancy. However, in this case, the kernel’s occupancy is limited by register usage. Since
the register usage is higher than is available in hardware it is not possible to increase this
occupancy without further increasing register spilling.

We tuned the kernel to reduce register usage, including algorithmic changes that exploit-
ing symmetry in the diffusion operator and reordering computations so that data is loaded
immediately prior to being used. We have also applied several traditional optimization tech-
niques including pointer restriction, inlining of functions, and unrolling of loops. Finally,
we also position a portion of the state in shared memory and experimented with L1 cache
sizes. The best performance is achieved by placing the source vector into shared memory
and enabling a larger L.L1 cache. Whilst these optimization greatly reduce register spilling,
512 bytes of state is still spilled per thread. To ensure fair comparison, all optimizations

22

that were applicable to the original CPU code were back ported also improving the CPU
performance.

The performance of the CUDA version of miniFE was compared to the MPI-parallel
version of miniFE running on a Tesla M2090 and a hex-core Intel Xeon 2.7GHz E5-2680.
We tested for various problem sizes of N3 hexahedral elements. The speedup for each of the
three phases of the algorithm is reported in Figure 4.2]

The assembly realizes a 4x speedup and the solve phase is 3x faster. The generation of
the matrix structure exhibits a slowdown because it is computed on the host in CSR format,
transferred to the device, and then converted to ELL format. Whilst possible to move this
computation to the device, the low proportion of time consumed by these operations does
not dominate performance.

Future generations of NVIDIA systems are expected to address some of the findings from
this study, including an increased number of registers per thread and increases in the size of
L1 and L2 memories. Improvements in the CUDA compiler may also lead to a reduction in
the number of register spills or the impact that register spills will have on execution time.

4.2.3 The Impact of Memory Speeds

It is widely accepted that the performance of the memory sub-systems used in future exascale
computers will improve substantially. This is driven by a realization that application per-
formance, even on contemporary systems, is frequently limited by the “memory wall” [20].
If compute devices experience rapid improvements in calculation throughput, memory will
need to be improved significantly if applications are not to become entirely throttled on
memory access. However, the question of whether the improvement in memory performance
will exceed or even match that of compute hardware is still unanswered. Therefore, there is
a very real risk that applications will need to execute using lower memory bandwidth in the
future.

In this section we describe a study in which we alter the clock rate of memory compo-
nents in a system through BIOS control, effectively slowing the rate at which memory can
process requests. This enables an analysis of code performance where there is a growing
divergence between compute throughput and that of memory (which may be the effect of
significant improvement in compute hardware that is unmatched by equivalent improvement
in memory subsystems). Table presents the relative effect on sections of miniFE and
Charon (the parent application to miniFE) runtime as the clock rate of memory is lowered
from 1333MHz to 1066MHz and 800MHz. The processor used for this study is a dual-socket
oct-core AMD Interlagos running at 2.9GHz. The assembly time in miniFE and the Jacobian
generation of Charon is unaffected by the change indicating that these sections of code are
not predominantly memory bound, whilst the runtime of the conjugate-gradient (CG) solver
increases by approximately 16% in the 800MHz case. Of interest is that miniFE is able to
closely track equivalent changes in its parent code for the solve phase (which in both codes

23

Table 4.2. Relative Runtime Slowdown of miniFE and
Charon from Reduced Memory Frequency (Relative to Mem-
ory Frequency of 1333MHz, Lower is Worse)

| 800MHz | 1066MHz | 1333MHz
miniFE Mini-Application

Finite Element Setup 0.996 1.000 1.000
CG Solve 0.841 0.957 1.000
Charon Device Simulation Application

Prec/Newt 0.960 0.980 1.000
Jac/Newt 1.000 1.000 1.000
Adv/Newt 0.920 0.970 1.000
Solve/Newt 0.840 0.940 1.000

is the dominant contributor to runtime) giving us confidence in the relevant of our studies
using mini-applications.

From this short study we can begin to assess the likely impact that a reduced per-core
memory bandwidth may induce. A runtime increase of 16% is approximately half of the drop
in memory bandwidth, indicating that miniFE and Charon are clearly highly sensitive to
memory bandwidth in their solve phases but that some of the bandwidth loss can be covered
either through efficient use of the memory hierarchy or latency hiding by the processor
through the use of prefetching and deep instruction pipelines.

4.3 Inter-node performance

Our goal of an evolutionary path includes the assumption that inter-node parallelism will
continue, in the foreseeable future, to be implemented using functionality provided by MPI.
(This does not rule out the use of MPI in a revolutionary approach.)

In this section we explore some issues associated with the ubiquitous nearest neighbor
communication pattern. Our work is informed by CTH, an explicit three dimensional multi-
material shock hydrodynamics code [I8]. CTH models high-speed hydrodynamic flow and
the dynamic deformation of solid materials, and solves the equations of mass, momentum,
and energy in an Eulerian finite volume formulation. MiniGhost, shown to effectively repre-
sent the inter-process communication requirements of CTH, provides a tractable means for
exploring strategies for improving the performance characteristics of the full application.

We begin by examining miniGhost on Curie. Next, we address a performance issue
associated with process-to-processor mapping, noticeable only at large scales. Then we
investigate an alternative to the very large message strategy implemented in CTH and many
other applications.

24

4.3.1 On the XK6

As seen above, Curie’s GPU provides a significant performance capability for the compu-
tation of difference stencils, but the cost of moving data between the host and device on a
node overwhelms the performance of the computation. To minimize this expense, all arrays
are maintained on the device, and only the halo is transferred to and from the host for MPI
handling. The MPI4+OpenACC implementation uses one MPI rank per node, a (current)
limitation of the OpenACC implementation used here.

Problem sets were configured to mimic the profiles of CTH. Weak scaling experiments
demonstrate the power of the GPU in comparison with all of the processor cores for the
MPI and MPI4+OpenMP implementations. Strong scaling experiments were configured to
demonstrate the manner in which a domain scientist would use Curie’s capabilities, high-
lighting the effects of maintaining the state on the GPU. Representative results are shown

in Figure

The weak scaling problem involves 16 variables on a 256 x 256 x 512 grid per node. This
ensures that the MPI and OpenMP processes on a host node have a reasonable amount of
work (128 x 128 x 128 per rank or thread, resp.) while still allowing that work to fit onto the
GPU device. Although the communication cost dominates the MPI4+OpenACC runtime, the
speed of the computation allows it to maintain its advantage over MPI and MPI+OpenMP.
However, the gap closes at higher node counts.

The strong scaling problem involves 20 variables operating on a 1024 x 1024 x 1024
grid. Most notable is that due to the GPUs” memory constraint relative to the host node,
the OpenACC implementation requires a minimum of 32 nodes while the MPI implementa-
tions can run on eight nodes. However, at that scale, the MPI+OpenACC implementation
out-performs the MPI implementation by about 40%. The MPI4+OpenMP implementation
becomes competitive with the MPI implementation at higher node counts, a trend we see
for the strong scaling results as well as in the largest core counts on Cielo, discussed in the
following sections.

The MPI and MPI+OpenMP implementations spent 10-20% and 5-10% of runtime, re-
spectively, in communication, highlighting the computational issue for OpenMP. As seen in
the following sections MPI+OpenMP outperforms MPI-everywhere on Cielo at very high
scales. Interprocess communication is the sum of the work required to move data between
the parallel processes, which includes the time spent packing and unpacking the message
buffers as well as the time spent in MPI. For the OpenACC implementation, then, this in-
cludes the time spent moving the message buffers and partial sums between the host and
device, resulting in mid-90% proportion of runtime spent in communication. We optionally
aggregated the variable boundaries into a single array for host-device movement, but this
increased the cost since the individual transfers could be partially hidden by the packing
of the other buffers. This demonstrates that the data movement is impacted by the inject
rate mores than by either latency or bandwidth: the PCIx host-device connection is able to
inject the transfer and quickly return to packing the next buffer.

25

N A A
60
03 S SRS SSSSEREPPEREEEES e ccm———— J— o +-=mmmT o +
........... a
B 4D [a a— -
S
1727 S B
° I ———— £
E 30"
g
>
o
20
10 MPT+OpenMP (& MPT Ranks + 4 OpenMP Threads per Node) —a—
MPI (16 Ranks per Node) ---+---
0 MPI + Op'e_nACC (1 MPI R_'a_nk + 1 GPU per Node) &
1 2 4 8 16 32 64
Nodes
(a) Weak scaling: 256x256x256 grid per node,16 variables
400 ; !
MPI+OpenMP (4 MPI Ranks + 4 OpenMP Threads per Node) —&—
I MPI (16 Ranks per Node) ---+---
350 MPI+OpenACC (1 MPI Rank + 1 GPU per Node) - g |
300
— . \
4 250 S
g .
2 200
= \\
g 150 > \
)
100 | TR
S
""""""" e
50 e
0
5 10 15 20 25 30 35 40 45 50
Nodes

(b) Strong scaling, 1024x1024x1024 grid, 20 variables

Figure 4.3. Strong and Weak Scaling of MiniGhost on
XK6

Its important to note that OpenACC is a new specification, and supporting compilers
have only recently appeared. Our hope is that compilers will improve over time since we
found this programming methodology to be rather easy to use.

4.3.2 Mapping processes to processors

CTH provides a typical example of a code team adapting to computing architectures: in
order to avoid message latencies and exploit global bandwidth, computation is performed
across as many variables as possible before an boundary exchange across those variables can
be consolidated in to a single message per neighbor. But in a recently completed broad-
based study of Cielo capabilities [3], the nearest neighbor boundary exchange encountered

26

|95||94||93||92||91||90

— T T <
~

/:/_\\ \\\. .
L7 |] ve] 15 4] rafd s] 12

| A [o] o |[87 |[*e

4 1 | ™o

5 4 3 2

16

Figure 4.4. Cielo process map

significant scaling degradation beyond 8,000 processor cores.

The problem was traced to the mapping of the parallel processes to the three dimensional
torus topology, illustrated in Figure [£.4] Neighbors in the z direction required a maximum
of one hop and in the y direction a maximum of two hops. But the number of hops across
the network (referred to as the Manhattan distance) was shown to increase significantly in
the z direction. This combined with the very large messages of a typical CTH problem set
(e.g. for the “shaped charge” problem, 40 three dimensional state variable arrays generated
message lengths of almost 5 MBytes) resulted in poor scaling beginning at 8k processes, a
trend that accelerated after 16k processes.

In response, we implemented a means by which the parallel processes could be logically
re-mapped to take advantage of the physical locality induced by the communication require-
ments. In the normal mode, CTH (and miniGhost) assigns blocks of the mesh to cores in
a manner which ignores the connectivity of the cores in a node. On Cielo, as with other
Cray X-series architectures, cores are numbered consecutively on a node, and this numbering
continues on the next node. Blocks of the mesh are assigned to cores by traversing the blocks
of the mesh in the x direction of the mesh starting at one corner of the mesh. Once those
blocks are assigned, the next block assigned is the block one over in the y direction of the
mesh from the first block assigned. The mesh is again then traversed in the x direction and
blocks are assigned to cores. This process is continued until there are no more blocks in the
y direction. The next block assigned is then the first block in the z direction from the first
block assigned. The blocks of the mesh with this z value are then assigned as the first blocks
were assigned. This process is then repeated until all blocks in the mesh have been assigned
to cores in the machine.

27

Number of | Regular Order Reordered
MPIranks | X | Y Z XY | Z

16 0.0 0.0 0.0 |0.0/0.0]0.0
32 0.0]0.0| 0.0 |0.0/0.0]0.0
64 0.0]0.0| 03 |0.003]0.0

128 0.0[00| 1.0 [0.0 05 |0.0
256 0.0]0.0| 1.0 | 0.0 0.5]0.3
512 0001 2.0 |00/|06]04
1024 0003 21]02|10]0.7
2048 0003 27 |03 |12 1.2
4096 0003 37 (031212
8192 0005 51 (0211120
16384 0005 49 |02 1122
32768 0005 56 [02|1.1|25
65536 00|11,102(02 16|28
131072 001110102 16| 3.1

Table 4.3. miniGhost average hop counts on Cielo

Our remapping algorithm assigns blocks of the mesh to the cores of the machine by
groups. On Cielo, a group of blocks consists of a 2 x 2 x 4 group of blocks. These blocks are
then assigned to nodes as above. The result is a slight increase in the average hop counts in
the x and y directions, but a significant decrease in the average hop count in the z direction.
A comparison of the number of hops between the two approaches is shown in Table [4.3]

This remapping strategy results in a significant improvement in scaling performance,
illustrated in in Figure . Figure shows that this is attributable to controlling
the time spent sending data in the z direction. We include the time spent in the reduction
sum across each grid variable (inserted after computation on each variable to add application
realism as well as a synchronization point), illustrating that this functionality is not the
source of the issue, scaling well regardless of the processor mapping. We do see indications
of the issue at the highest processor counts, though it is less pronounced. This remapping
was incorporated into CTH, the results of which are described in Appendix [F}

As discussed in the related work section above, we are exploring ways for incorporating
these ideas into a more general interface. We are also exploring the use of MPI_Datatype in
handling the non-contiguous (but patterned) face data.

28

Runtime (Secs)

Comm Time (Secs)

38 T T
MPI Only —a—
36 - MPI + OpenMP (4 Threads) ---+--- A
Remapped MPI Only ----4---
34 I Remapped MPI + OpenMP (4 Threads)
MPI + OpenMP (16 Threads)

32 /
30

28
26 e

24 ,A—-q/ S

16 64 256 1024 4096 16384 65536 26214«
Processor Cores

(a) Time to solution

7
—x —=
Y ——
6 Z— ,//
Reduce
Reorder X ---a---
5L Reorder Y ---+---
Reorder Z ----a---
Reorder Reduce
4
3
2 //‘\/
LI Y VSUSSUUUOUOON W= ey PFFITTY VI PTVPPrP P PPPPey CTPPFPPITPFFEET) FETTITLILALE gniiihnnng
................. VSPUUURUPPES, SRNRPPRRPPRILEE LEEEEEEEEE AR
0 I
1024 2048 4096 8192 16384 32768 65536 13107:

Processor Cores

(b) Communication time per direction (MPI version)

Figure 4.5. Performance of MiniGhost with MPI-rank
remapping on Cielo

4.3.3 Alternative communication strategies

Node interconnects are also evolving, driven by new node architectures as well as cost and
energy conservation goals, encouraging exploration of new approaches within the context
of application requirements. Interconnects are designed as a balance of global bandwidth
(the ability of the interconnect to move data), inject bandwidth (the ability of the NIC to
put data onto the interconnect), and injection rate (the ability of a node to place messages
onto the NIC). Global bandwidth typically incurs the highest costs, both in terms of money
and power consumption, and therefore we are preparing for a proportional decrease in that
capability.

MiniGhost includes an application-relevant infrastructure for exploring alternative bound-

29

s 1 N I W

END DO
DO I = 1, NUM_VARS

END DO

Figure 4.6. CTH boundary exchange and computation

ary exchange configurations [6]. The first configuration mimics that of CTH, which we call
Bulk Synchronous Parallel with Message Aggregation (BSPMA), was used above, illustrated
in Figure . The second, called Single Variable Aggregated Faces (SVAF) transmits data
as soon as computation on a variable is completed, and thus six messages are transmitted for
each variable (up to 40), one to each neighbor, each time step. (Looking at Figure this
eliminates the inner END DO and DO I = 1, NUM_VARS.) The two x — y faces are contiguous
in memory, so each may be directly sent using a call to a single MPI function. The other
four faces are aggregated into buffers, resulting in four messages to their neighbors. A third
mode, called single variable, contiguous pieces, computational overlapping mode (SVCP),
is designed for use on architectures that are strongly biased toward significantly increased
message injection rates and injection bandwidth, a trend we see developing but not yet to
the extent of supporting this configuration using MPI [25].

BSPMA and SVAF have been configured for MPI-everywhere as well as MPI4+OpenMP.
For the latter on Cielo and Curie, its best configuration is four MPI ranks on each node,
each spawning four OpenMP threads. Note that this increases the size of each message in
comparison with the MPI-everywhere version. Because of ghost cells, the message size in
two directions almost doubles and the message size in the third direction almost quadruples.
This is because the number of cells in two of the three directions is doubled. The size of the
message is based the size of the face with ghost cells, so if the size of a face is x x y cells for
the MPI everywhere case, the size of the message is (x + 2) * (y + 2). If the number of cells

30

in one of these directions (say y) is doubled, then the size of the message is (x4 2) * (2y + 2),
which is not quite double the original size, but close. Similarly, if the number of cells in both
directions are doubled, then the size of the message is almost quadrupled.

Performance of these implementations on Cielo are shown in Figure [4.7. Effective map-

38

BSPMA —&—
36 HRemapped BSPMA ---+--- A
SVAF ---a---
Remapped SVAF

34 -

32 :
30 /
28 /
26 /+- ;

24 A

Runtime (Secs)

22

20 s =

16 64 256 1024 4096 16384 65536 26214«
Processor Cores

Figure 4.7. Performance of miniGhost Communication
Strategies on Cielo

ping of processes to processors is again critical to achieving good scaling, and as the number
of processors increases, SVAF becomes the best strategy. This is of significant interest since
it reduces demand on costly global bandwidth by a factor of N, where N is the number of
variables aggregated (40 for the shaped charge problem.)

31

32

Chapter 5

Conclusions and Future Work

With the goal of enabling an effective piecewise evolutionary path to making effective use
of Exascale computing architectures, we described our explorations of a breadth of issues
throughout the codesign space. While faced with uncertain choices of programming models,
mechanisms, and perhaps languages designed to run in an uncertain computing environment,
we have demonstrated a variety of ways the application developer can begin to concretely
and effectively prepare for an unknown specific machine but a widely accepted architectural
approach. Although this work is presented in terms of processor, node, and inter-node
strategies, we also see that a system-wide design is required to achieve overall reductions
in runtime. The common theme is, not unexpectedly, the organization of our data and
the way it is moved around and presented to the various components of the architecture.
Most reassuring in terms of modifications to large code bases, we have demonstrated an
evolutionary path that can also significantly improve performance on current and emerging
architectures. Additional information in support of this paper is presented in [5], and deeper
studies on some of the topics herein will be presented in papers in preparation.

Our use of miniapps significantly improves our ability to rapidly explore ideas, and these
miniapps have been demonstrated to be predictive of full application codes with regard
to some key performance issues [4], guiding our focus here. For example, the remapping
strategy has proven beneficial to CTH. That said, we reiterate that the output of a miniapp is
information that must be interpreted within the context of the full application, and therefore
the application developer must apply and probably extend the experiences described in this

paper.

We are also studying revolutionary options, including less commonly used and new lan-
guages (e.g. [21) 26, 10, 11]). It is also possible that a completely new architecture could
emerge from the exascale initiatives. Regardless, it appears that the fundamental concepts
for exploiting these architectures will remain: presenting data to the compute engine in a
manner that allows it to operate on the data in a vectorized multi-threaded fashion, sharing
that data with the parallel processes in efficient ways and exposing sufficient parallelism to
effectively hide ever-increasing relative latencies. The lesson learned from our incremental
evolutionary approach will not only help applications in the near to medium term, but also
set the stage for a smoother transition to revolutionary environments.

33

34

References

1]

[10]

D.A. Bader, V. Kanade, and K. Madduri. SWARM: A Parallel Programming Frame-
work for Multi-Core Processors. In First Workshop on Multithreaded Architectures and
Applications (MTAPP), March 2007.

K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, and J.C. Sancho.
Entering the Petaflop Era: the Architecture and Performance of Roadrunner. In Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC’08, pages 1:1-1:11,
Piscataway, NJ, USA, 2008. IEEE Press.

B.W. Barrett et al. Report of Experiments and Evidence for ASC L2 Milestone
4467 - Demonstration of a Legacy Application’s Path to Exascale. Technical Report
SAND2012-1750, Sandia National Laboratories, 2012.

R.F. Barrett, P.S. Crozier, S.D. Hammond, M.A. Heroux, P.T. Lin, T.G. Trucano,
and C. Vaughan. Assessing the Validity of the Role of Mini-Applications in Predicting
Key Performance Characteristics of Scientific and Engineering Applications. Technical
Report SAND2012-TBD, Sandia National Laboratories, 2012. In preparation.

R.F. Barrett, S.D. Hammond, C.T. Vaughan, D.W. Doerfler, M.A. Heroux, J.P. Luit-
jens, and D. Roweth. Navigating An Evolutionary Fast Path to Exascale. Technical
Report SAND 2012-TBD, Sandia National Laboratories, 2012. http://www.sandia.
gov/~rfbarre/pubs_list.html.

R.F. Barrett, C.T. Vaughan, and M.A. Heroux. MiniGhost: A Miniapp for Exploring
Boundary Exchange Strategies Using Stencil Computations in Scientific Parallel Com-
puting. Technical Report SAND2011-5294832, Sandia National Laboratories, May 2011.
https://software.sandia.gov/mantevo/publications.html.

N. Bell and M. Garland. Implementing Sparse Matrix-Vector Multiplication on
Throughput-Oriented Processors. In Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC 09, 2009.

J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse Matrix Solvers on the GPU:
Conjugate Gradients and Multigrid. ACM Trans. Graph., 22(3):917-924, July 2003.

L. Brown, P.M. Bennett, M. Cowan, C. Leach, and T.C. Oppe. Finding the Best
HPCMP Architectures Using Benchmark Application Results for TI-09. HPCMP Users
Group Conference, 0:416-421, 2009.

B.L. Chamberlain, D.Callahan, and H.P. Zima. Parallel programming and the
Chapel language. International Journal on High Performance Computer Applications,
21(3):291-312, 2007.

35

http://www.sandia.gov/~rfbarre/pubs_list.html
http://www.sandia.gov/~rfbarre/pubs_list.html
https://software.sandia.gov/mantevo/publications.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun,
V. Saraswat, and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform Clus-

ter Computing. In Proceedings of Object-Oriented Programming, Systems, Languages,
and Applications(OOPSLA), October 2005.

L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering, 5(1):46 —55, 1998.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil Computation Optimization and Auto-Tuning on State-
of-the-Art Multicore Architectures. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2008 (SC’08), pages
1 —12, November 2008.

R.E. Diaconescu and H.P. Zima. An Approach to Data Distribution in Chapel. Inter-
national Journal on High Performance Computer Applications, 21(3), 2007.

Roland W. Freund. A Transpose-Free Quasi-Minimum Residual Algorithm for Non-
Hermitian Linear Systems. SIAM J. Sci. Comp., 14(2):470-482, 1993.

G.R. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. ParalleX: A Study of A
New Parallel Computation Model. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS) 2007, March 2007.

Roger G. Grimes, David R. Kincaid, William I. MacGregor, and David M. Young.
Itpack report: Adaptive iterative algorithms using symmetric sparse storage. Technical
Report CNA-139, Center for Numerical Analysis, University of Texas, 1978.

E.S. Hertel and others. CTH: A Software Family for Multi-Dimensional Shock Physics
Analysis. In Proceedings, 19th International Symposium on Shock Waves, 1993.

V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunking
the 100X GPU vs. CPU Myth: an Evaluation of Throughput Computing on CPU and
GPU. SIGARCH Comput. Archit. News, 38(3):451-460, June 2010.

S.A. McKee. Reflections on the Memory Wall. In First Conference on Computing
Frontiers, 2004.

R.W. Numrich and J.K. Reid. Co-Array Fortran for Parallel Programming. ACM
Fortran Forum, 17(2):1-31, 1998.

NVIDIA Corporation. CUDA programming guide. http://www.nvidia.com/object/
cuda_home.html.

J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor
Parallelism. O’Reilly Media, 2007.

36

http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html

[24] Y. Saad and M.H. Schultz. GMRes: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Llinear Systems. SIAM J. Sci. Stat. Comput., 7:856-869, 1986.

[25] H. Shan et al. A Preliminary Evaluation of the Hardware Acceleration of the Cray
Gemini Interconnect for PGAS Languages and Comparison with MPI. In Proceedings
of the Second International Workshop on Performance Modeling, Benchmarking and
Stmulation of High Performance Computing Systems, PMBS 11, pages 13-14, New
York, NY, USA, 2011. ACM.

[26] UPC. Consortium, UPC Language Specification. May 31 2005.

37

38

Appendix A

Programming Environment

In this section we list the programming environments and other details used for the studies
reported in this paper. The general approach was to use default settings and basic compiler
and runtime options. Future work will include deeper dives into the various alternative
configurations.

A.1 Cielo

Work performed within the context of PrgEnv-cray/4.0.36. Compiled using Cray Fortran
compiler version 8.0.1 with the -03 optimization flag. Application launch using aprun, with
settings ensuring appropriate placement of processes.

A.2 Curie

Work performed within the context of PrgEnv-cray/4.0.36. Compiled using Cray Fortran
compiler version 8.0.3 with the -03 optimization flag. OpenACC version 1.0 as implemented
as provided by module craype-accel-nvidia20, Cray CUDA version 4.0.17a.

The Cray OpenACC compiler provides a significant amount of profiling. Setting envi-
ronment variable CRAY_ACC_DEBUG to an integer value from 0 to 3 shows the movement of
data to and from the device. Other profiling data reported by the CUDA profile log version
2.0.

An OpenACC enabled PGI compiler became available during our work. A comparison
between the two is not in the scope of this paper, but such a comparison will be made in
future work.

39

A3 GPU

The work in Section was performed using cud a 4.0 on a Tesla M2090 and a six-core
Intel Xeon E5-2680 at 2.7 GHz. Compile flags: -03 arch=sm 20. Thread block size was 64.

A.4 Teller

Results gathered on the Teller testbed used the openmpi-gnu/1.5 TOSS/CHAOS MPI en-
vironment module and GNU system installed compilers.

A.5 Dual-Socket, Oct-core AMD 2.4GHz Magny-Cours
6136

This platform was used in the memory speed study (Section and Appendix [E). Intel
compilers 11.0.081, with compiler flag -03. MPI implementation: OpenMPI 1.4.3,

A.6 Dual-Socket, Quad-core Intel 2.93GHz Nehalem
5570

This platform was used in the memory speed study (Section and Appendix [E). Intel
compilers 11.0.081, with compiler flag -03. MPI implementation: OpenMPI 1.4.3.

40

Appendix B

MiniMD code examples

The miniMD force calculation with modifications targeting vectorization are shown in this
section. The main focus of miniMD is on the force calculation, with the code segment shown
in Figure B.1} Changing to single pointers allowed the compiler to identify opportunities for
vectorization, illustrated in Figure Vector intrinsic functions illustrated in Figure [B.3]

Code B.1. miniMD force calculation vectorization

double x*xx,xxf;

for (i = 0; i < nlocal; i++) {
neighs = neighbor. firstneigh[i];
numneigh = neighbor.numneigh[i];
xtmp = x[1][0];
ytmp = x[i][1];
smp = x[1][2];

for (k = 0; k < numneigh; k++) {
j = neighs[k];

delx = xtmp — x[j][0];
dely = ytmp — x[j][1];
delz = ztmp — x[j][2];

rsq = delxxdelx + delyxdely + delzxdelz;

if (rsq < cutforcesq) {
sr2 = 1.0/rsq;
ST6 = sr2%xsr2x*xsr2;
force = sr6*(sr6 —0.5)%sr2;
f[i][0] += delxxforce;
fli][1] 4= delyxforce;
fli][2] += delzxforce;

f1j][0] —= delxxforce;
f[j][1] —= delyxforce;
f1j][2] —= delzxforce;

Code B.2. miniMD force calculation vectorization

doublex*x restrict x;
doublexx restrict f;

for (i = 0; i < nlocal; i++) {

neighs = neighbor. firstneigh[i];
numneigh = neighbor.numneigh[i];

41

xtmp = xx[1];
ytmp = xy [i];

ztmp = xz[1];
resl = fx[i];
res2 = fy[i];
es3 = fz[i];

#pragma simd reduction(+:resl res2 ,res3)
for (k = 0; k < numneigh; k++) {
j = neighs[k];

delx = xtmp — xx[]];
dely = ytmp — xy[j];
delz = ztmp — xz[j];

rsq = delxxdelx 4+ delyxdely + delzxdelz;

if (rsq < cutforcesq) {
sr2 = 1.0f/rsq;
sT6 = sr2xsr2x*xsr2;
force = sr6x(sr6 —0.5f)xsr2;
resl 4= delxxforce;
res2 4= delyxforce;
res3 4= delzxforce;

fx [j] —= delxx*force;
fy[j] —= delyxforce;
fz [j] —= delzxforce;

}

for (i = 0; i < nall; i++) {
f[i][0] = fx[i];
fli][1] = fy[i];
fli][2] = fz[i];
x[i][0] = xx[i];
x[1][1] = xy[i];
x[1][2] = xz[i];

}

Code B.3. miniMD force with SSE intrinsics

const double one = 1.0;

const double half = 0.5;

const __m128d one_.vec = _mm_loadl_pd(&one);

const __m128d half_vec = _mm_loadl_pd(&half);

const __m128d cutforce.vec = _mm_loadl_pd(&cutforcesq);
double fjx_store[2] __attribute__((aligned (16)));

double fjy_store[2] __attribute__((aligned (16)));

double fjz_store[2] __attribute__((aligned (16)));

_.m128d fi0_vec;
--m128d fil_vec;
_.m128d fi2_vec;

for (i = 0; i < nlocal; i++) {

neighs = neighbor. firstneigh[i];
numneigh = neighbor.numneigh[i];

42

xtmp = x[i][0];
ytmp = X[i][l}

ztmp = x[1][2
k = 0;
const int numneigh_2 = numneigh — 2;

_-m128d xtmp_vec = _mm_loadl_pd(&xtmp);
--m128d ytmp-vec = _mm-_loadl_pd(&ytmp);
_-m128d ztmp-vec = _mm_loadl_pd(&ztmp);

-m128d fi0.vec = _mm_setzero_pd ();
_-m128d fil_vec = _mm_setzero_pd ();
--m128d fi2_vec = _mm_setzero_pd ();

for (; k < numneigh_2; k =k + 2) {
const int j_0 = neighs[k];
const int j-1 = neighs[k+1];

-m128d delx-vec = _mm_sub_pd(xtmp-vec, -mm_set_pd(x[j-1][0], x[j-0][0]));
--m128d dely_vec = _mm_sub_pd(ytmp_vec, -mm_set_pd(x[j-1][1], x[j-0][1]));
_-m128d delz_vec = _mm_sub_pd(ztmp_vec, -mm_set_pd(x[j-1][2], x[j-0][2]));
const __m128d rsq-vec = _mm_add_pd(
_mm_add_pd (
_mm_mul_pd (delx_vec, delx_vec),
_mm_mul_pd(dely_-vec, dely-vec)),
_mm-_mul_pd(delz_vec, delz_vec));
const __m128d sr2_vec = _mm_div_pd(one_vec, rsq_vec);
const __m128d sr6_vec = _mm-_mul pd(-mm_mul_pd(sr2_vec, sr2_vec), sr2_vec);
const __m128d cond_vec = _mm_cmplt_pd(rsq_-vec, cutforce_vec);
const __m128d force_.vec = _mm-_and_pd(cond_vec, -mm-mul_pd(sr6_vec,
_mm_mul_pd (.mm_sub_pd(sr6_vec, half_vec), sr2_vec)));
delx_-vec = _mm_mul_pd(delx_vec, force_vec);
dely_.vec = _mm_mul_pd(dely_vec, force_vec);
delz_vec = _mm_mul_pd(delz_vec, force_vec);
fi0_.vec = _mm_add_pd(fi0O_vec, delx_vec);
fil-vec = _mm_add_-pd(fil_-vec , dely_-vec);
fi2_vec = -mm_add_pd(fi2_vec, delz_vec);

delx_vec = _mm_sub_pd(-mm_set_pd(f[j-1][0], f[j-0][0]), delx_vec);
_mm-_store_pd (fjx_store , delx_-vec);

f[j-0][0] = fjx_store[0];

flj-1][0] = fjx_store[1];

dely_vec = mm_sub_pd(-mm_set_pd(f[j-1][1], f[j-0][1]), dely_vec);
_mm-_store_pd (fjy_-store , dely-vec);

f[j-0][1] = fjy-store [0];

flj-1][1] = fjy-store[1];

delz_vec = _mm_sub_pd(-mm_set_-pd(f[j-1][2], f[j-0][2]), delz_vec);
_mm_store_pd (fjz_store , delz_vec);

f1j-0][2] = fjz-store[0];
f[j-1][2] = fjz_store[1];
}

_mm_store_pd (fjx_store, fi0_vec);
_mm_store_pd (fjy_store, fil_vec);
_mm_store_pd (fjz_store, fi2_vec);

fl[i][0] += fjx_store[0] + fjx_store[1];
f[i][1] 4= fjy-store[0] + fjy-store[1l];
fli][2] += fjz_store[0] + fjz_store [1];

// handle the less than 2 case

N = O

[
[
[

i
i
i

43

for (; k < numneigh; k++) {
j = neighs[k];

delx = xtmp — x[j][0];
dely = ytmp — x[j][1];
delz = ztmp — x[j][2];

rsq = delxxdelx 4+ delyxdely + delzxdelz;

if (rsq < cutforcesq) {
sr2 = 1.0/rsq;
Sr6 = sr2%xsr2xsr2;
force = sr6x(sr6 —0.5)xsr2;

] += delxx*force;
] += delyxforce;
| += delzxforce;
] —= delxxforce;
] —= delyx*force;
] —= delzx*force;

44

Appendix C

MiniGhost code examples

The miniGhost 3D 27-point stencil calculation with modifications targeting vectorization
are shown in this section. The main focus of of miniGhost is on the 3D 27-point stencil
calculation, with the code segment shown in Figure

Code C.1. miniGhost 3D 27-point stencil

1 DO K = 1, NZ

» DO J =1, NY

3 DO I = 1, NX

4 G2(I,J,K) = (&

5 G1(I-1,J-1,K-1) + G1(I-1,J,K-1) + G1(I-1,J+1,K-1) + &
6 G1(I ,J-1,K-1) + G1(I ,J,K-1) + G1(I ,J+1,K-1) + &
7 G1(I+1,J-1,K-1) + G1(I+1,J,K-1) + G1(I+1,J+1,K-1) + &

9 G1(I-1,J-1,K) + G1(I-1,J,K) + G1(I-1,J+1,K) + &
10 G1(I ,J-1,K) + G1(I ,J,K) + G1(I ,J+1,K) + &
11 G1(I+1,J-1,K) + G1(I+1,J,K) + G1(I+1,J+1,K) + &
13 G1(I-1,J-1,K+1) + G1(I-1,J,K+1) + G1(I-1,J+1,K+1) + &
14 G1(I ,J-1,K+1) + G1(I ,J,K+1) + G1(I ,J+1,K+1) + &
15 G1(I+1,J-1,K+1) + G1(I+1,J,K+1) + G1(I+1,J+1,K+1) &
17) * TWENTYSEVENTH

19 END DO ! End NX

20 END DO ! End NY

21 END DO ! End NZ

45

Code C.2. Block version: miniGhost 3D 27-point stencil

4

11
12
13

15

17
18

20
21
22
23

25
26
27

29

30

31

33

35

36

37

39

YBLOCKS
ZBLOCKS

!I'OMP PARAL
D0 zZzZ =
DO YY

ZMAX
IF (

DO K
YM
IF

DO

5
5

LEL DO COLLAPSE (2)
1, NZ , ZBLOCKS
= 1, NY , YBLOCKS

= ZZ + ZBLOCKS
ZMAX .GT. NZ) ZMAX = NZ

= 77, ZMAX
AX = YY + YBLOCKS
(YMAX .GT. NY) YMAX = NY

J =YY, YMAX

IDIR VECTOR NONTEMPORAL

E
END

END DO
END DO

DO I =1, NX

G2(i,j,k) = (&
G1(I-1,J-1,K-1) + G1(I-1,J,K-1)
G1(I ,J-1,K-1) + G1(I ,J,K-1)
G1(I+1,J-1,K-1) + G1(I+1,J,K-1)

G1(I-1,J-1,K) + G1(I-1,J,K)
G1(I ,J-1,K) + G1(I ,J,K)
G1(I+1,J-1,K) + G1(I+1,J,K)

G1(I-1,J-1,K+1) + G1(I-1,J,K+1)
G1(I ,J-1,K+1) G1(I ,J,K+1)
G1(I+1,J-1,K+1) + G1(I+1,J,K+1)

+

) * TWENTYSEVENTH

END DO !/ End NX
ND DO ! End NY
DO ! End NZ

! YBLOCKS
! ZBLOCKS

G1(I-1,J+1,K-1)
G1(I ,J+1,K-1)
G1(I+1,J+1,K-1)

G1(I-1,J+1,K) +
G1(I ,J+1,K) +
G1(I+1,J+1,K) +

G1(I-1,J+1,K+1)
G1(I ,J+1,K+1)
G1(I+1,J+1,K+1)

+

&

46

Code C.3. Distributed version: miniGhost 3D 27-point

10
11

13
14
15
16
17
18
19
20
21
22
23
24

26

10MP PARALLED'DE!

DO K = 1, NZ
DO J = 1, NY
DO I =1, NX
G2(i,j,k) = &
G1(I-1,J-1,K-1) + G1(I-1,J,K-1) + G1(I-1,J+1,K-1)
G1(I ,J-1,K-1) + G1(I ,J,K-1) + G1(I ,J+1,K-1)
G1(I+1,J-1,K-1) + G1(I+1,J,K-1) + G1(I+1,J+1,K-1)
END DO
I'dir nofustion
DO I =1, NX
G2(i,j,k) = G2(i,j,k)+ &
G1(I-1,J-1,K) + G1(I-1,J,K) + G1(I-1,J+1,K) +
G1(I ,J-1,K) + G1(I ,J,K) + G1(I ,J+1,K) +
G1(I+1,J-1,K) + G1(I+1,J,K) + G1(I+1,J+1,K)
END DO
!'dir nofusion
DO I =1, NX

G2(i,j,k) = G2(i,j,k)+ &

G1(I-1,J-1,K+1) + G1(I-1,J,K+1)

G1

G1(I+1,J-1,K+1) + G1(I+1,J,K+1)

(I

+

G1(I-1,J+1,K+1)
G1(I ,J+1,K+1)
G1(I+1,J+1,K+1)

+

,J-1,K+1) + G1(I ,J,K+1)

+

G2(i,j,k)=G2(i,j,k) * TWENTYSEVENTH

END DO
END DO
END DO

!
!
!

End NX
End NY
End NZ

15

&

47

48

Appendix D

NVIDIA miniFE Study

This appendix expands on Section [4.2.2]

D.1 Introduction

A study of the mini-FE application in CUDA was undertaken by NVIDIA. The purpose of
this study was to identify key performance limiters for finite element applications on CUDA
enabled architectures and use that knowledge to drive future hardware and software designs.
The mini-FE algorithm is composed of three phases, they are the following: generate matrix
structure, assemble the finite-element matrix, and solve. Of these the majority of time is
spent in either the assembly or the solve. The matrix structure can often be reused and as
such the cost of generating this structure is often small compared to the overall runtime.

The solve phase involves a sparse linear solve. There are many algorithms to solve
sparse linear systems. Most of these algorithms are dominated by the performance of Sparse
Matrx-Vector Multiplies (SPMVs). Mini-FE solves the system of linear equations using
the Conjugate-Gradient algorithm. The performance of SPMV is bandwidth bound and is
sensitive to the sparse-matrix format. A common sparse-matrix format is Compressed Sparse
Row (CSR). This format, while ideal for serial processors, has uncoalesced memory accesses
when accessed in parallel. We used an alternative matrix format known as ELLPACK which
avoids the memory coalescing problems present in CSR [7, [I7]. The effects of these formats
on performance, as well as their limiters, are well understood and were not the focus of this
work. As such, they will not be discussed further. For more details on sparse-matrix vector
formats and their performance in CUDA see [7].

The assembly phase involves computing the element operators for each element and
then summing those operators into the final matrix. We parallelized this phase by having
each thread operate on separate elements. In addition, the computation of the element
operator and the summation into the linear system was performed in a single kernel call.
This scheme was chosen because the computation of the element operators is embarrassingly
parallel. However, summing into the linear system does require synchronization to avoid
race conditions. Using a single kernel is preferred over multiple kernels because it avoids
having to store the state for the element operator and then reread that state back in when

49

summing into the linear system.

By using one thread per element we were able to leverage the original code for the
construction of the element operator. Most of the changes for this portion of the code were
limited to marking the original host functions with __device__ so that they could be called
from CUDA. The summation into the linear system also required a few changes. The major
changes in this operation were to use the ELL matrix format instead of the CSR marix format
and to update the matrix using atomicAdd. The use of atomics prevents race conditions
that arise from updating the global matrix in parallel.

The computation of the element operator involves a number of flop heavy operations
including computing the determinant and the inverse of the Jacobian. These large number
of flops suggest that the performance should be flop limited but analysis using NVIDIAs vi-
sual profiler showed that the performance is bandwidth bound due to register spilling. The
element operator requires over 900 bytes of state for the computation. The large state is
caused by the math heavy operations which require a lot of intermediates. The usage is fur-
ther increased because the calculation is 3D and in double precision. The Fermi architecture
only supports up to 63 32-byte registers per thread, limiting the total amount of register
storage to 252 bytes. As a result of this limit the additional state must be spilled first to L1
cache, then to L2 cache, and finally to global memory. The L1 cache is configurable to be
either 16K or 48K bytes per SM. In addition, the L2 cache size is 768K bytes and is shared
across all SMs. The current implementation uses 512 threads per SM. This leaves 96 bytes
of each L1 and L2 cache per thread. Since L1 and L2 are insufficiently sized to store the
required state, registers are spilled to global memory causing the computation to become
bandwidth bound.

The summation into the element operator is also bandwidth bound. This is expected as
this operation adds contributions from the diffusion matrix to the global matrix. Atomics are
another potential limiter for this operation. However, there are very few potential collisions
and thus the number of instruction replays due to atomics is low. Experiments have shown
that the use of atomics affected the total performance by less than a half percent.

One way to improve the performance of bandwidth bound kernels is to increase the
occupancy. However, in this case, the kernels occupancy is limited by register usage. Since
the register usage is much higher than what is available in hardware it is not possible to
increase this occupancy without also increasing register spilling.

Another method for increasing performance is to reduce the amount of register spilling.
We made a number of optimizations to the kernel in order to reduce its register usage. We
were able reduce register pressure by making algorithmic changes including exploiting sym-
metry in the diffusion operator and reordering computations so that data was loaded in im-
mediately before it was used. We were also able to utilize traditional optimization techniques
including restricting pointers, inlining functions, and unrolling loops. These optimizations
allow the compiler to be more aggressive and can have a large impact on performance. Fi-
nally we also placed some of the state in shared memory and experimented with L1 cache
sizes. In the end, the best performance we found was when placing the source vector into

50

Matrix Assembly m—
Matrix Generation besssse
CG Solve e

5 Overall T

Speedup over CPU (x)

10 20 30 40 50 60 70 80 9 100 110 120 130 140 150
N

Figure D.1. Speedup of miniFE CUDA Implementation
(NVIDIA Fermi M2090 vs. Hex-Core 2.7GHz E5-2680

shared memory and enabling the larger LL1 cache. These optimization greatly reduced regis-
ter spilling. However, there was still 512 bytes of state being spilled per thread. All of these
optimizations that were applicable to the original CPU code were back ported to the CPU
code.

The performance of the CUDA version of miniFE was compared to the MPI-parallel
version of miniFE. Timings were performed on the same system which included a Tesla
M2090 and a six-core Intel Xeon E5-2680 at 2.7 GHz. We tested for various problem sizes
of N3 hexahedral elements. In addition, the matrix structure was reused for 50 assembles
and solves. The speedup for each of the three phases along with the overall speedup is
reported in Figure Here we can see that the assembly phase achieves over a 4x speedup
while the solve phase is over 3x speedup. The generation of the matrix structure exhibits a
slowdown because it is generated on the host in CSR format, transferred to the device, and
then converted to ELL format. It would be possible to move this computation to the device.
However, in these runs the time for the generation of the structure did not dominate the
overall performance and over a 3x speedup was observed overall.

One of the goals of the Mantevo project is to help steer future hardware and software
development. In this case, the project was a success. From the analysis above we can
conclude that the current limiter is bandwidth due to register spilling. There are a number
of things that NVIDIA could do to improve the performance of such apps in the future.
Hardware changes could include increasing the number of registers per thread, increasing
the size of shared /L1 memory and L2 memory, improving the speed of register spilling, and
improving the bandwidth utilization at lower occupancy. In additon, NVIDIAs compiler
could more aggressivly target register usage for large state applications. These findings
have been shared within NVIDIA and will impact the design of their future hardware and
compilers. In addition, the CUDA implementation could potentially be improved further.

51

One option would be to use multiple threads per element. For example, one thread per node
would be a logical choice. This would potentially divide the amount of state required by the
number of nodes. This increases the parallelism expressed in the algorithm and will likely
be required as the demand for parallelism increases in the future.

92

Appendix E

Characterizing the Sensitivity of
Charon and MiniFE to Variation in
DDR Interface Frequency on
Workstation-Class Multicore
Processor Architectures

This appendix expands on Section [4.2.3]

E.1 Introduction

It’s well known that many of today’s modeling and simulation applications are memory
bound, but to what degree? Most high-end workstations allow programming the signaling
frequency between a processor’s memory controllers and the attached main memory DDR
DIMMs. Using this feature, it’s possible to perform an empirical study looking at the effect
of main memory bandwidth on application performance. In this study a comparison is
made between a mini-application and a production application in terms of their sensitivity
to memory bandwidth. Charon is a semiconductor device simulation application based on
a finite element method. MiniFE is a mini-application from the Mantevo project and it’s
intent is to emulate the performance of the solve phase of a finite element application, such
as Charon. One question often raised in the use of a mini-application is how representative
is it of the application it is meant to model? In addition, just as valid a question is what it
does not represent? In this study, Charons and miniFE’s sensitivity to memory bandwidth
is analyzed to help provide some insight.

E.2 Test Beds and Method

The two test beds used for this study are described in Table The study is performed on
two separate processor architectures in order to provide a higher level of confidence in the

53

Blade Model
Processor

Compiler Suite

MPI

sockets

cores/socket

Total # of cores

CPU frequency (GHz)
Memory Capacity
DDR3 (maximum)
Peak FLOP/s

Peak memory bandwidth
Nominal byte/FLOP

HP ProLiant BL460c G6
Intel Nehalem 5570
Intel 11.0.081
OpenMPI 1.3.3
2
4
8
2.93
24 GB (3x4 GB/socket)
1333
93.76 GFLOP/s
64.9 GB/s
0.692

HP ProLiant BL465c
AMD Magny-Cours 6136
Intel 11.0.081
OpenMPI 1.4.3
2
8
16
2.4
32 GB (4x4 GB/socket)
1333
153.6 GFLOP/s
85.3 GB/s
0.555

Misc Turbo mode off

Table E.1. Test Bed Descriptions

results. Initially, the method was applied to an AMD Magny-Cours based workstation. To
see if the result are repeatable for different processor architectures, the method was performed
on an Intel Nehalem based system. Both test beds are based on multicore processors that
are representative of the node architecture used by many HPC platforms in operation today.
Both of the target workstations are blade based and are contained in a Hewlett-Packard
BladeSystem ¢3000 chassis. They are managed as standalone, independent workstations.
Each test bed is capable of varying the memory controller to DIMM interface frequency
at the rates of 800 Mhz, 1066 Mhz and 1333 Mhz. By default, the blades auto-configure
the frequency to the capability of the DIMMs populated in the system, in the case of the
two blades under test in this study 1333 Mhz DDR3. By reconfiguring via the BIOS, the
interface frequency can be set to be a maximum of 1066 Mhz or 800 Mhz. Using this feature,
results for key runtime metrics associated with Charon and MiniFE were collected for all
three BIOS settings.

For miniFE, two run time metrics are reported: the array assembly time and the total
time for the conjugate gradient solver. For Charon, four metrics are reported: preconditioner
time/iteration, solver time/iteration, Jacobian time/iteration and total advance time/itera-
tion. Absolute run times are not presented in this study. A more relevant metric is perfor-
mance relative to a baseline reading. All results shown are relative to the nominal 1333 Mhz
result.

E.3 Results

Results for miniFE are shown in Figure Two observations are noteworthy. First, the

o4

finite assembly step is not sensitive to memory bandwidth, which implies that this step is
completely compute bound. Second, the CG solver phase is sensitive to memory bandwidth
and hence is to some degree a memory bound problem. Third, for the CG phase the AMD
and Intel results are similar and hence the microarchitecture of the processor doesnt affect
the degree to which the problem responds to decreasing memory bandwidth, at least to
within a few percent. Note that this is not a statement about the absolute performance of
the respective processors. But an observation that a given decrease in memory bandwidth
has the same relative affect on overall performance. This is a powerful observation and
supports the notion that memory bandwidth is a better indicator of performance than the
common use of peak FLOP /s.

It’s interesting to note that on the Nehalem workstation, the assembly time is slightly
faster at the slower 800 Mhz frequency. This is repeatable and is not a measurement anomaly.

Results for Charon are shown in Figure [E.2] Again, both processor architectures react
similarly, within a few percent, to varying memory bandwidth. The preconditioner step is
relatively insensitive to varying bandwidth. As was seen with miniFE, the solver is the most
sensitive. The Jacobian step is unaffected, and total advance time is a function of the prior
steps and since the solve phase is the most dominant total time it also reflects the same
trend.

One of the fundamental questions when using a mini-application is - In what way does
it represent a “real” application. Above, it was shown that the calculation that is most
sensitive to memory bandwidth is the solver phase. In miniFE, a relatively fundamental
CG algorithm is used for the solver, while the Charon application, solving a nonsymmetric
system, uses TFQMR [15] or GMRes [24]. In Figure [E.3] the relative solver performance for
each is charted. These results show that in the case of the solver, miniFE is a very accurate
proxy for Charon in terms of studying the affect of varying memory bandwidth. MiniFE
tracks Charon’s sensitivity to within a few percent. Again, it can be seen that the results
using the Intel processor is consistent with that seen using the AMD processor.

E.4 Summary and Conclusions

In this study, an empirical method was used to measure the impact of main memory band-
width on application performance. This was performed by varying the signaling frequency
of the DDR interface between the memory controllers and their respective DIMMs. The
miniFE mini-application and Charon application were studied. For each, metrics of interest
were identified and analyzed as the memory interface frequency was set at 800 Mhz, 1066
Mhz and 1333 Mhz. Some metrics, such as assembly time in miniFE and the preconditioner
step in Charon showed to be insensitive to memory bandwidth. However, the solvers in each
application were sensitive to memory bandwidth. This is not surprising, but it is interesting
to have a quantitative measure. It was also demonstrated that the same trends were seen
using two different workstation architectures, which provides confidence in the assertion that

%)

for solver based applications the important metric is memory bandwidth, not FLOP/s. Fi-
nally, it was shown that miniFE’s CG method is a good proxy for more advanced solvers
found in Charon. This provides the users of miniFE confidence that memory subsystem
performance architecture studies are valid.

56

Performance (Relative to 1333MHz)

Performance (Relative to 1333MHz)

1.4

Finfte Element Assembly
Conj. Gradient Solve

1.2

1
0.8 -
0.6
04
0.2

0

800 1066 1333

Memory Frequency (MHz)
(a) Dual-Socket, Oct-core AMD 2.4GHz Magny-Cours 6136

1.4 T
‘ Finite Element Assembly
Conj. Gradient Solve

1.2

1
0.8
0.6 |
0.4 |
0.2 |

0

800 1066 1333

Memory Frequency (MHz)
(b) Dual-Socket, Quad-core Intel 2.93GHz Nehalem 5570

Figure E.1. Memory Bandwidth: miniFE Finite Element
Mini-Application

57

Performance (Relative to 1333MHz)

Performance (Relative to 1333MHz)

1.4

Prec./Newt
Solve/Newt messsmm
1.2 Jac./Newt mwwss |
Adv Time/Newt

800 1066 1333
Memory Frequency (MHz)

(a) Dual-Socket, Oct-core AMD 2.4GHz Magny-Cours 6136

1.4
Prec./Newt
Solve/Newt sessssm
1.2 Jac./Newt messesn |

Adv Time/Newt

800 1066 1333
Memory Frequency (MHz)

(b) Dual-Socket, Quad-core Intel 2.93GHz Nehalem 5570

Figure E.2. Memory Bandwidth: Charon Device Simula-
tion Application

58

Performance (Relative to 1333MHz)

Performance (Relative to 1333MHz)

1.4

1.2

Chéron Solve/lter m—
miniFE CG Solve/lter.

0.8

0.6 -

04

0.2

800

1066
Memory Frequency (MHz)

1333

(a) Dual-Socket, Oct-core AMD 2.4GHz Magny-Cours 6136

1.4

1.2

Chéron Solve/lter m—
miniFE CG Solve/lter.

0.8

0.6 -

04

800

1066
Memory Frequency (MHz)

1333

(b) Dual-Socket, Quad-core Intel 2.93GHz Nehalem 5570

Figure E.3. Memory Bandwidth: miniFE compared to

Charon

59

60

Appendix F

Remapping the parallel processes in
CTH

This appendix expands on Section [4.3.2]

Work as part of the recently completed L2 milestone, “Report of Experiments and Evi-
dence for ASC L2 Milestone 4467 — Demonstration of a Legacy Application’s Path to Exas-
cale” [3] exposed a scaling issue on Cielo in the boundary exchange in miniGhost. MiniGhost
was configured to serve as a proxy for CTH. CTH, used throughout the United States DOE
complex, and is part of the US Department of Defense (DoD) High Performance Comput-
ing Modernization Program (HPCMP) test suite [9], is a multi-material, large deformation,
strong shock wave, solid mechanics code developed at Sandia National Laboratories [18].
Solving the Lagrangian equations using second-order accurate numerical methods and mesh
remap to reduce dispersion and dissipation, it includes models for multi-phase, elastic vis-
coplastic, porous and explosive materials, CTH divides the domain into three dimensional
regions (illustrated in Figure [4.6]), which are mapped to parallel processes. For the shaped
charge simulation considered herein, each time step CTH exchanges boundary data (two
dimensional “faces”) 19 times, in each of the three dimensions, with three calls to propagate
data across faces. Each boundary exchange aggregates data from (up to) 40 arrays, repre-
senting 40 variables, resulting in messages on the order of a few MBytes for representative
problems.

The MPI rank remap strategy described in Section showed a significant scaling
benefit for miniGhost. The issue was seen clearly in the time spent sending boundary data
to neighbors in the z direction, illustrated in Figure . Its also interesting to note that
there is no effect on the performance of the global reduction function MPI_Allreduce.

We implemented this strategy in CTH, the application miniGhost was configured to
represent. Results, shown in Figure [F.] illustrate a similar benefit to the full application,
demonstrating the predictive capability miniGhost is designed to provide. These runs were
made on Cielo in non-dedicated mode, so the scaling issue that seems to be appearing at 64k
cores may be the result of competing jobs. Additional work in this area, including remapping
of processes in the alternative SVAF strategy will be reported in subsequent publications.

61

CTH (shaped charge) on Cielo

1700 | /

—Normal
——Remap
1500

[
w
[=]
o

Time (seconds)
[=Y
[=Y
(=]
o

- /

700 T T T T T T T T T T T
16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Number of processor cores

Figure F.1. Performance of CTH with MPI-rank remap-
ping on Cielo.

62

Appendix G

More on C

Cielo is the latest Advanced Simulation and Computing (ASC) capability machine. Although
not technically a testbed system since the architecture is widely available, Cielo provides
some new capabilities and hardware features which we expect will be extended and refined

in future architectures.

An instantiation of a Cray XEG6, Cielo is composed of AMD Opteron Magny-Cours proces-
sors, connected using a Cray custom interconnect named Gemini, and a light-weight kernel
(LWK) operating system called Compute Node Linux. The system, illustrated in Figure

ielo

[G.1] consists of 8,944 compute nodes, for a total of 143,104 cores.

7

Figure G.1. Cielo XE6 architecture.

Cray Inc.

Each Cielo node consists of two oct-core AMD Opteron Magny-Cours processorg'} Each
Magny-Cours processor is divided into two memory regions, called NUMA nodes, each con-

Gemini

Interconnection Network

3D Torus in
each dimension

CEL—'.
|V
. Compute node

n Large-memory
compute node

' Magny-Cours processors are also available with 12 cores divided into 6-core NUMA nodes, which form
the basis of the new Hopper II computer at NERSC (http://www.nersc.gov/nusers/systems/hopper2/).

. Internal login

M viziogin

10 GigE

10 GigE
—

GigE

10
-
=

. Network node - Boot node

File
Transter
Agents

-

—_—
| Bool
Disk

Image courtesy of

http://www.nersc.gov/nusers/systems/hopper2/)

sisting of four processor cores (illustrated in Figure [G.2). Thus each compute node consists

Figure G.2. The XE6 compute node architecture. Images
courtesy of Cray, Inc.

of 16 processor cores, evenly divided among four NUMA nodes, which are connected using
HyperTranspoﬂﬂ version 3. The links between NUMA nodes run at 6.4 GigaTransfers per
second (GT/s). Each core has a dedicated 64 kByte L1 data cache, a 64 kByte L1 instruction
cache, and a 512 kByte L2 data cache, and the cores within a NUMA node share a 6 MByte
L3 cache (of which 5 MBytes are user available).

Cielo compute nodes are connected using Cray’s Gemini 3-D torus high-speed intercon-
nect, illustrated in Figure|[G.3] A Gemini ASIC supports two compute nodes. The X and Z
dimensions use twice as many links as the Y dimension (24 bits and 12 bits respectively) and
introduces an asymmetry to the nodes in terms of bandwidth in the torus. This needs to be
taken into account when configuring a system in order to balance the bisection bandwidth
of each dimensional slice in the torus. Injection bandwidth is limited by the speed of the
Opteron to Gemini HyperTransport link, which runs at 4.4 GT/s. Links in the X and Z
dimensions have a peak bi-directional bandwidth of 18.75 GB/s, and the Y dimension peaks
at 9.375 GB/s.

Cielo’s node interconnect, called Gemini, is configured as a three dimensional torus topol-
ogy as 16 x 12 x 24.

Figure (in the main body of this paper) shows the CTH nearest neighbor communi-
cation pattern as it is mapped to Gemini’s three dimensional torus topology for Cielo.

Zhttp://www.hypertransport.org

64

http://www.hypertransport.org

48-Port YARC 2 ROUTER I

o omedl | B

(a) Cray XE6 Gemini Architecture (b) XE6 Node Architecture
with AMD Magny-Cours pro-
cessors and Cray Gemini high-
speed interconnect

Figure G.3. The XE6 Gemini architecture. Images cour-
tesy of Cray, Inc.

65

66

v1.37

@ Sandia National Laboratories

	1 Introduction
	1.1 Related work

	2 Programming Models and Environments
	3 Methodology
	4 Case Study: Initial Porting of Mantevo Mini-Applications to Future Computing Architectures
	4.1 Processor Core Performance
	4.2 Intra-node performance
	4.2.1 Finite difference stencils
	4.2.2 MiniFE on a GPU
	4.2.3 The Impact of Memory Speeds

	4.3 Inter-node performance
	4.3.1 On the XK6
	4.3.2 Mapping processes to processors
	4.3.3 Alternative communication strategies

	5 Conclusions and Future Work
	References
	A Programming Environment
	A.1 Cielo
	A.2 Curie
	A.3 GPU
	A.4 Teller
	A.5 Dual-Socket, Oct-core AMD 2.4GHz Magny-Cours 6136
	A.6 Dual-Socket, Quad-core Intel 2.93GHz Nehalem 5570

	B MiniMD code examples
	C MiniGhost code examples
	D NVIDIA miniFE Study
	D.1 Introduction

	E Characterizing the Sensitivity of Charon and MiniFE to Variation in DDR Interface Frequency on Workstation-Class Multicore Processor Architectures
	E.1 Introduction
	E.2 Test Beds and Method
	E.3 Results
	E.4 Summary and Conclusions

	F Remapping the parallel processes in CTH
	G More on Cielo

