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Finite range jump processes and volume—constrained
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Abstract

A nonlocal convection—diffusion model is introduced for the master equation of Markov jump processes in
bounded domains. With minimal assumptions on the model parameters, the nonlocal steady and unsteady
state master equations are shown to be well-posed in a weak sense. Then, the nonlocal operator is shown
to be the generator of finite range nonsymmetric jump processes and, when certain conditions on the model
parameters hold, the generators of finite and infinite activity Lévy and Lévy—type jump processes are shown
to be special instances of the nonlocal operator.
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1 Introduction

This work is motivated by nonsymmetric jump processes of finite range; a general model for their description
is a nonlocal convection—diffusion equation introduced in [I§] and further analyzed in [I7]. This paper extends
the results of [I7] to infinite activity processes and to a broader class of jump processes; moreover, it studies
both the steady and unsteady state equations in bounded domains.

The main contribution is the analysis of a general class of nonlocal diffusion problems; with minimal
assumptions on the parameters, we prove that the nonlocal equations are well-posed, generalizing the results
in [I7] to singular and not necessarily positive kernelsﬂ We also provide the basis for the analysis of a large class
of stochastic processes confined to bounded domains; in fact, we show that for non—negative kernel functions
the convection—diffusion operator is the generator of a Markov jump process and that the corresponding
master equation has a unique solution.
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Standard probabilistic methods analyze the strong form of the equations governing the process; instead,
we treat an associated variational problem. To the best of our knowledge, the use of variational methods is
a non—conventional probabilistic approach and we are not aware of other works that prove that the master
equation of a general Markov jump process is well-posed in a weak sense. Our approach allows us to prove the
well-posedness of the problem using classical arguments of the variational theory and makes Galerkin—type
numerical methods (e.g., the finite element methods) naturally suitable for numerical approximation. On
the other hand, the weak formulation does not allow for point—wise estimates of the solution; however, it
provides (optimal) energy estimates. Improving such estimates requires a regularity result for the nonlocal
convection-diffusion equations, a current topic of research.

As opposed to local classical models, nonlocal models allow for discontinuities in the solution. In a nonlocal
model, the interactions between points can occur at a finite distance, whereas in the local case they occur
only due to contact. The need for nonlocality in modeling stochastic processes comes from the possibility of
having a jump in the sample path; this happens, e.g., in Lévy jump processes whereas it does not happen in
a Brownian process that features a continuous sample path.

Nonlocal symmetric diffusion models have been widely used and studied not only in the field of stochastic
processes but, more generally, in image analyses [8] 24] [25] [27], machine learning [32], kinetic equations [5] [26],
phase transitions [6] 23], nonlocal heat conduction [7], and a linearized peridynamic model for mechanics [35].
Their analysis has been improved by a recently developed nonlocal vector calculus that provides tools that
allow one to study nonlocal equations in a similar manner as one studies the associated local partial differential
equations. The nonlocal vector calculus, which is a nonlocal counterpart of the classical vector calculus, was
introduced in [16] and applied to volume—constrained nonlocal diffusion problems in [I5]. Moreover, several
numerical methods for nonlocal diffusion equations with volume constraints have been introduced; see, e.g.,
[T, 91, 10 12} 141 13} 07, [19) 311 [34].

Nonlocal convection—diffusion can be interpreted as nonlocal nonsymmetric diffusion in the sense that
nonlocal convection does not have a drift effect; instead, it is a non—uniform diffusion, i.e., it occurs in some
random direction. Nonsymmetric diffusion is used to describe nonsymmetric jump processes; we mention
the works by Meerschaert and collaborators [4, 28] [29] where the equations are set either in free space or
in bounded domains with boundary conditions. Ervin and Roop [20] consider the variational form of the
equations introduced by Meerschaert in a bounded domain; there, they prescribe boundary conditions. In
their work they do not provide a stochastic interpretation of the process underlying the equation and limit
their analysis to operators associated to infinite activity processes with infinite variation (see [1I] for the
classification of jump processes). Felsinger et al. [22] also analyze the variational formulation of the diffusion
equations; they consider integrable and non—integrable, symmetric and nonsymmetric kernels. Their work is
similar to the one presented in this paper; however, there are differences that make their models less suitable
for stochastic applications. In fact, they do not provide any stochastic interpretation and, in general, the
operators treated in [22] are not generators of stochastic processes unless further conditions (that guarantee
the conservation of probability) on the kernels are prescribed. Different assumptions on the model parameters
still yield the well-posedness of the steady state equation for a large class of kernels (several examples are
provided in [22] §6]); in particular, they do not allow the kernels to take on negative values and allow the
nonlocal interactions to be infinite. Andreu and collaborators [2] consider the strong form of nonsymmetric
diffusion equations to which they prescribe volume constraints; their analysis is limited to integrable, positive,
and translation invariant kernels. In this work we consider a more general class of operators and we augment
the nonlocal equations with volume constraints; this choice is motivated by the fact that the sample path is not
continuous, instead, it might jump outside of the domain without passing through the boundary. Furthermore,
prescribing volume constraints is a key assumption to prove that the problem is well-posed.

In the remainder of this section we introduce the notation used throughout the paper. In Section [2| we
introduce the nonlocal operator and the steady state convection—diffusion equation. Using standard variational
arguments and the nonlocal vector calculus, we prove that the weak solution of the problem exists, is unique
and depends continuously on the data. Then, using a Fredholm alternative argument, we show that the
equation is well-posed, relaxing the assumptions on the parameters. In Section[3] we treat the time-dependent
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problem and show that it is well-posed in a weak sense. In Section @ we provide an interpretation of the
problem in terms of stochastic processes and show that the nonlocal equation evolves the probability density
of a general Markov jump process.

1.1 Notation

We introduce the notation of the nonlocal vector calculus used throughout the paper. For an extensive
introduction to that calculus, see [16].

We define the action of the nonlocal divergence operator D(v): R™

— Ras
D(v)(x) := fRn (v(x,y)+v(y,x)) a(xy)dy for x € R", (1a)

where v(x,y), a(x,y): R" xR" — R" with o anti-symmetric. The action of the operator D*(u): R" x R" —
R™, that is the formal adjoint to D, is given by

D* (u) (x,y) := —(u(y) — u(x))a(x, y) for x,y € R", (1b)

where u: R” — R is a given mapping. In [16], this operator is shown to be the nonlocal analog of the negative
of the classical gradient operator. Let Lu : R™ — R be a nonlocal operator defined as

Lu(x) = =D(OD*u)(x) + D(pu)(x), (2a)

where, without loss of generality, ®(x,y) = O(y,x) = O7(x,y) and pu(x,y) = u(y,x). We refer to the
second order tensor ® as the nonlocal diffusion parameter and to the vector pu as the nonlocal convection
parameter. For

1(x,¥) = a(x,y) - (O, y)a(x,y)) — pulx,y) - alx,y), (2b)
the operator £ has the explicit form

Lu(x) = Jn (u(y)fy(y, x) — u(x)vy(x, y)) dy for x e R™. (2¢)

The same nonlocal operator (and the associated time-dependent problem, treated in Section [3)) has been
analyzed in [I7] for integrable kernel functions.

The reason why we can assume ® = 7 without loss of generality is because in 7 the anti-symmetric
part of © (as a tensor) has no contribution. In fact, if we decompose © in its symmetric and anti-symmetric
parts (in a tensor sense) we have

a-(Ba)=a-(Osa)+a-(Osa)=a-(Osa).

On the other hand, we assume that ®(x,y) = O(y,x) because the anti-symmetric part of @ (as a function
of x and y) can be included in the convection term. In fact, consider the decomposition of @ in its symmetric
and anti-symmetric parts (in a function sense), we have

vy=a-(0a)+a-(Oia)+p-a.
Let o(x,y) = o(y,x) be defined as 0 = @,a, we can rewrite the kernel as
Y=o (@.0) +(uto)

With a similar argument we show that the assumption of a symmetric nonlocal convection parameter is
not restrictive. In fact, assume that p is nonsymmetric and consider the decomposition of p into its symmetric
and anti-symmetric parts (in a function sense), we have

’y:a(ea)_y’aa_y‘sa7
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where, the first and the second term are symmetric. We write the second term as
pa-a=a~(‘Ila),

with ¥(x,y) = ¥(y,x) and, e.g., ¥ = (u, ® a)/(a”a) so that when a = 0 on a measure-zero set, ¥ is
well-defined almost everywhere. Then, we can write y(x,y) as

y=a ((0-¥a)-p, o

Thus, the nonsymmetric part of the nonlocal diffusion operator can be interpreted as nonlocal convection and
L becomes the sum of a diffusion and a convection term with symmetric diffusion and convection parameters.
Letting 2 < R™ denote a bounded open domain, we define the interaction domain Q7 c R™ as

Q7 :={y e R"\Q such that a(x,y) #0 forxe Q},

i.e., Q7 consists of those points outside of {2 that interact with points inside of 2. We suppose that v is a
localized kernel, i.e., for all x € Q U Q7,

Y(x,y) =0 Vye (QuQr)\Bxr(x), 3)

where A is a positive constant and By (x) := {y € Q U Qz: |y — x| < A}. Note that, in general, + is not radial
nor translation invariant.

We define the nonlocal energy semi—norm, nonlocal energy space, and nonlocal volume—constrained energy
space by

ell?s=5 [ | Pty dydx (42)
V(QuQz) = {ve L*(QuQz) : ||lv]|| < o} (4b)
Ve(QuQz)={veV(QuQz) : v=0o0nQz}, (4c)

respectively, and we assume that the energy norm satisfies a Poincaré-like inequality: |v|r2qun,) < Cpll|v]]]
for all v € V.. We refer to C), as the Poincaré constant. This property holds for a large class of kernel functions,
see, e.g., cases 1 and 2 in [I5] §4.2]. We denote by V() the dual space of V.(€2 U Qz) with respect to the
standard duality pairing; a norm on V() can be defined as

§o gvdx
lglv: := sup 0= yYge V). (5)
veve@uap)ozo  |[[2]]]

In [16] one can find results such as the nonlocal integration by parts and the nonlocal first and second Green’s
identities.

2 The steady state problem

In this section we show that the weak form of the nonlocal convection—diffusion problem is well-posed. Using
standard arguments of the classical variational theory, we prove two well-posedness results; their combination
provides a weighted sufficient condition on the model parameters granting the existence and uniqueness of a
solution. Then, we rely on a Fredholm alternative argument [3] to prove a more general result.

We formulate the steady state nonlocal convection—diffusion problem as

{—Euz g in§2,

u = 0 inQI,
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where g € V/. The inner product of @ over () with a test function v € V.. gives

N D(OD*u)(x)v(x) dx — . D(pu)(x) v(x)dx = L g(x)v(x) dx.

The nonlocal Green’s identity (see [16, §4.3]) grants
|| e @y dydx— | D vdx= | goovxax.  (7)
Qur Jouns Q Q

The weak form of problem @ can be formulated as: given g € V!, find u € V. that satisfies for allve V..
Now define the bilinear form

a(u,v) =L ) j ) D*(uxx,y)-(@D*vxx,y)dydx—LD(uu)(x)v(x) dx (8)

and the linear functional

= . g(x)v (9)

for all v € V.. Then, the weak solution solves a(u,v) = G(v) for all v € VL.

Theorem 1. For g€ V/, a(-,-) and G(-) given by and @, © such that there exist 94,9 > 0 satisfying

0 <y < irﬁ{{f (min 6;), sup (maXG ) < 9* < o0, (10)
x€ER™ 7

xER™
where 0; are the singular values of ®, and p such that C||Dpllw < 29 and || |p| |l < p*, the problem
a(u,v) = G(v) VveV, (11)
has a unique solution u™ € V.. Furthermore, that solution satisfies the a priori estimate

lIl*[1] < Cllgllvy, (12)

where C = =—— and Ceoer = Vg — = C2|
Cooer 2 p

Proof. By using the nonlocal integration by parts formula (see [16] §4.3]) we rewrite a(:,-) as
awo = [ | D)) (@D ) y) dy dx
QuUQ7z JQUQ7T

-[QUQI -L)\_)S)I x,¥) - (%, y) u(x) dydx — f V()N (pu)(x) dx

Qr

L o f 5 (x,y) - (OD*)(x,y) dy dx — x,y) - 1%, y) u(x) dydx,

QuQr J‘QUQI

where the last equality follows from the homogeneous volume constraint. By the Lax—Milgram theorem,
sufficient conditions so that the problem is well-posed are the coercivity and the continuity of a(-,-) and
the continuity of G(-). The assumptions on © imply that

o, w) a*f f u)(x, y) - D* (u) (x, y) dx
QuQr QUQI

-1 W)(x,y) - plx,y) u(x) dy dx (13)
QuUQr QUQI

— D[l —j f x,¥) - p(x,y) u(x) dy d.
QU QUQI
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We analyze the second term in :

LUQZ LUQZ (x,¥) - u(x,y) u(x) dy dx
=[] om0 — ) dy i

B Lvm v LUQI (1) (x,y) dy dx -
LUQI LUQI ¥) (1 - a)(x,y) dy dx

_ J W (x)Dp dx,
2 QuQr

where we exploited the fact that the second integrand is anti-symmetric and that
Du) = [ (ubey) +alyx) - abey)dy =2 (u-a)xy)dy. (15)
QuUQr QuUQr
Note that when (u - @)(x,y) is singular, should be intended in a principal value sense, i.e.
Du(x) = 2 lim (- a)(x,y)dy,
7Y J(Quar)\Be (%)

being X the point where the singularity occurs.

Thus, we have
1
a(ww) = Oullull = 5 [ wt DG dx
QuQr

1
= alllulll® = 51Dl ulzz )

02
= O ||| — 5

02
= (O = 2 1Pploo)[ulll” = Ceoerl|ull|*.

Then, the coercivity follows from the assumptlons on p. Next, we show the continuity of a(-,-). We have

awol=| [ | D@y @D oEyayax— [ [ D)) uixy) ut dy dx

QU QUQT QU QUQZ

<0*|||u||||||v|||+u*j u(x)f ID* () (x, )| dy dx
QuQr QuQr

< Ol Nl + #*ul 2 @oar)

[ oy
QuQr

< 9l [[o]l] + p* CplllullICAl 0]

L2(QuQ7)

= (0" + p*CCO Ml o]]] = Ceonellull [1Iv]1]
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where the last inequality follows from the Poincaré inequality and from

Laonn <LUQI (LUQI ID*(0) (x, y)ldy)de>

1/2 1/2
< (f | |D*<v><x,y>|2dydx) (j 1dy) = Il
QuQr Jaur Quz

The last condition for the well-posedness is the continuity of G; we have

1/2

j ID*(0)(x, y)| dy
QuQr

G )] = Uﬂgvdx\ < lglvalllell

Finally, because
Ceoer[|u*[[I* < alu™,u*) = G(u*) < gllv;|llu*[ll,

we have the following a priori estimate
1
®
U < = /
||| |||\ Ccoer”g”‘/c’

i.e., u* depends continuously upon the data. O

This theorem covers the case Du = 0 that is the nonlocal counterpart of V - 3 = 0, where 3 is the
convection field of the drift term 3 - Vu in a partial differential equation. This is a very common assumption
in local convection—diffusion problems. In Theorem |1l we use the assumption that |Dpll« is bounded by a
constant depending on C, and @; this is a condition on a weighted average of p. A different approach in
showing the coercivity of a(-, -) leads to different assumptions that involve the spectral properties of the model
parameters.

Theorem 2. Let m* = sup, pn (max; m;), where m; are the eigenvalues of pu™; for g€ V7, a(-,-) and G(-)
given by and (9), © such that holds, || || |c < p*, and 9u/m™ < Cp, Cx, the problem (11)) has a
unique solution u* € V.. Furthermore, that solution satisfies the a priori estimate

[Il*[1] < Cllgllvy, (17)

where, C = Cooer = Vs — Cp Chm™, and Cy = 1122000

1
Ceoer’

Proof. The only thing that we need to show is the coercivity of a(-,-) using the assumptions on ® and p.
The continuity of a(-,-) and G(-) follow from the same arguments as in Theorem [I} From and (14]), we
have that

au, ) > Ol u] | — f f W) p(x,y) - (%, y) (u(x) — u(y)) dy dx = Ou|l[ull|? - Tr.
QuQ7r JQUQT
We find a bound for |I]:

[11] =

f u(x) j wlx,y) - a(x,y) (u(x) — u(y)) dy dx‘

L  ulx.y) - aly) () - uy) dy

= |ulL2(@uay) T2-
L2(QuQ7)

< ”U”LQ(QUQI)
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Next, we find a bound for Is:

I = (f ( L (%) - (x,y) (u(x) — u(y)) dy)2 dx>

2 1/2
g (J‘ ||IJ'(:[7 Yy ) . (X(X7 Y )(u()() - 'U/(:s )) HLj (Quar) H HL2(QUQ ) dl:)
QuQT T

1/2

< O (J’QUQZ LUQI(H()S y) - a(x,y))? (u(x) —u(y))® dy dx) v

1/2

<C ( f j a6 y) - (1000 y) e y) (u6x) — u(y))* dy dx)

1/2
< Ch ((m*)QJ J (D*u)? dydx> = O m™|||ul|]-
Quar Javar

Then, we have that
11| < Cxm™[ul 2 uap lllull] < Cp Cxm™ |[Jull]®

and N
a(u,u) = 9x||[ul||* = Cp Cxm™ [||ull|* = Ceoer || |ull]?,

where écocr is positive by assumption. Then, (17) is obtained using the same argument as in Theorem O
If we rewrite (14)) as

w

— J w? (x)Dp(x) dx + (1 — w)
QuQr

2 JQUQI ux)p(x,y) - a(x,y) (u(x) — u(y)) dy dx,

QuUQ7r

where the weight w € [0, 1], we obtain a weighted condition on g that coincides with C7||Dullc < 294 when
w =1 and with 95/m* < C, Cx when w = 0.

2.1 Fredholm alternative

Using standard variational arguments, i.e., the Lax—Milgram theorem, Theorems [I| and |2 provide sufficient
conditions on the parameters so that problem is well-posed. However, using an argument based on the
Fredholm alternative theorem [3], a more general result can be achieved; the steps in our proof are based on
the approach utilized in [30] for symmetric, translation invariant, sign changing kernels. We assume that the
energy space is a closed subspace of L?( u Qz), compactly embedded in L*(Q UAQIﬂ First, we rewrite the
nonlocal convection parameter as p = 1 + Cp, for i, i : R™ x R" — R"™ and C € R, so that the operator
L: V. — V() can be written as

Lu = —D(®D*u) + D(jiu) + CD(fiu) = Lu+ CLu.
The vector f& is such that the bilinear form associated with L:V,—> VZ(Q) is coercive; thus, CL:V, — V2(Q)
is a perturbation of £ such that the bilinear form associated with £ is not necessarily coercive.

If u is a solution of , we have that

(Lu,v) + C(Lu,v) = (g,v) VYveV,, or equivalently (Lu,v) = (g — CLu,v) Vove V.

2 As an example we might consider the Sobolev space H*(Q u Q7). In [I5] it is shown that the energy space is
equivalent to H%(Q2 u Q) for a class of kernel functions (see case 1 in §4.2); among these we mention the kernel
associated with the fractional Laplacian operator.
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Thus, in operator form, we can write

w=L""(g— CLu) that implies (I+CL ' Lyu=L""g,

where [ : V. — V. is the identity operator. Now define K = L1 Ve — V¢; in order to apply the Fredholm
alternative theorem we have to show that K is a compact perturbation of the identity. First, we show that
L : V., — V/(Q) is a compact operator, i.e., for any sequence {u;} < V. such that u; — 0 in V., Lu; — 0 in

w
V.. Here — stands for weak convergence.

Because of the compact embedding of V. in L?, u; — 0 in L*(Q u Qz); also for all v € V, there exists a

positive constant C' such that
||£UHVC’ < CH“HH(QUQI)-
To see this, consider the following statements. According to definition , for all v € V. we have

~ Low dx
|Lv|y: = sup 7&2 .
¢ weVa(Quar)wzo  ||[w]]]

We analyze the numerator,

f Low dx
Q

L f (A(x,y)0(x) + Aly, x)o(y)) - a(x, y)w(x) dy dx‘
JQ Jﬂuﬂz (v(x) +v(¥))Aly, x) - a(x,y)w(x) dy dX‘
L v(x)w(x) LQ fi(y, x) - au(x, y) dy dx

f w(x) j o)Ay %) - alx,y) dy dx
Q QuQz

=2

:2‘
+2

Let
= | Ay aty)dy ad a0 = | (@6 aby)’dy
QuQr Qur
and assume tha1E|
@ =Jule <o and @3® = Jaz)e < o;

we have

f Lyw dx‘ < 2071“““1}(9) Hw”L2(Q) + QHU)HH(Q) f v(y)a(x,y) - a(x,y) dy
Q QuQr L2(Q)

[ 2 2
< 200 |v L2 (o) [wlr2 (@) + 2[wlr2(a) f (J v(y)i(x,y) - a(x,y) d}’> dx}
o \Javas

< 2a0||v| 2o llwl L2 ) + 2lwl 2o L lo(y)i(x,y) - a(x, y)HiQ(QuQI)H1”i2(§2u§21) dx]

1
o ~ 2 2
< 2ol ey [l ey + 2wl 2 [ j f 2 (B Y) - alxy)) dy dx]
QU JQUQT

< 2ai|vl|p2olwl L2 @) + 20205 vl L2 (@uan vl L2 (@uas)

< 2(@1 + Cv)|vl 2 uen [wlz o) < 20 (@1 + Chaz)|v] L2 oaq lllwll]-

3 When the integrands are singular the same considerations as in Theorem [1] apply.

(18)

[NE
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Thus,

Low dx 2C, (a1 + Crhaz) vl 2o w
sup So < sup »( vl @oeplllwlll 20, (@T+Cra) o] 22 o
weve(@uag)wzo  ||[wlll WeV, (QuUQ7), w0 [[lwl||

From it follows that for the weakly convergent sequence {u;} c VL, the sequence {,Cuj} c V! converges
strongly to O in V!, thus, L:V.— V. is a compact operator. Because £ : V! — V. is continuous, then K is
a compact operator whose eigenvalues, denoted by k;, form a countable set. We can now apply the Fredholm
alternative theorem and state the following result.

Theorem 3. Assume that (20) holds. Then, there exists a countable set S = {1/k;}, with k; # 0 such that
is well-posed for all g € V zf and only sz' ¢S.

3 The unsteady state problem

We consider the following time-dependent functional spaces: L?(0,T;V.) = {v(-,t) € V. : ||]v(-t)||| €
L?(0,7)} and L?*(0,T;V)) = {g(-,t) € V : lg(,)lv: € L?(0,7)}, for T > 0. We formulate the time-
dependent nonlocal convection—diffusion problem as follows

—Lu = g xeQ, te (0,7
u(x,t) = 0 x € Qz, te(0,T] (21)
u(x,0) = wuo(x) x €€,

where g € L2(0,T;V/) and uo € V.. A weak form of problem is: given g € L*(0,T;V!) and uo € V., find
we L2(0,T;V,) that satisfies, for all v e V.,

J ur vdx + J - (@D*v)dydx — | D(pu)vdx = J gvdx, (22)
Q QuQz QUQI Q Q

such that u(x,0) = uo(x).
According to the notation introduced in the previous section, is equivalent to
(Ut, U)Q + a’(uv U) = G(U)7 (23)

where (-,-)g is the L? inner product over Q. When a(-, ) is coercive and continuous and G(-) is continuous,
the weak formulation is well-posed; however, the weak coercivity of a(-,-), that requires weaker assumptions
on g (see the following Theorem , is also a sufficient condition for the well-posedness of (23] [21].

Lemma 1. If |Dp|o < 00, then, the bilinear form a(-,-) is weakly coercive.

Proof. Equation implies that

2 2
a(u, u) + CwellulL2uaz) = Pslllulll” (24)
where Cyc = %CPHD;LHIH A bilinear form satisfying is, by definition, weakly coercive. O

Theorem 4. For g € L?(0,T; V) and uo € V., a(-,-) continuous and weakly coercive, and G(-) continuous,
problem has a unique solution u* € L*(0,T;V.). Furthermore, if a(-,-) is coercive, that solution satisfies
the following a priori estimate

t
I O+ B [ 0% 9P s < Bl + 5 [ ooz ds, vi=0. 25)

where Kcoer € {Ccoer7 Ccoer}-
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Proof. The weak coercivity and the continuity of a(-,-) and the continuity of G(-) imply the existence and
uniqueness of a solution u* € L?(0,T;V.) [2I]. Then, follows from arguments of the classical theory of
partial differential equations [33]. O

4 The relation to Markov processes

In the previous sections the kernel function v is allowed to take on negative values. However, when the
nonlocal equation is associated with a jump process, v denotes the jump rate; thus, we make the assumption
that v : R" x R™ — [0, 00).

Let X: be a jump process conditioned on Xo € € that is absorbed when X; € Q7. For a non—negative
initial condition uo(x) such that

Jﬂ up(x)dx =1 (26)

and g = 0, the nonlocal system over Q x (0,00) describes the evolution of the probability density for the
process X; with jump rate v = 0, i.e.,

P(X;e Q) = J\ u(x, 1) dx for Q2 < Q.
Q

We refer to 1 as the master equation for the jump process. The condition on uo ensures that Xy € 2 and
the homogeneous volume constraint grants that the process does not re—enter the domain, i.e., is absorbed
if it exits the domain. The first integrand of £ in represents the rate v(y,x)dx to dx from y given
the probability u(y,t)dy whereas the second integrand represents the rate v(x,y) dy to dy from x given the
probability u(x,t)dx. The difference in these two rates gives the rate of change of the probability u(x,t)dx;
the assumption on g implies that at steady state the rates are equal.

Because X, for ' > 0 only depends upon X; we see that the process X; is Markov; thus, the nonlocal
convection—diffusion operator £ is the generator of a Markov process. Also, because v is a nonsymmetric
localized kernel, the nonlocal jumps are, in general, not symmetrically distributed and have finite length. We
refer to such a process as a finite range nonsymmetric Markov jump process, a generalization of a continuous—
time Markov chain over the state space 2. This observation leads to a particle tracking method for realizing
the process; see [17, §5.1].

The paper [I7] demonstrates that for processes governed by the master equation with integrable
kernels, the probability is conserved over §2; this statement holds regardless of whether v is integrable or not.

4.1 Exit—time problem for the jump Markov process

The solution of the evolution equation for the probability density in bounded domains allows us to solve
the exit—time problem for jump processes. We introduce the random variable

7:=1inf{t > 0, X; € Q7| Xo € }

that denotes the first exit time of X, from (2. Its probability distribution is given by

Ft)=1- L u(x, ) dx.

The expected exit time from € is given by the expected value of the random variable 7:

E(r) = JO/ L u(x, £) dx d.

The paper [11] establishes that for symmetric infinite and finite activity Lévy jump processes the expected
exit time is finite as long as the initial condition is square integrable. Following the same argument we show
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that such a statement holds also for the expected exit time of the Markov jump process associated with the
master equation (21)), provided that the bilinear form in is coercive and that the initial condition is such
that uo € L*(Q) [

Lemma 2. If ug(x) : Q — [0,00) is such that uo € L*>(Q) and holds, then the expected exit time E(T) for
the master equation is finite. Furthermore,

E(7) < CrluolL2(q)s (27)

c2(9| ~
Kp 3 Kcoer € {Ccoem Ccoer}<

where C =

Proof. Consider the weak formulation forg=0
(ue,v) + a(u,v) =0 VveV..

With v = u we have

(u¢,u) + a(u,u) =0 or equivalently — J u?(x,t) dx = —2a(u,u),
Q

For Keoer € {Ceoer; Ceoer}, the coercivity of a(-, ) implies that

—a(u,u) < —Keourl[[u( DI < —Kg—‘;||u<~,t>uiz<m
Thus,
G D) < =2 B D
Letting ¢, = 2%%, we have

luC, 02y < e ul 072 VE>0.

By the Cauchy—Schwarz inequality we have
f e ) dx < e~ FU |9 fuol oy V>0, (28)
Q

i.e., the probability of remaining in € decreases exponentially in time. Then, for C, = 2 \QI7 is obtained

Cr

by integrating both sides of in time. O

4.2 Special cases of the nonlocal operator

When certain conditions on the nonlocal diffusion and convection parameters hold, the nonlocal convection—
diffusion operator is the generator of Lévy or Lévy—type processes. For a Lévy measure ¢, the generator of a
Lévy jump process in R" is defined as [29]

Gf(x) = f (Fx—y) = F() +y- V) Lyl < R)é(dy), R <o, xR,

n

4 When the initial condition of the master equation (21); is the Dirac measure, the theory of LP spaces, p = 1, allows
us to apply the result in Lemma
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For an integrable Lévy measure ¢, G is the generator of a finite activity jump process; for a singular ¢, G is
the generator of an infinite activity jump process. In the latter case, G has to be interpreted in a principal
value sense, i.e.,

I =lm | (fx=y) = F() +y - V) 1(ly] < R))$(dy) = lim P- f(x).
=0 Jpn\B_ (0 e—

In words, for a singular Lévy measure ¢, the generator of the Lévy process is the limit as ¢ — 0 of the

generator of a compound Poisson process P.. Assuming that ¢(dy) = ¢(y)dy and splitting the integral, we

have

616 = [ (fGx=9) = 109) 6y dy + - V() (29)
where the advection term is such that d - Vf(x) = SHyusR y - Vf(x)eé(y)dy.

Consider now the operator £; if we assume that a, ®, u are translation invariant over R and not neces-
sarily of compact support, we may then rewrite (2c)) as

cmm=j (u)r(y — %) —u(x)y(x—y))dy, x€R", (30)

R™

and because
J ’Y(X—Y)dy=J vy —-x)dy VYxeR"
R™ n

regardless of whether or not v(y — x) = y(x — y) holds, we have

Lui) = |

RN

(uly) = u@x)v(y —x)dy = fRn (u(x — 2z) — u(x))(2) da. (31)
When ~ is a Lévy measure, comparing and we see that G is an instance of £ and advection. As
a matter of fact, G can generate only a small class of jump processes; for example, as soon as we confine
the process to a bounded domain, the jump rate is not translation invariant and therefore G cannot be the
generator. As an example, consider the Lévy jump rate v;(x —y); when the process is confined to 2 the jump
rate becomes Y.(x,y) = (x —y)l(x € QU Q7)1(y € QU Qz); in this case, the more general form is
required.

Another class of processes of interest consists in those whose jump rate (not necessarily symmetric nor
translation invariant) satisfies

f Y(x,y)dy = J Yy, x)dy VxeQuQz. (32)
QuQT QuQz

In this case (2c|) can be rewritten as

cwm=J' (uly) — u(x))7(x, ) dy.

QuQr

Moreover, the condition (32) can be interpreted as an intrinsic property of the nonlocal convection parameter.
In fact, from (|15)) we see that the following relations are equivalent:

Dpu=0 x€eQ (33a)

J (h-a)(x,y)dy =0 xeQ. (33D)
QuQr
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Integrating (33b)) over Q we have

| [y | f (- 0)(xy)dy = | f (1 @) (x,y) dy = 0.

Thus, that p is nonlocally divergence free is a statement on the flux density, i.e., the probability flux from
into Q7 must be zero. Because a - (@) is symmetric, also allows us to conclude that

J ’v(x,y)dy=J Yy, x)dy <= Dp=0 VxeQ.
QuQr QU7

We also mention that, for certain kernel functions, the operator £ in is equivalent to a class of
fractional differential operators; see [14] where the equivalence between the nonlocal operator £ and the
fractional Laplacian (—A)® is analyzed for all s € (0,1), and see [I5] where, for symmetric and translation
invariant kernel functions, the authors show the equivalence of £ and the fractional operators introduced in [2§].
Using the nonsymmetric kernel in , even more general fractional operators associated with nonsymmetric
diffusion can be represented as special instances of £; this topic is the subject of our current research.
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