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Abstract

A nonlocal convection–diffusion model is introduced for the master equation of Markov jump processes in
bounded domains. With minimal assumptions on the model parameters, the nonlocal steady and unsteady
state master equations are shown to be well–posed in a weak sense. Then, the nonlocal operator is shown
to be the generator of finite range nonsymmetric jump processes and, when certain conditions on the model
parameters hold, the generators of finite and infinite activity Lévy and Lévy–type jump processes are shown
to be special instances of the nonlocal operator.
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1 Introduction

This work is motivated by nonsymmetric jump processes of finite range; a general model for their description
is a nonlocal convection–diffusion equation introduced in [18] and further analyzed in [17]. This paper extends
the results of [17] to infinite activity processes and to a broader class of jump processes; moreover, it studies
both the steady and unsteady state equations in bounded domains.

The main contribution is the analysis of a general class of nonlocal diffusion problems; with minimal
assumptions on the parameters, we prove that the nonlocal equations are well–posed, generalizing the results
in [17] to singular and not necessarily positive kernels1. We also provide the basis for the analysis of a large class
of stochastic processes confined to bounded domains; in fact, we show that for non–negative kernel functions
the convection–diffusion operator is the generator of a Markov jump process and that the corresponding
master equation has a unique solution.
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applications; see [30] where a class of sign changing kernels is analyzed.
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 2

Standard probabilistic methods analyze the strong form of the equations governing the process; instead,
we treat an associated variational problem. To the best of our knowledge, the use of variational methods is
a non–conventional probabilistic approach and we are not aware of other works that prove that the master
equation of a general Markov jump process is well–posed in a weak sense. Our approach allows us to prove the
well–posedness of the problem using classical arguments of the variational theory and makes Galerkin–type
numerical methods (e.g., the finite element methods) naturally suitable for numerical approximation. On
the other hand, the weak formulation does not allow for point–wise estimates of the solution; however, it
provides (optimal) energy estimates. Improving such estimates requires a regularity result for the nonlocal
convection-diffusion equations, a current topic of research.

As opposed to local classical models, nonlocal models allow for discontinuities in the solution. In a nonlocal
model, the interactions between points can occur at a finite distance, whereas in the local case they occur
only due to contact. The need for nonlocality in modeling stochastic processes comes from the possibility of
having a jump in the sample path; this happens, e.g., in Lévy jump processes whereas it does not happen in
a Brownian process that features a continuous sample path.

Nonlocal symmetric diffusion models have been widely used and studied not only in the field of stochastic
processes but, more generally, in image analyses [8, 24, 25, 27], machine learning [32], kinetic equations [5, 26],
phase transitions [6, 23], nonlocal heat conduction [7], and a linearized peridynamic model for mechanics [35].
Their analysis has been improved by a recently developed nonlocal vector calculus that provides tools that
allow one to study nonlocal equations in a similar manner as one studies the associated local partial differential
equations. The nonlocal vector calculus, which is a nonlocal counterpart of the classical vector calculus, was
introduced in [16] and applied to volume–constrained nonlocal diffusion problems in [15]. Moreover, several
numerical methods for nonlocal diffusion equations with volume constraints have been introduced; see, e.g.,
[1, 9, 10, 12, 14, 13, 17, 19, 31, 34].

Nonlocal convection–diffusion can be interpreted as nonlocal nonsymmetric diffusion in the sense that
nonlocal convection does not have a drift effect; instead, it is a non–uniform diffusion, i.e., it occurs in some
random direction. Nonsymmetric diffusion is used to describe nonsymmetric jump processes; we mention
the works by Meerschaert and collaborators [4, 28, 29] where the equations are set either in free space or
in bounded domains with boundary conditions. Ervin and Roop [20] consider the variational form of the
equations introduced by Meerschaert in a bounded domain; there, they prescribe boundary conditions. In
their work they do not provide a stochastic interpretation of the process underlying the equation and limit
their analysis to operators associated to infinite activity processes with infinite variation (see [11] for the
classification of jump processes). Felsinger et al. [22] also analyze the variational formulation of the diffusion
equations; they consider integrable and non–integrable, symmetric and nonsymmetric kernels. Their work is
similar to the one presented in this paper; however, there are differences that make their models less suitable
for stochastic applications. In fact, they do not provide any stochastic interpretation and, in general, the
operators treated in [22] are not generators of stochastic processes unless further conditions (that guarantee
the conservation of probability) on the kernels are prescribed. Different assumptions on the model parameters
still yield the well–posedness of the steady state equation for a large class of kernels (several examples are
provided in [22, §6]); in particular, they do not allow the kernels to take on negative values and allow the
nonlocal interactions to be infinite. Andreu and collaborators [2] consider the strong form of nonsymmetric
diffusion equations to which they prescribe volume constraints; their analysis is limited to integrable, positive,
and translation invariant kernels. In this work we consider a more general class of operators and we augment
the nonlocal equations with volume constraints; this choice is motivated by the fact that the sample path is not
continuous, instead, it might jump outside of the domain without passing through the boundary. Furthermore,
prescribing volume constraints is a key assumption to prove that the problem is well–posed.

In the remainder of this section we introduce the notation used throughout the paper. In Section 2, we
introduce the nonlocal operator and the steady state convection–diffusion equation. Using standard variational
arguments and the nonlocal vector calculus, we prove that the weak solution of the problem exists, is unique
and depends continuously on the data. Then, using a Fredholm alternative argument, we show that the
equation is well–posed, relaxing the assumptions on the parameters. In Section 3, we treat the time–dependent
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 3

problem and show that it is well–posed in a weak sense. In Section 4 we provide an interpretation of the
problem in terms of stochastic processes and show that the nonlocal equation evolves the probability density
of a general Markov jump process.

1.1 Notation

We introduce the notation of the nonlocal vector calculus used throughout the paper. For an extensive
introduction to that calculus, see [16].

We define the action of the nonlocal divergence operator Dpνq : Rn Ñ R as

D
�
ν
�
pxq :�

»
Rn

�
νpx,yq � νpy,xq

�
�αpx,yq dy for x P Rn, (1a)

where νpx,yq,αpx,yq : Rn�Rn Ñ Rn with α anti–symmetric. The action of the operator D�puq : Rn�Rn Ñ
Rn, that is the formal adjoint to D, is given by

D�
�
u
�
px,yq :� �

�
upyq � upxq

�
αpx,yq for x,y P Rn, (1b)

where u : Rn Ñ R is a given mapping. In [16], this operator is shown to be the nonlocal analog of the negative
of the classical gradient operator. Let Lu : Rn Ñ R be a nonlocal operator defined as

Lupxq � �DpΘD�uqpxq �Dpµuqpxq, (2a)

where, without loss of generality, Θpx,yq � Θpy,xq � ΘT px,yq and µpx,yq � µpy,xq. We refer to the
second order tensor Θ as the nonlocal diffusion parameter and to the vector µ as the nonlocal convection
parameter. For

γpx,yq � αpx,yq �
�
Θpx,yqαpx,yq

�
� µpx,yq �αpx,yq, (2b)

the operator L has the explicit form

Lupxq �
»

Rn

�
upyqγpy,xq � upxqγpx,yq

�
dy for x P Rn. (2c)

The same nonlocal operator (and the associated time–dependent problem, treated in Section 3) has been
analyzed in [17] for integrable kernel functions.

The reason why we can assume Θ � ΘT without loss of generality is because in γ the anti–symmetric
part of Θ (as a tensor) has no contribution. In fact, if we decompose Θ in its symmetric and anti–symmetric
parts (in a tensor sense) we have

α � pΘαq � α � pΘSαq �α � pΘAαq � α � pΘSαq.

On the other hand, we assume that Θpx,yq � Θpy,xq because the anti–symmetric part of Θ (as a function
of x and y) can be included in the convection term. In fact, consider the decomposition of Θ in its symmetric
and anti–symmetric parts (in a function sense), we have

γ � α � pΘsαq �α � pΘaαq � µ �α.

Let σpx,yq � σpy,xq be defined as σ � Θaα, we can rewrite the kernel as

γ � α � pΘsαq � pµ� σq �α.

With a similar argument we show that the assumption of a symmetric nonlocal convection parameter is
not restrictive. In fact, assume that µ is nonsymmetric and consider the decomposition of µ into its symmetric
and anti–symmetric parts (in a function sense), we have

γ � α � pΘαq � µa �α� µs �α;
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 4

where, the first and the second term are symmetric. We write the second term as

µa �α � α � pΨαq,

with Ψpx,yq � Ψpy,xq and, e.g., Ψ � pµa b αq{pαTαq so that when α � 0 on a measure–zero set, Ψ is
well–defined almost everywhere. Then, we can write γpx,yq as

γ � α �
�
pΘ�Ψqα

�
� µs �α.

Thus, the nonsymmetric part of the nonlocal diffusion operator can be interpreted as nonlocal convection and
L becomes the sum of a diffusion and a convection term with symmetric diffusion and convection parameters.

Letting Ω � Rn denote a bounded open domain, we define the interaction domain ΩI � Rn as

ΩI :� ty P RnzΩ such that αpx,yq � 0 for x P Ωu,

i.e., ΩI consists of those points outside of Ω that interact with points inside of Ω. We suppose that γ is a
localized kernel, i.e., for all x P ΩY ΩI ,

γpx,yq � 0 @y P pΩY ΩIqzBλpxq, (3)

where λ is a positive constant and Bλpxq :� ty P ΩY ΩI : |y� x| ¤ λu. Note that, in general, γ is not radial
nor translation invariant.

We define the nonlocal energy semi–norm, nonlocal energy space, and nonlocal volume–constrained energy
space by

|||v|||2 :�
1

2

»
ΩYΩI

»
ΩYΩI

��D�pvqpx,yq
��2 dy dx (4a)

V pΩY ΩIq :�
 
v P L2pΩY ΩIq : |||v|||   8

(
(4b)

VcpΩY ΩIq :� tv P V pΩY ΩIq : v � 0 on ΩIu , (4c)

respectively, and we assume that the energy norm satisfies a Poincaré–like inequality: }v}L2pΩYΩIq ¤ Cp|||v|||
for all v P Vc. We refer to Cp as the Poincaré constant. This property holds for a large class of kernel functions,
see, e.g., cases 1 and 2 in [15, §4.2]. We denote by V 1

c pΩq the dual space of VcpΩY ΩIq with respect to the
standard duality pairing; a norm on V 1

c pΩq can be defined as

}g}V 1

c
:� sup

vPVcpΩYΩIq,v�0

³
Ω
g v dx

|||v|||
@ g P V 1

c pΩq. (5)

In [16] one can find results such as the nonlocal integration by parts and the nonlocal first and second Green’s
identities.

2 The steady state problem

In this section we show that the weak form of the nonlocal convection–diffusion problem is well–posed. Using
standard arguments of the classical variational theory, we prove two well–posedness results; their combination
provides a weighted sufficient condition on the model parameters granting the existence and uniqueness of a
solution. Then, we rely on a Fredholm alternative argument [3] to prove a more general result.

We formulate the steady state nonlocal convection–diffusion problem as#
�Lu � g in Ω,

u � 0 in ΩI ,
(6)
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 5

where g P V 1
c . The inner product of (6) over Ω with a test function v P Vc gives»

Ω

DpΘD�uqpxqvpxq dx�

»
Ω

Dpµuqpxq vpxq dx �

»
Ω

gpxqvpxq dx.

The nonlocal Green’s identity (see [16, §4.3]) grants»
ΩYΩI

»
ΩYΩI

D�puqpx,yq � pΘD�vqpx,yq dy dx�

»
Ω

Dpµuqpxq vpxq dx �

»
Ω

gpxqvpxq dx. (7)

The weak form of problem (6) can be formulated as: given g P V 1
c , find u P Vc that satisfies (7) for all v P Vc.

Now define the bilinear form

apu, vq �

»
ΩYΩI

»
ΩYΩI

D�puqpx,yq � pΘD�vqpx,yq dy dx�

»
Ω

Dpµuqpxq vpxq dx (8)

and the linear functional

Gpvq �

»
Ω

gpxqvpxq dx (9)

for all v P Vc. Then, the weak solution solves apu, vq � Gpvq for all v P Vc.

Theorem 1. For g P V 1
c , ap�, �q and Gp�q given by (8) and (9), Θ such that there exist ϑ�, ϑ

� ¡ 0 satisfying

0   ϑ� ¤ inf
xPRn

pmin
i
θiq, sup

xPRn
pmax

i
θiq ¤ ϑ�   8, (10)

where θi are the singular values of Θ, and µ such that C2
p}Dµ}8 ¤ 2ϑ� and } |µ| }8 ¤ µ�, the problem

apu, vq � Gpvq @ v P Vc (11)

has a unique solution u� P Vc. Furthermore, that solution satisfies the a priori estimate

|||u�||| ¤ C}g}V 1

c
, (12)

where C � 1
Ccoer

and Ccoer � ϑ� �
1
2
C2
p}Dµ}8.

Proof. By using the nonlocal integration by parts formula (see [16, §4.3]) we rewrite ap�, �q as

apu, vq �

»
ΩYΩI

»
ΩYΩI

D�puqpx,yq � pΘD�vqpx,yq dy dx

�

»
ΩYΩI

»
ΩYΩI

D�pvqpx,yq � µpx,yqupxq dydx�

»
ΩI

vpxqN pµuqpxq dx

�

»
ΩYΩI

»
ΩYΩI

D�puqpx,yq � pΘD�vqpx,yq dy dx�

»
ΩYΩI

»
ΩYΩI

D�pvqpx,yq � µpx,yqupxq dydx,

where the last equality follows from the homogeneous volume constraint. By the Lax–Milgram theorem,
sufficient conditions so that the problem (11) is well–posed are the coercivity and the continuity of ap�, �q and
the continuity of Gp�q. The assumptions on Θ imply that

apu, uq ¥ ϑ�

»
ΩYΩI

»
ΩYΩI

D�puqpx,yq �D�puqpx,yq dx

�

»
ΩYΩI

»
ΩYΩI

D�puqpx,yq � µpx,yqupxq dy dx

� ϑ�|||u|||
2 �

»
ΩYΩI

»
ΩYΩI

D�puqpx,yq � µpx,yqupxq dy dx.

(13)
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 6

We analyze the second term in (13):»
ΩYΩI

»
ΩYΩI

D�puqpx,yq � µpx,yqupxq dy dx

�

»
ΩYΩI

»
ΩYΩI

upxqµpx,yq �αpx,yq
�
upxq � upyq

�
dy dx

�

»
ΩYΩI

u2pxq

»
ΩYΩI

�
µ �α

�
px,yq dy dx

�

»
ΩYΩI

»
ΩYΩI

upxqupyq
�
µ �α

�
px,yq dy dx

�
1

2

»
ΩYΩI

u2pxqDµ dx,

(14)

where we exploited the fact that the second integrand is anti–symmetric and that

Dµpxq �

»
ΩYΩI

pµpx,yq � µpy,xqq �αpx,yq dy � 2

»
ΩYΩI

pµ �αqpx,yq dy. (15)

Note that when pµ �αqpx,yq is singular, (15) should be intended in a principal value sense, i.e.

Dµpxq � 2 lim
εÑ0

»
pΩYΩIqzBεpxq

pµ �αqpx,yq dy,

being x the point where the singularity occurs.
Thus, we have

apu, uq ¥ ϑ�|||u|||
2 �

1

2

»
ΩYΩI

u2pxqDpµq dx

¥ ϑ�|||u|||
2 �

1

2
}Dµ}8}u}

2
L2pΩq

¥ ϑ�|||u|||
2 �

C2
p

2
}Dµ}8|||u|||

2

� pϑ� �
C2
p

2
}Dµ}8q|||u|||

2 � Ccoer|||u|||
2.

(16)

Then, the coercivity follows from the assumptions on µ. Next, we show the continuity of ap�, �q. We have

|apu, vq| �

������
»

ΩYΩI

»
ΩYΩI

D�puqpx,yq � pΘD�vqpx,yq dydx�

»
ΩYΩI

»
ΩYΩI

D�pvqpx,yq � µpx,yqupxq dy dx

������
¤ ϑ� |||u||| |||v||| � µ�

����»
ΩYΩI

upxq

»
ΩYΩI

|D�pvqpx,yq| dy dx

����
¤ ϑ�|||u||| |||v||| � µ�}u}L2pΩYΩIq

����»
ΩYΩI

|D�pvqpx,yq| dy

����
L2pΩYΩIq

¤ ϑ�|||u||| |||v||| � µ�Cp|||u|||Cλ|||v|||

� pϑ� � µ�CpCλq|||u||| |||v||| � Ccont|||u||| |||v|||,
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 7

where the last inequality follows from the Poincaré inequality and from����»
ΩYΩI

|D�pvqpx,yq| dy

����
L2pΩYΩIq

�

�»
ΩYΩI

�»
ΩYΩI

|D�pvqpx,yq| dy


2

dx

�1{2

¤

�»
ΩYΩI

»
ΩYΩI

|D�pvqpx,yq|2 dy dx


1{2 �»
ΩYΩI

1 dy


1{2

� Cλ|||v|||.

The last condition for the well–posedness is the continuity of G; we have

|Gpvq| �

����»
Ω

g v dx

���� ¤ }g}V 1

c
|||v|||.

Finally, because
Ccoer|||u

�|||2 ¤ apu�, u�q � Gpu�q ¤ }g}V 1

c
|||u�|||,

we have the following a priori estimate

|||u�||| ¤
1

Ccoer
}g}V 1

c
,

i.e., u� depends continuously upon the data.

This theorem covers the case Dµ � 0 that is the nonlocal counterpart of ∇ � β � 0, where β is the
convection field of the drift term β �∇u in a partial differential equation. This is a very common assumption
in local convection–diffusion problems. In Theorem 1 we use the assumption that }Dµ}8 is bounded by a
constant depending on Cp and Θ; this is a condition on a weighted average of µ. A different approach in
showing the coercivity of ap�, �q leads to different assumptions that involve the spectral properties of the model
parameters.

Theorem 2. Let m� � supxPRnpmaximiq, where mi are the eigenvalues of µµT ; for g P V 1
c , ap�, �q and Gp�q

given by (8) and (9), Θ such that (10) holds, } |µ| }8 ¤ µ�, and ϑ�{m
� ¤ Cp Cλ, the problem (11) has a

unique solution u� P Vc. Furthermore, that solution satisfies the a priori estimate

|||u�||| ¤ rC}g}V 1

c
, (17)

where, rC � 1
rCcoer

, rCcoer � ϑ� � Cp Cλm
�, and Cλ � }1}L2pΩYΩIq.

Proof. The only thing that we need to show is the coercivity of ap�, �q using the assumptions on Θ and µ.
The continuity of ap�, �q and Gp�q follow from the same arguments as in Theorem 1. From (13) and (14), we
have that

apu, uq ¥ ϑ�|||u|||
2 �

»
ΩYΩI

»
ΩYΩI

upxqµpx,yq �αpx,yq
�
upxq � upyq

�
dy dx � ϑ�|||u|||

2 � I1.

We find a bound for |I1|:

|I1| �

����»
ΩYΩI

upxq

»
ΩYΩI

µpx,yq �αpx,yq
�
upxq � upyq

�
dy dx

����
¤ }u}L2pΩYΩIq

����»
ΩYΩI

µpx,yq �αpx,yq
�
upxq � upyq

�
dy

����
L2pΩYΩIq

� }u}L2pΩYΩIq I2.
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 8

Next, we find a bound for I2:

I2 �

�»
ΩYΩI

�»
ΩYΩI

µpx,yq �αpx,yq
�
upxq � upyq

�
dy


2

dx

�1{2

¤

�»
ΩYΩI

}µpx,yq �αpx,yq
�
upxq � upyq

�
}2L2pΩYΩIq

}1}2L2pΩYΩIq
dx


1{2

¤ Cλ

�»
ΩYΩI

»
ΩYΩI

pµpx,yq �αpx,yqq2
�
upxq � upyq

�2
dy dx


1{2

¤ Cλ

�»
ΩYΩI

»
ΩYΩI

αpx,yq � ppµpx,yqµpx,yqT qαpx,yqq
�
upxq � upyq

�2
dy dx


1{2

¤ Cλ

�
pm�q2

»
ΩYΩI

»
ΩYΩI

pD�uq2 dy dx


1{2

� Cλm
�|||u|||.

Then, we have that
|I1| ¤ Cλm

�}u}L2pΩYΩIq|||u||| ¤ Cp Cλm
� |||u|||2

and
apu, uq ¥ ϑ�|||u|||

2 � Cp Cλm
� |||u|||2 � rCcoer |||u|||

2,

where rCcoer is positive by assumption. Then, (17) is obtained using the same argument as in Theorem 1.

If we rewrite (14) as

ω

2

»
ΩYΩI

u2pxqDµpxq dx� p1� ωq

»
ΩYΩI

»
ΩYΩI

upxqµpx,yq �αpx,yq
�
upxq � upyq

�
dy dx,

where the weight ω P r0, 1s, we obtain a weighted condition on µ that coincides with C2
p}Dµ}8 ¤ 2ϑ� when

ω � 1 and with ϑ�{m
�   Cp Cλ when ω � 0.

2.1 Fredholm alternative

Using standard variational arguments, i.e., the Lax–Milgram theorem, Theorems 1 and 2 provide sufficient
conditions on the parameters so that problem (11) is well–posed. However, using an argument based on the
Fredholm alternative theorem [3], a more general result can be achieved; the steps in our proof are based on
the approach utilized in [30] for symmetric, translation invariant, sign changing kernels. We assume that the
energy space is a closed subspace of L2pΩY ΩIq, compactly embedded in L2pΩY ΩIq

2. First, we rewrite the
nonlocal convection parameter as µ � qµ � pCpµ, for qµ, pµ : Rn � Rn Ñ Rn and pC P R, so that the operator
L : Vc Ñ V 1

c pΩq can be written as

Lu � �DpΘD�uq �Dpqµuq � pCDppµuq � qLu� pC pLu.
The vector qµ is such that the bilinear form associated with qL : Vc Ñ V 1

c pΩq is coercive; thus, pC pL : Vc Ñ V 1
c pΩq

is a perturbation of qL such that the bilinear form associated with L is not necessarily coercive.
If u is a solution of (11), we have that

p qLu, vq � pCp pLu, vq � pg, vq @ v P Vc, or equivalently p qLu, vq � pg � pC pLu, vq @ v P Vc.

2 As an example we might consider the Sobolev space HspΩ Y ΩIq. In [15] it is shown that the energy space is
equivalent to HspΩ Y ΩIq for a class of kernel functions (see case 1 in §4.2); among these we mention the kernel
associated with the fractional Laplacian operator.
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 9

Thus, in operator form, we can write

u � qL�1pg � pC pLuq that implies pI � pC qL�1 pLqu � qL�1g,

where I : Vc Ñ Vc is the identity operator. Now define K � qL�1 pL : Vc Ñ Vc; in order to apply the Fredholm
alternative theorem we have to show that K is a compact perturbation of the identity. First, we show thatpL : Vc Ñ V 1

c pΩq is a compact operator, i.e., for any sequence tuju � Vc such that uj
w
ÝÑ 0 in Vc, pLuj Ñ 0 in

V 1
c . Here

w
ÝÑ stands for weak convergence.

Because of the compact embedding of Vc in L2, uj Ñ 0 in L2pΩY ΩIq; also for all v P Vc there exists a
positive constant C such that

} pLv}V 1

c
¤ C}v}L2pΩYΩIq. (18)

To see this, consider the following statements. According to definition (5), for all v P Vc we have

} pLv}V 1

c
:� sup

wPVcpΩYΩIq,w�0

³
Ω
pLvw dx
|||w|||

.

We analyze the numerator,����»
Ω

pLvw dx���� �

����»
Ω

»
ΩYΩI

�pµpx,yqvpxq � pµpy,xqvpyq� �αpx,yqwpxq dy dx����
� 2

����»
Ω

»
ΩYΩI

�
vpxq � vpyq

�pµpy,xq �αpx,yqwpxq dy dx����
� 2

����»
Ω

vpxqwpxq

»
ΩYΩI

pµpy,xq �αpx,yq dy dx����
� 2

����»
Ω

wpxq

»
ΩYΩI

vpyqpµpy,xq �αpx,yq dy dx���� .
Let

α1pxq �

»
ΩYΩI

pµpx,yq �αpx,yq dy and α2pxq �

»
ΩYΩI

ppµpx,yq �αpx,yqq2 dy (19)

and assume that3

α1 � }α1}8   8 and α2
2 � }α2}8   8; (20)

we have����»
Ω

pLvw dx���� ¤ 2α1}v}L2pΩq}w}L2pΩq � 2}w}L2pΩq

����»
ΩYΩI

vpyqpµpx,yq �αpx,yq dy����
L2pΩq

¤ 2α1}v}L2pΩq}w}L2pΩq � 2}w}L2pΩq

�»
Ω

�»
ΩYΩI

vpyqpµpx,yq �αpx,yq dy
2

dx

� 1
2

¤ 2α1}v}L2pΩq}w}L2pΩq � 2}w}L2pΩq

�»
Ω

}vpyqpµpx,yq �αpx,yq}2L2pΩYΩIq
}1}2L2pΩYΩIq

dx

� 1
2

¤ 2α1}v}L2pΩq}w}L2pΩq � 2Cλ}w}L2pΩq

�»
ΩYΩI

»
ΩYΩI

v2pyq
�pµpx,yq �αpx,yq�2

dy dx

� 1
2

¤ 2α1}v}L2pΩq}w}L2pΩq � 2α2Cλ}v}L2pΩYΩIq}w}L2pΩYΩIq

¤ 2pα1 � Cλα2q}v}L2pΩYΩIq}w}L2pΩYΩIq ¤ 2Cppα1 � Cλα2q}v}L2pΩYΩIq|||w|||.

3 When the integrands are singular the same considerations as in Theorem 1 apply.
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 10

Thus,

sup
wPVcpΩYΩIq,w�0

³
Ω
pLvw dx
|||w|||

¤ sup
wPVcpΩYΩIq,w�0

2Cppα1 � Cλα2q}v}L2pΩYΩIq|||w|||

|||w|||
� 2Cppα1�Cλα2q}v}L2pΩYΩIq.

From (18) it follows that for the weakly convergent sequence tuju � Vc, the sequence t pLuju � V 1
c converges

strongly to 0 in V 1
c , thus, pL : Vc Ñ V 1

c is a compact operator. Because qL�1 : V 1
c Ñ Vc is continuous, then K is

a compact operator whose eigenvalues, denoted by kj , form a countable set. We can now apply the Fredholm
alternative theorem and state the following result.

Theorem 3. Assume that (20) holds. Then, there exists a countable set S � t1{kju, with kj � 0 such that

(11) is well–posed for all g P V 1
c if and only if pC R S.

3 The unsteady state problem

We consider the following time–dependent functional spaces: L2p0, T ;Vcq � tvp�, tq P Vc : |||vp�, tq||| P
L2p0, T qu and L2p0, T ;V 1

c q � tgp�, tq P V 1
c : }gp�, tq}V 1

c
P L2p0, T qu, for T ¡ 0. We formulate the time–

dependent nonlocal convection–diffusion problem as follows$&%
ut � Lu � g x P Ω, t P p0, T s
upx, tq � 0 x P ΩI , t P p0, T s
upx, 0q � u0pxq x P Ω,

(21)

where g P L2p0, T ;V 1
c q and u0 P Vc. A weak form of problem (21) is: given g P L2p0, T ;V 1

c q and u0 P Vc, find
u P L2p0, T ;Vcq that satisfies, for all v P Vc,»

Ω

ut v dx�

»
ΩYΩI

»
ΩYΩI

D�puq � pΘD�vq dy dx�

»
Ω

Dpµuq v dx �

»
Ω

g v dx, (22)

such that upx, 0q � u0pxq.

According to the notation introduced in the previous section, (22) is equivalent to

put, vqΩ � apu, vq � Gpvq, (23)

where p�, �q
rΩ is the L2 inner product over rΩ. When ap�, �q is coercive and continuous and Gp�q is continuous,

the weak formulation is well–posed; however, the weak coercivity of ap�, �q, that requires weaker assumptions
on µ (see the following Theorem 4), is also a sufficient condition for the well–posedness of (23) [21].

Lemma 1. If }Dµ}8   8, then, the bilinear form ap�, �q is weakly coercive.

Proof. Equation (16) implies that

apu, uq � Cwc}u}
2
L2pΩYΩIq

¥ ϑ�|||u|||
2, (24)

where Cwc �
1
2
Cp}Dµ}8. A bilinear form satisfying (24) is, by definition, weakly coercive.

Theorem 4. For g P L2p0, T ;V 1
c q and u0 P Vc, ap�, �q continuous and weakly coercive, and Gp�q continuous,

problem (23) has a unique solution u� P L2p0, T ;Vcq. Furthermore, if ap�, �q is coercive, that solution satisfies
the following a priori estimate

}u�p�, tq}2L2pΩq �Kcoer

» t
0

|||u�p�, sq|||2 ds ¤ }u0}
2
L2pΩq �

C2
p

2Kcoer

» t
0

}gp�, sq}2V 1

c
ds, @ t ¡ 0, (25)

where Kcoer P tCcoer, rCcoeru.
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 11

Proof. The weak coercivity and the continuity of ap�, �q and the continuity of Gp�q imply the existence and
uniqueness of a solution u� P L2p0, T ;Vcq [21]. Then, (25) follows from arguments of the classical theory of
partial differential equations [33].

4 The relation to Markov processes

In the previous sections the kernel function γ is allowed to take on negative values. However, when the
nonlocal equation is associated with a jump process, γ denotes the jump rate; thus, we make the assumption
that γ : Rn � Rn Ñ r0,8q.

Let Xt be a jump process conditioned on X0 P Ω that is absorbed when Xt P ΩI . For a non–negative
initial condition u0pxq such that »

Ω

u0pxq dx � 1 (26)

and g � 0, the nonlocal system (21) over Ω� p0,8q describes the evolution of the probability density for the
process Xt with jump rate γ ¥ 0, i.e.,

PpX
rt P

rΩq � »
rΩ

upx,rtq dx for rΩ � Ω.

We refer to (21)1 as the master equation for the jump process. The condition on u0 ensures that X0 P Ω and
the homogeneous volume constraint grants that the process does not re–enter the domain, i.e., is absorbed
if it exits the domain. The first integrand of L in (2c) represents the rate γpy,xq dx to dx from y given
the probability upy, tqdy whereas the second integrand represents the rate γpx,yq dy to dy from x given the
probability upx, tqdx. The difference in these two rates gives the rate of change of the probability upx, tqdx;
the assumption on g implies that at steady state the rates are equal.

Because Xt�t1 for t1 ¡ 0 only depends upon Xt we see that the process Xt is Markov; thus, the nonlocal
convection–diffusion operator L is the generator of a Markov process. Also, because γ is a nonsymmetric
localized kernel, the nonlocal jumps are, in general, not symmetrically distributed and have finite length. We
refer to such a process as a finite range nonsymmetric Markov jump process, a generalization of a continuous–
time Markov chain over the state space Ω. This observation leads to a particle tracking method for realizing
the process; see [17, §5.1].

The paper [17] demonstrates that for processes governed by the master equation (21) with integrable
kernels, the probability is conserved over Ω; this statement holds regardless of whether γ is integrable or not.

4.1 Exit–time problem for the jump Markov process

The solution of the evolution equation (21) for the probability density in bounded domains allows us to solve
the exit–time problem for jump processes. We introduce the random variable

τ :� inftt ¡ 0, Xt P ΩI |X0 P Ωu

that denotes the first exit time of Xt from Ω. Its probability distribution is given by

Fτ ptq � 1�

»
Ω

upx, tq dx.

The expected exit time from Ω is given by the expected value of the random variable τ :

Epτq �
» 8

0

»
Ω

upx, tq dx dt.

The paper [11] establishes that for symmetric infinite and finite activity Lévy jump processes the expected
exit time is finite as long as the initial condition is square integrable. Following the same argument we show
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 12

that such a statement holds also for the expected exit time of the Markov jump process associated with the
master equation (21), provided that the bilinear form in (23) is coercive and that the initial condition is such
that u0 P L

2pΩq 4.

Lemma 2. If u0pxq : Ω Ñ r0,8q is such that u0 P L
2pΩq and (26) holds, then the expected exit time Epτq for

the master equation (21) is finite. Furthermore,

Epτq ¤ Cτ }u0}L2pΩq, (27)

where Cτ �
C2
p|Ω|

Kcoer
, Kcoer P tCcoer, rCcoeru.

Proof. Consider the weak formulation (23) for g � 0

put, vq � apu, vq � 0 @ v P Vc.

With v � u we have

put, uq � apu, uq � 0 or equivalently
d

dt

»
Ω

u2px, tq dx � �2apu, uq,

For Kcoer P tCcoer, rCcoeru, the coercivity of ap�, �q implies that

�apu, uq ¤ �Kcoer|||up�, tq|||
2 ¤ �

Kcoer

C2
p

}up�, tq}2L2pΩq.

Thus,
d

dt
}up�, tq}2L2pΩq ¤ �

2Kcoer

C2
p

}up�, tq}2L2pΩq.

Letting cτ �
2Kcoer
C2
p

, we have

}up�, tq}2L2pΩq ¤ e�cτ t}up�, 0q}2L2pΩq @ t ¡ 0.

By the Cauchy–Schwarz inequality we have»
Ω

upx, tq dx ¤ e�
cτ
2 t |Ω| }u0}L2pΩq @ t ¡ 0, (28)

i.e., the probability of remaining in Ω decreases exponentially in time. Then, for Cτ �
2 |Ω|
cτ

, (27) is obtained
by integrating both sides of (28) in time.

4.2 Special cases of the nonlocal operator

When certain conditions on the nonlocal diffusion and convection parameters hold, the nonlocal convection–
diffusion operator is the generator of Lévy or Lévy–type processes. For a Lévy measure φ, the generator of a
Lévy jump process in Rn is defined as [29]

Gfpxq �
»

Rn

�
fpx� yq � fpxq � y �∇fpxq1p}y} ¤ Rq

�
φpdyq, R   8, x P Rn.

4 When the initial condition of the master equation (21)1 is the Dirac measure, the theory of Lp spaces, p ¥ 1, allows
us to apply the result in Lemma 2.
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 13

For an integrable Lévy measure φ, G is the generator of a finite activity jump process; for a singular φ, G is
the generator of an infinite activity jump process. In the latter case, G has to be interpreted in a principal
value sense, i.e.,

Gfpxq � lim
εÑ0

»
RnzBεp0q

�
fpx� yq � fpxq � y �∇fpxq1p}y} ¤ Rq

�
φpdyq � lim

εÑ0
Pεfpxq.

In words, for a singular Lévy measure φ, the generator of the Lévy process is the limit as ε Ñ 0 of the
generator of a compound Poisson process Pε. Assuming that φpdyq � φpyqdy and splitting the integral, we
have

Gfpxq �
»

Rn

�
fpx� yq � fpxq

�
φpyq dy � d �∇fpxq, (29)

where the advection term is such that d �∇fpxq �
³
}y}¤R

y �∇fpxqφpyq dy.

Consider now the operator L; if we assume that α,Θ,µ are translation invariant over Rn and not neces-
sarily of compact support, we may then rewrite (2c) as

Lupxq �
»

Rn

�
upyqγpy � xq � upxqγpx� yq

�
dy, x P Rn, (30)

and because »
Rn
γpx� yq dy �

»
Rn
γpy � xq dy @x P Rn

regardless of whether or not γpy � xq � γpx� yq holds, we have

Lupxq �
»

Rn

�
upyq � upxq

�
γpy � xq dy �

»
Rn

�
upx� zq � upxq

�
γpzq dz. (31)

When γ is a Lévy measure, comparing (29) and (31) we see that G is an instance of L and advection. As
a matter of fact, G can generate only a small class of jump processes; for example, as soon as we confine
the process to a bounded domain, the jump rate is not translation invariant and therefore G cannot be the
generator. As an example, consider the Lévy jump rate γlpx�yq; when the process is confined to Ω the jump
rate becomes γcpx,yq � γlpx � yq1px P ΩY ΩIq1py P ΩY ΩIq; in this case, the more general form (2c) is
required.

Another class of processes of interest consists in those whose jump rate (not necessarily symmetric nor
translation invariant) satisfies»

ΩYΩI

γpx,yq dy �

»
ΩYΩI

γpy,xq dy @x P ΩY ΩI . (32)

In this case (2c) can be rewritten as

Lupxq �
»

ΩYΩI

�
upyq � upxq

�
γpx,yq dy.

Moreover, the condition (32) can be interpreted as an intrinsic property of the nonlocal convection parameter.
In fact, from (15) we see that the following relations are equivalent:

Dµ � 0 x P Ω (33a)»
ΩYΩI

pµ �αqpx,yq dy � 0 x P Ω. (33b)
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FINITE RANGE JUMP PROCESSES AND VOLUME–CONSTRAINED DIFFUSION PROBLEMS 14

Integrating (33b) over Ω we have»
Ω

»
Ω

pµ �αqpx,yq dy �

»
Ω

»
ΩI

pµ �αqpx,yq dy �

»
Ω

»
ΩI

pµ �αqpx,yq dy � 0.

Thus, that µ is nonlocally divergence free is a statement on the flux density, i.e., the probability flux from Ω
into ΩI must be zero. Because α � pΘαq is symmetric, (33) also allows us to conclude that»

ΩYΩI

γpx,yq dy �

»
ΩYΩI

γpy,xq dy ðñ Dµ � 0 @x P Ω.

We also mention that, for certain kernel functions, the operator L in (2c) is equivalent to a class of
fractional differential operators; see [14] where the equivalence between the nonlocal operator L and the
fractional Laplacian p�∆qs is analyzed for all s P p0, 1q, and see [15] where, for symmetric and translation
invariant kernel functions, the authors show the equivalence of L and the fractional operators introduced in [28].
Using the nonsymmetric kernel in (2b), even more general fractional operators associated with nonsymmetric
diffusion can be represented as special instances of L; this topic is the subject of our current research.
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