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Abstract. The contribution of our paper is to present a mixed finite element method for4
estimation of the velocity in the optical flow constraint, i.e., an advection equation. The resulting5
inverse problem is well-known to be undetermined because the velocity vector cannot be recovered6
from the scalar field advected unless further restrictions on the flow, or motion are imposed. If7
we suppose, for example, that the velocity is solenoidal, a well-defined least squares problem with a8
minimizing velocity results. Equivalently, we have imposed the constraint that the underlying motion9
is isochoric. Unfortunately, the resulting least squares system is ill-posed and so regularization10
via a mixed formulation of the Poisson equation is proposed. Standard results for the Poisson11
equation demonstrate that the regularized least squares problem is well-posed and has a stable finite12
element approximation. A numerical example demonstrating the procedure supports the analyses.13
The example also introduces a closed form solution for the unregularized, constrained least squares14
problem so that the approximation can be quantified.15
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1. Introduction. Our paper describes a constrained, regularized least squares19

approach for estimating the velocity vector field v given the scalar image intensity20

φ = φ(x, y, t) for a model given by the advection equation21 {
φt + v · ∇φ = 0 over Ω× (0, T ) ,

φ(x, y, 0) = φ0(x, y) x, y ∈ Ω ,
(1)22

23

including suitable boundary conditions. Such a model represents the so-called optical24

flow constraint for idealized image motion given the assumption that the image inten-25

sity of an object is time independent and that spatial, temporal sampling is sufficiently26

resolved; see e.g., [13]27

A least squares method results when we consider the formal minimization prob-28

lem: Given intensity data φ̂, find29

b∗ = arg min
b

1

2

∫ T

0

∫
Ω

(
φ̂t + b · ∇φ̂

)2
dx dt ,(2a)30

31

over a class of suitable functions. Proceeding formally and assuming appropriate32

boundary conditions, the corresponding normal equations are given by the singular33

linear system34 {(
∇φ̂⊗∇φ̂

)
b∗ = −φ̂t∇φ̂ over Ω× (0, T ) ,

φ̂(x, y, 0) = φ0(x, y) x, y ∈ Ω .
(2b)35

36
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2 LEHOUCQ, TURNER

Because the coefficient matrix is singular, the least squares problem (2a) is undeter-37

mined since adding38

b̄ := ψJ ∇φ̂ , ψ : Ω→ R , J :=

[
0 −1
1 0

]
,(2c)39

40

to b∗ is also a minimizer (and also a solution to the normal equations) because41

b̄ · ∇φ̂ = 0. This indeterminacy is intrinsic and explains that the velocity field42

cannot, in general, be reconstructed given the intensity and embodies the challenge in43

attempting to reconstruct a vector parameter from scalar intensity data. An impor-44

tant consequence is that the minimization problem (2a) is not well-defined so that the45

ensuing normal equations (2b) have an infinite number of solutions. We also remark46

that because φt = −v · ∇φ0 for the advection equation system (1), only the velocity47

in the direction of ∇φ can ultimately be recovered—this is known as the aperture48

problem.49

A linear constraint, however, can be imposed on the velocity so that the resulting50

normal equations determine a unique velocity from the space of functions defined by51

b̄ and ∇φ̂. For instance, we can augment the equations (2b) with the constraint52

∇ · b∗ = 0. Equivalently, we have imposed the constraint that the underlying optical53

flow, or motion is isochoric. Moreover, if the true velocity is indeed solenoidal, then54

the velocity can be completely reconstructed. We remark, though, that our choice55

of a solenoidal constraint is illustrative; other constraints are possible. Ultimately,56

the choice of constraint depends upon the specific problem at hand and whether the57

choice (along with regularization) leads to a well-posed estimation problem.58

The primary contribution of this work is to present a mixed finite element method59

for the constrained, regularized estimation of the velocity in the optical flow constraint.60

We show that this method resolves the aperture problem and leads to a well-posed61

problem, both for the infinite and finite dimensional formulations.62

The first step is to constrain the minimization problem (2a) by considering: Given63

intensity data φ̂, solve64

arg min
b∈B

1

2

∫ T

0

∫
Ω

(
φ̂t + b · ∇φ̂

)2
dx dt .(3)65

66

Our choice of constraint space is given by67

B := {b ∈ Hdiv,Γ(Ω) | ∇ · b = 0 over Ω ,b · n = 0 over Γ ⊂ ∂Ω} ,(4)6869

where Hdiv,Γ(Ω) ⊂ Hdiv(Ω) is the space of vector functions that are square integrable70

with zero normal component along Γ and whose divergence is square integrable. How-71

ever, as we show at the end of §2, the resulting optimality system is ill-posed. See [2]72

for an informative review on ill-posed problems in computer vision.73

The second step is to regularize the least squares functional with ν2/2
∫

Ω
b · b dx74

resulting in a well-posed least squares problem. Equivalently, we show that our choice75

of regularization leads to a saddle point system containing a mixed formulation of76

the Poisson equation. Standard results for the Poisson equation demonstrate that the77

regularized system is well-posed and has a stable mixed finite element approximation.78

A numerical example demonstrating the procedure is presented in §4 supporting the79

analysis. The example also introduces a closed form solution for the unregularized,80

constrained least squares problem so that the approximation can be quantified. In81

particular, our regularized functional is an instance of an augmented Lagrange method82
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due to Fortin and Glowinski [6]. Again, we emphasize that our choice of constraint83

space is motivated by physical considerations and mathematical convenience, i.e., the84

constraint space B may be replaced by another, suitable, space.85

Our approach has application to digital image correlation (DIC) [12] and as the86

initialization step for the regularized, nonlinear least squares approach introduced in87

the paper [8] by Ito and Kunisch for estimating the convection coefficient that we88

considered in the report [9]. The DIC application is that of sequence analysis; the89

interested reader is referred to the discussion and overview by Aubert and Kornprobst90

in their textbook [1, pp. 249–256].91

1.1. Related Approaches. The conventional approach within the DIC com-92

munity to regularize the indeterminacy of the normal equations (2b) is to introduce93

a collection of points in a neighborhood about x; the collection defines a subset; see,94

e.g., [12, pp.85–86]. Such an approach is tantamount to regularizing the correspond-95

ing discrete, ill-posed problem by removing the singularity for the coefficient matrix.96

Unfortunately, such a discrete problem is ill-conditioned since the indeterminacy has97

not been incorporated into the problem. The manifestation of this pitfall is the basis98

for the well-known sensitivity upon the size of a subset in DIC.99

The landmark paper [7] by Horn and Schunck formally introduced a regularized100

approach for estimating the velocity; a precise variational formulation of the infi-101

nite dimensional problem was given by Schnörr in [11] who demonstrated that the102

regularized least squares problem was well-posed over [H1(Ω)]2. However, the Horn103

and Schunck approach never confronted the indeterminacy associated with estimating104

the velocity. An important consequence of our analysis is that a constraint must be105

incorporated into the least squares problem in order to confront the indeterminacy.106

2. A Saddle Point Problem. We augment the constrained minimization prob-107

lem (3) by including a regularization term. This term converts the ill-posed prob-108

lem (3), which we establish at the end of this section, into a well-posed problem.109

This results in the following regularized, minimization problem: Given intensity data110

φ ∈ H1
∂Ω/Γ(Ω)× (0, T ), solve111

bν = arg min
w∈B×(0,T )

1

2

∫ T

0

{∫
Ω

(
φt + w · ∇φ

)2
dx+ ν2

∫
Ω

w ·w dx

}
dt ,(5)112

113

where the space B was defined in (4) and H1
∂Ω/Γ(Ω) is the space of functions in H1(Ω)114

that are zero on ∂Ω/Γ. In order to solve this minimization problem, we introduce the115

Lagrange functional116

F (w, λν) =
1

2

∫ T

0

{∫
Ω

(
φt + w · ∇φ

)2
dx+ ν2

∫
Ω

w ·w dx

}
dt−

∫
Ω

λν ∇ ·w dx ,

(6)

117
118

where λν ∈ L2(Ω) × (0, T ) denotes the Lagrange multiplier. A standard variational119

procedure grants the saddle point system for the Lagrange (6): Find (bν , λν) ∈120

B × (0, T )× L2(Ω)× (0, T ) satisfying121

a(bν ,w) + c(w, λν) = 〈f,w〉 ∀w ∈ B t ∈ (0, T ) ,

c(bν , µ) = 0 ∀µ ∈ L2(Ω), t ∈ (0, T ) ,
(7)122

123

This manuscript is for review purposes only.



4 LEHOUCQ, TURNER

where the bilinear forms are defined as124

a(bν ,w) :=

∫ T

0

{∫
Ω

w ·
(
∇φ⊗∇φ

)
bν dx+ ν2

∫
Ω

w · b dx
}
dt125

c(bν , µ) :=

∫ T

0

∫
Ω

µ(∇ · bν) dx dt ,126
127

and duality pairing128

〈f,w〉 := −
∫ T

0

∫
Ω

φt (w · ∇φ) dx dt .129
130

If we suppose that φ is a classical solution to the advection equation (1) with bν131

possessing a classical divergence, then the variational formulation (7) has the classical132

formulation133 
(
∇φ⊗∇φ+ νI

)
bν −∇λν = −φt∇φ over Ω× (0, T ) ,

∇ · bν = 0 over Ω× (0, T ) ,

bν · n = 0 on Γ× (0, T ) ,

φ = 0 on ∂Ω \ Γ× (0, T ) .

(8)134

135

The saddle point system (7) is well-posed when the bilinear forms a(·, ·) and c(·, ·)136

are V-elliptic and satisfy the inf-sup conditions, respectively; see, for instance, the137

textbook discussion [4, Chap.III, §4]. That the latter condition holds is a consequence138

of the choice of product space B × L2(Ω) arising for the mixed formulation of the139

Poisson equation augmented with a homogeneous Dirichlet boundary condition on140

∂Ω/Γ; see [4, Chap.III, §4] for details. The condition that aν(·, ·) is V-elliptic holds141

because142
143

(9) a(w,w) = a(w,w) + ν2

∫ T

0

∫
Ω

(∇ ·w)2 dx dt144

≥ ν2

∫ T

0

∫
Ω

(
w ·w + (∇ ·w)2

)
dx dt = ν2T‖w‖2B ∀w ∈ B ,145

146

where the first equality holds since ∇ · w = 0. The resulting saddle point system147

now satisfies both conditions and so is well-posed. We remark that the regularization148

parameter ν must be positive. Otherwise the bilinear form aν=0(·, ·) cannot be V-149

elliptic because150

aν=0(w,w) =

∫ T

0

∫
Ω

(w · ∇φ
)2
dx dt151

cannot be identified with ‖w‖B since ∇φ is an element of [L2(Ω)]2 containing B as152

a proper subspace. This demonstrates that the saddle point system (7) is ill-posed153

when not regularized so that consequently the minimization problem (3) is ill-posed.154

This somewhat abstract explanation also has an elementary interpretation that155

also serves to underscore the roles of constraining and regularizing. Recall that b̄,156

given by (2c), can be added to any solution of the normal equations (2b). By imposing157

the constraint that any of these solutions are solenoidal, one function is identified158

(and given by the least squares problem (3)) but unfortunately does not depend159

continuously upon the data φt∇φ. This is because, in contrast to an algebraic saddle160

point linear system, the coefficient matrix ∇φ⊗∇φ cannot simply be invertible on the161
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nullspace of the divergence operator ∇·. The more stringent condition of V-ellipticity162

is required and cannot be satisfied since the function ψ : Ω → R in b̄ can always be163

chosen so that the ratio164
aν=0(w,w)

‖w‖B
165

has no positive lower bound for all w ∈ B and so the least squares problem (3) is166

ill-posed. Hence the specified regularization provides the needed ellipticity and the167

velocity can be stably estimated.168

3. A Mixed Finite Element Method. A mixed finite element method for the169

saddle point system (7) results when finite dimensional subspaces Bh and L2
h(Ω) are170

selected leading to the discrete saddle point problem: Find (bνh, λ
ν
h) ∈ Bh × (0, T ) ×171

L2
h(Ω)× (0, T ) satisfying172

a(bνh,w) + c(w, λνh) = 〈f,w〉 ∀w ∈ Bh t ∈ (0, T ) ,

c(bνh, µ) = 0 ∀µ ∈ L2
h(Ω) t ∈ (0, T ) .

(10)173

174

In contrast to a standard finite element formulation, the discrete formulation is not175

automatically well-posed even when Bh ⊂ B and L2
h(Ω) ⊂ L2(Ω). The parameterized176

family of subspaces Bh, L2
h(Ω) must satisfy the Babuška–Brezzi conditions, see, for177

instance the textbook discussion in [4, Chap.III, §4]. These conditions are the discrete178

analogues of the V-elliptic and inf-sup conditions needed to show that the infinite179

dimensional problem is well-posed. Satisfying the Babuška–Brezzi conditions for a180

specific pair of finite element basis functions is often a challenge. Fortunately, there181

are several choices of element pairings (bνh, λ
ν
h) for the mixed finite element formulation182

of the Poisson equation augmented with a homogeneous Dirichlet boundary condition183

on ∂Ω/Γ.184

The pairing we employ is the Raviart–Thomas elements introduced in [10] for185

discrete approximation in Hdiv(Ω); see, e.g., [4, Chap.III, §4] for a discussion. Let186

Th be a triangulation on Ω with K representing a particular triangle. The finite187

dimensional subspaces associated with the lowest order Raviart–Thomas elements on188

triangles are defined as follows:189

Bh := {
(
b
(1)
K (t), b

(2)
K (t)

)
∈ B | (a(1)

K (t), a
(2)
K (t)) + dK(t)(x, y) ; a

(i)
K (t), dK(t),∈ R;K ∈ Th}

(11a)

190

L2
h(Ω) := {λνK(t) | λν(t) = a constant on each triangle K ∈ Th} .

(11b)

191192

This leads to the finite element interpolant functions193

bνh(x, y, t) =
∑
K∈T

(
b
(1)
K (t), b

(2)
K (t)

)
1K(x, y) ,(11c)194

λνh(x, y, t) =
∑
K∈T

λνK(t)1K(x, y) .(11d)195

196

Inserting the interpolants into (10) and testing against each of the basis functions197

leads to the semi-discrete saddle point system198 [
A CT

C 0

] [
p
q

]
=

[
f
0

]
t ∈ (0, T ) .(12)199

200
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(a) (b)

Fig. 1. The components of the velocity c given by (16b) (a) x-component (b) y-component.

(a) (b)

Fig. 2. The components of the velocity d given by (16c) (a) x-component (b) y-component.

Given some ordering of the elements, the entries of the matrices A and B are given201

by202

aν
(
(b

(1)
i , b

(2)
i ), (b

(1)
j , b

(2)
j )
)
, i, j = 1, · · · , 3N(13a)203

c
(
(b

(1)
j , b

(2)
j ), λνk

)
, k = 1, · · · , N(13b)204

205

respectively. The vectors p ∈ R3N and q ∈ RN contain the coefficients for the basis206

functions and the vector f has entries207

〈f, (b(1)
i , b

(2)
i )〉 , i = 1, · · · , 3N .(13c)208209

4. Example. Our example verifies that the mixed finite element method we210

propose for the discretization of the regularized saddle point system (7) correctly211

approximates the solenoidal component of the solution of the inverse problem given212

by the constrained minimization (3). We first derive a closed form solution to the213

inverse problem for the classical formulation of (7) when ν = 0, i.e., the optimality214

system for (3). Recall that we have established that this latter least squares problem215

is ill-posed (see end of §2) and so will enable us to quantify the influence of the216

regularization parameter ν.217

Let Ω = (0, L)× (0, L) = (0, L)2 and Γ = ∂(0, L)2 so that ∂Ω \ Γ = ∅. Given an218

intensity φ satisfying a pure Neumann boundary condition on Γ, we derive a closed219
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(a) (b)

Fig. 3. The components of the velocity c + d given by (16b)–(16c) (a) x-component (b) y-
component.

form expression for the velocity b satisfying220 
(
∇φ⊗∇φ

)
b−∇λ = −φt∇φ over Ω× (0, T ) ,

∇ · b = 0 over Ω× (0, T ) ,

b · n = 0 on Γ× (0, T ) .

(14)221

222

Because the function φ(x, y, t) = φ
(
x − v1(x, y) t, y − v2(x, y)

)
solves (1) given the223

spatially varying velocity v(x, y) =
(
v1(x, y), v2(x, y)

)
, then φt = −v · ∇φ0 so that a224

collection of solenoidal velocities is given by225

b = (1 + σ)c with σ =
∇ · [(∇φ · d)J ∇φ]

∇ · [(∇φ · c)J ∇φ]
,(15a)226

227

where (∇φ · c)J ∇φ is not irrotational, J is given in (2c)228

v = c + d , satisfies ∇ · c = 0 ,∇× d = 0 ,(15b)229230

and c satisfies the velocity boundary condition.1 That a multitude of velocities sat-231

isfy (14) is a direct manifestation that the optimization problem (3) is ill-posed, as232

explained following equation (9). The requisite Lagrange multiplier λ is then given233

by the solution of the pure Neumann boundary value problem234 {
∆λ = ∇ ·

(
(∇φ · (σc− d))∇φ0

)
over Ω ,

∇λ · n = 0 , on Γ ,
(15c)235

236

The solution of the above Neumann boundary value problem is unique up to a constant237

since the data is of zero mean, i.e.,238 ∫
Ω

∇ ·
(
(∇φ · (σc− d))∇φ0

)
dx =

∫
∂Ω

(
∇φ · (σc− d)

)
∇φ0 · n dx = 0 ,239

240

given the pure Neumann boundary conditions for the advection equation (1). That241

the solution of (15c) is only unique up to a constant is irrelevant because only the242

gradient of the Lagrange multiplier is needed for the saddle point system (14).243

1Such a representation of v is given by the Helmholtz-Hodge decomposition; see [5] and the
well-written survey [3]. We also exploited the identity that ∇× z = −∇ ·

(
Jz

)
for a vector with two

components.
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The velocity solution (15a) exemplifies that only a solenoidal component of v can244

be recovered and the gradient of the Lagrange multiplier corrects for the irrotational245

component of v. Moreover, this solution is only defined when c is not orthogonal to246

∇φ—this is a consequence of the aperture problem reviewed following the least squares247

problem (2b) that while including a constraint renders a solution to the (constrained)248

least squares problem unique, the estimated velocity can only recover an isochoric249

component of the motion. Otherwise when ∇φ · c = 0 then b = 0; in particular, if250

the solenoidal component is null so is b.251

Several additional cases are of interest. First, if ∇φ · d = 0 then σ = 0 and252

b = c; in other words, the underlying velocity v can be recovered if the irrotational253

component of the motion is orthogonal to∇φ. In particular, if the motion is solenoidal,254

then the motion can be reconstructed. Second, if the solenoidal and irrotational255

components of v in the direction of ∇φ are equal, then the velocity b = 2c and the256

Lagrange multiplier is a constant. Third, if the solenoidal and irrotational components257

of v in the direction of ∇φ are equal and opposite, then the velocity b = 0 and258

∇λ = −2(∇φ · d)∇φ.259

We can also contrast the solution of (8) with the solution of (14). If we express260

the solution bν = b + e and λν = λ + µ, insert into (8) and invoke (14), then the261

corrections (e, µ) satisfy the saddle point system262 
(
∇φ⊗∇φ+ νI

)
e−∇µ = −ν(1 + σ)c over Ω× (0, T ) ,

∇ · e = 0 over Ω× (0, T ) ,

e · n = 0 on Γ× (0, T ) .

263

264

In words, the corrections solve a steady-state problem with velocity data given by the265

solution (15a). If the regularization parameter ν is set to zero, then (e = 0, µ = 0)266

explaining that there is no correction to the unregularized problem; this also the case267

if σ = −1, a situation considered in the previous paragraph.268

To verify our numerical solution, we select the initial intensity269

φ0(x, y) = −ξ−1
(

cos ξx cos ξ(x− L) + cos ξy cos ξ(y − L)
)
, ξ =

nπ

L
,270

so that271

φ(x, y, t) = φ0

(
x− v1(x, y)t, y − v2(x, y)t

)
(16a)272273

solves the advection equation (1) with pure Neumann boundary conditions. We con-
sider the velocity field v = c + τ d for a real number τ where274

c
(
x, y
)

=
(

sin γx cos γy,− cos γx sin γy
)
, γ =

mπ

L
,(16b)275

d(x, y) = −δ−1∇
(

cos δx cos δ(x− L) cos δy cos δ(y − L)
)
, δ =

iπ

L
.(16c)276

277

Both vector fields satisfy the velocity boundary condition when the former and latter278

vector fields are solenoidal and irrotational, respectively. Figures 1–3 display the279

velocities c, d and c + d when n = 10.0, m = 2.0, and i = 2.0.280

Figure 4 shows the order h velocity approximation bνh when v is solenoidal (or281

τ = 0) that solves the discrete saddle point system (10) given the mixed finite element282

method presented in section 3 with a mesh size of 4 units and regularization parameter283

ν = 1. Figure 5 displays the inverse mesh size h against the error ‖bh − c‖[L2Ω]2 for284
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Fig. 4. Velocity approximation bνh given the mixed finite element method presented in section 3
with a mesh size of 4 units (a) x-component (b) y-component

Mesh size (1/h)
0.1 0.2 0.3 0.4 0.5

er
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r
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0.7

0.8
0.9

1
1.1

1.07

Fig. 5. Convergence of the mixed finite element formulation for the velocity field, bνx. The
velocity error in x and y are similar.

three choices of mesh size h. The slope of the line connecting the three points is285

the rate of convergence that confirms the predicted rate for the RT0 element. Our286

experiments were implemented in MATLAB and the saddle point linear systems were287

solved using MATLAB’s sparse direct solver.288

In Figure 6 we show the influence of the regularization parameter ν for large and289

small values. The results suggest a minimum value, approximately 1, below which290

oscillations emerge in the solution. The velocity results for ν = 0 (or no regularization)291

are shown in Figure 7. Figure 8 demonstrates that the solenoidal component (16b) of292

the solution is accurately computed for a range of frequencies. We show the computed293

x-velocity component as m is increased from 2 to 16. The error for each m is also294

shown in this figure. Although the discretization error increases with m as expected,295

the estimated velocity does not exhibit spurious oscillations as in Figure 7.296

The results of our numerical experiment confirm that our proposed constrained297

regularized least squares functional and ensuing finite element method indeed approx-298

imate the sought after solenoidal velocity field.299

5. Conclusions. Our paper presented a novel constrained, regularized least300

squares problem and ensuing mixed finite element method to estimate the velocity for301

the optical flow constraint. This is in contrast to other regularization techniques for302

which the solution is composed of an unknown combination of divergence and curl-free303

components. The crucial distinction is that we have incorporated a constraint into304

the formulation of the problem. While, our specific choice of linear constraint assumes305
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ν
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Fig. 6. Solution error (for the x-component of the velocity) vs. the regularization parameter ν.
The results in x and y are again similar

(a) (b)

Fig. 7. Velocity approximation bνh for ν = 0 (no regularization) and a mesh size of 4 units;
(a) x-component (b) y-component. The effect of no regularization is apparent; because the saddle
point system (14) is ill-posed the numerical solution exhibits oscillations.
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Fig. 8. Velocity approximation bνh for varying m for a mesh size of 4 units (only the x-
component is shown). (a) m = 4.0 (b) m = 8.0 (c) m = 16.0 (d) solution error vs. m
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that the velocity is solenoidal, other choices are possible, e.g., specifying some rota-306

tional component of the velocity, for instance that the velocity is irrotational. The307

numerical example confirmed our analyses and also introduced a closed form solution308

for the unregularized constrained least squares problem (3). This enables us to assess309

the velocity approximation estimated to be compared to the exact solution.310
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