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Abstract

Peridynamics is a continuum theory where the internal force density in the balance of linear

momentum is given by an integral operator. This operator sums internal forces separated by a

finite distance in contrast to a continuum theory where only contact forces are assumed. The goal

of this paper is to derive mass and momentum conservation laws for peridynamics using the prin-

ciples of statistical mechanics. In particular, we show that the peridynamic force density integral

operator is the phase space expected value of internal force density given by a general multibody

interatomic potential. Our approach avoids the standard limitation of a pairwise decomposition of

the interatomic potential by exploiting the use of the symmetry principles of translation, rotation,

and reflection. We analyze the close relationship of the peridynamic integral operator and the

divergence of the microscopic Cauchy stress. This work represents a significant generalization of

previous definitions of microscopic stress to arbitrary multibody potentials. We also discuss how

the integral operator can be replaced by a force density arising from the classical notion of contact

forces.
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1. INTRODUCTION

Dynamics in continuum mechanics is established from the balance laws describing conser-

vation of mass, momentum, and energy. In Eulerian form, the balance laws for conservation

of mass and linear momentum are

∂tρ+ ∂µ(vµρ) = 0 (1a)

∂tπ
ν + ∂µ(vµπν) = ∂µσ

µν , (1b)

respectively, where π is momentum density given by the product ρv of mass density and

material velocity, and σ is the Cauchy stress tensor. The balance law for the conservation

of angular momentum follows from the symmetry of the Cauchy stress tensor. We expect

to treat energy conservation in a following paper and will not discuss it further here.
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The peridynamic linear momentum balance law is instead given by

∂tπ
ν + ∂µ(vµπν) = ∂µσ

µν
K +

∫
x′

(Tν(x,x′)−Tν(x′,x)) dx′ (2)

where σµν
K is the kinetic stress, and T(x,x′) (resp. T(x′,x)) is a vector quantity repre-

senting the force state at x (resp. at x′), and has units of force per volume per volume.

The integrated difference of force states represents the internal force density of the source

term. Our paper demonstrates that the peridynamic force state corresponds naturally to

microscopic notions of molecules and atoms interacting by way of potentials that extend over

finite distance. Bond-based peridynamics was proposed in [1] by Silling, and subsequently

generalized in [2] to peridynamic states as given by the conservation of linear momentum

in (2). Peridynamic stress was the subject of [3], and further generalized in [4]. This latter

paper also presents an analysis to explain when the integral operator of (2) can be approx-

imated by the divergence of a stress tensor (1b) arising from the classical notion of contact

forces. The recent review [5] provides many citations to the peridynamic research litera-

ture including an overview of several applications. We remark that (2) is the spatial or

Eulerian description of the conservation of linear momentum, in contrast to the reference or

Lagrangian description associated with [1–3, 5].

Our goal in this paper is to derive mass and momentum conservation laws for peridynam-

ics using the principles of statistical mechanics. In particular, we show that the peridynamic

force density integral operator is the phase space expected value of internal force density

given by a general multibody interatomic potential. The major motivation for this is that

a statistical mechanical derivation lends significant insight into the meaning of the force

state concept at the heart of (2). Our approach avoids the standard limitation of a pairwise

interatomic potential, and the peridynamic integral operator sidesteps the significant issues

associated with determining a stress tensor given a multibody interatomic potential. We

also derive a microscopic symmetric Cauchy stress tensor such that the divergence of this

stress tensor is equal to the peridynamic force density integral operator. We are thus able to

generalize previous definitions of microscopic stress to arbitrary multibody potentials. We

also discuss how the integral operator in (2) can be replaced by a force density arising from

the classical notion of contact forces.

The first derivation of the balance law for linear momentum of classical continuum me-

chanics using the principles of statistical mechanics was laid out in the seminal paper by
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Irving and Kirkwood [6]. We employ the implicit definition of stress given in [6]. That is,

stress is defined as the field that produces a source term for the balance of linear momen-

tum. Since no surfaces are needed for this definition there is no need for considering the

action of the particles in the system at any kind of wall. Moreover, no time averaging is

required so the resulting stress is defined both instantaneously and locally. The major diffi-

culty encountered by Irving–Kirkwood was in the use of Dirac delta functions to represent

the particles, which results in a somewhat inelegant set of expressions for microscopic stress

involving an infinite expansion of nonlocal terms. Moreover, their derivation is only valid

for pair potentials.

Further progress was made by Noll [7] (see the English translation [8] and associated

commentary [9]). In this work the use of delta functions [6] is avoided by assuming that

expectation occurs in phase space. Noll also significantly anticipated Hardy in the derivation

of a stress formula that avoids the infinite expansion of [6] by use of a mathematically

rigorous result [7, Lemma I]. However, Noll only applied Lemma I in the case of central

force interactions.

Hardy [10] avoided deriving the needed expectations in phase space, and made an elegant

derivation of a stress formula using a method similar to Irving and Kirkwood, replacing

the delta functions by a smooth localized function such as a Gaussian. This allows a great

simplification of the stress formula. Hardy did not use Noll’s Lemma, but obtained his result

with a direct transformation on the localization function. However, the restriction to central

force interactions was retained. See also the related paper by Murdoch and Bedeaux [11]

where Hardy’s approach avoiding phase space expectation and use of localization functions

was independently derived and Noll’s Lemma I was employed.

The procedure we follow is simple in principle and parallels the Irving–Kirkwood approach

closely, up to a certain point. We take a microscopic model and assume that observables

are given by expectation values of physical quantities in an ensemble defined by a phase

space probability density that is arbitrary except that it represents an ensemble of states

governed by the Hamiltonian mechanics of the system. Therefore we can use Liouville’s

equation and Green’s theorem to convert time derivatives of expectations into expectations

of time derivatives.

The microscopic model that we begin with is very general. We assume that we have N

classical particles (we do not deal with quantum mechanics in this paper) interacting by a
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multibody potential U that depends only on the particle positions. Under the assumption

that U is invariant under translation, rotation, and reflection (parity), U can be written

as a function of interparticle distances rij = |xi − xj|. This is certainly true of potentials

commonly used in molecular dynamics simulations. Although the distance representation

may not be the most numerically convenient, it is easily established, for example, that

dependence on bond angles and torsions can be replaced with a distance representation.

Thus the potential that we use is certainly not restricted to pair potentials, but is valid

for multibody potentials that satisfy the required three symmetry principles. Moreover, we

show that these symmetry principles are sufficient to show that the Hardy and Noll stress

tensors are equivalent when derived as expected values in phase space.

2. PRELIMINARIES

The Hamiltonian of an atomic system is assumed to be

H =
∑
i

p2
i

2mi

+ U (3)

where the particle masses are mi, momenta are pi, and U is the potential given as a function

of all the particle positions xi. We use lower-case Roman letters i, j, k etc., for particle indices

(with no implied summation), and lower-case Greek letters µ, ν etc., with implied summation

on repeated indices.

If U is invariant under operations of translation, rotation, and reflection we can construct

the positions of the particles from the distances between particles (pair distances) modulo

a symmetry group operation: Assume that the first four particles are not in a degenerate

configuration and that all the pair distances are given (we actually only need the distances

to the first four particles). Begin by translating and rotating such that the first particle is at

the origin, the second particle lies on the positive x axis, and the third lies in the upper half

of the x, y plane. The fourth particle can be placed in a tetrahedral position either above or

below this plane. By reflection we can choose arbitrarily either one side or the other. Now

for all the remaining particles we have more distances than are needed to locate them with

respect to the first four. For each additional particle we can use the distances to the first

three particles to find two possible locations above and below the x, y plane but because of

the additional constraint of the distance to the fourth particle there will be only one solution
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that is feasible. Therefore there is a unique (modulo a symmetry group operation) mapping

from distances to the particle positions.

Practical molecular dynamics simulations often use potentials written in terms of pairwise

distances, bond angles, and bond torsions; in the appendix we derive some simple formulas

for conversion of these angle terms to functions of pairwise distances.

We are thus free to write U as a function of distance parameters ξjk defined as

ξjk ≡
1

2
r2
jk =

1

2
|xj − xk|2 , (4)

for each pair of atoms j an k. These distance parameters are a little more convenient in the

derivation than the distances themselves and are equivalent. For example, the gradient of a

distance parameter with respect to particle position i is

∇xi
ξjk = (xj − xk)(δij − δik) (5)

using Kronecker delta notation. Thus using the chain rule, we can write

∇xi
U =

1

2

∑
j,k

(xj − xk)(δij − δik)Gjk (6)

=
∑
j

(xi − xj)Gij (7)

for the corresponding gradient of U , where we define the pair functions Gij as

Gij = Gji =
∂U

∂ξij
j 6= k, Gjj = 0. (8)

The factor of 1/2 appears in (6) so as to avoid double counting because ξjk = ξkj.

Although Gij references atoms i and j, Gij does in principle depend on all the distance

pairs; however for a central force interaction Gij depends only upon ξij. It will be important

in what follows to remember that Gij is symmetric in the indices i, j, and that each of the

other factors in (7) is antisymmetric. The Gij can be thought of as generalized forces with

dimensions of force per unit length. The symmetry of Gij is the representation of Newton’s

third law in the context of this model and the use of the pair functions Gij results in an

extremely simple and well defined expression for the stress tensor.

The force Fi exerted on atom i by the remainder of the atoms can be decomposed into

pairwise forces fij by defining

fij ≡ −(xi − xj)Gij (9)
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so that

Fi = −∇xi
U =

∑
j

fij (10)

where fij = −fji and fii = 0. This can easily be verified by substitution of (9) into (7).

But this decomposition is not unique (even for central force interactions), even with the

constraint that fij = −fji. This can be easily seen for three atoms, since we can write a

transformed set of fij: f ′12 = f12 + a, f ′13 = f13 − a, and f ′23 = f23 + a that leaves Fi invariant

for an arbitrary vector a. The atom forces Fi are well defined but they do not determine

a unique pairwise decomposition, and therefore pairwise forces are not measurable physical

quantities.

In the remainder of our paper we will develop continuum equations using the following well

known methodology (see [6, eq. (2.4)], and [12, Chapter 3] for a more extended discussion)

based on Liouville’s equation. Suppose we have an operator α that is given as a function of

the state variables pi,xi, and possibly other variables such as x but not time, then we can

deduce from standard statistical mechanics that the time derivative of the expectation of α

is

∂t 〈α〉 =

〈∑
i

∂α

∂xµi
vµi

〉
−

〈∑
i

∂α

∂pµi

∂U

∂xµi

〉
(11)

where vi = pi/mi is the velocity of particle i. The brackets denote an ensemble average

(phase space expectation) with respect to phase space density, which otherwise does not

appear in any expressions. By selecting α equal to various density operators, the RHS of

(11) can be manipulated to result in the desired continuum balance laws. For the remainder

of our paper, we often denote the phase space expectation of an operator α by α̂, e.g.

α̂ ≡ 〈α〉 . (12)

3. CONSERVATION OF MASS

We define an operator whose phase space expectation is mass density. Each particle has

mass mi and we can associate a function φ(x − xi) with each atom that represents the

fact that exact positions are not observable. Insofar as φ is arbitrary, so are the resulting

equations. Irving–Kirkwood used a delta function, but this is unnecessary as was demon-

strated by Noll [7]. Hardy [10] restricted the choice of φ only by some simple properties:

φ is assumed to be well localized, non-negative, and it must integrate to 1 over real space.
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The units of this function must therefore be per unit volume (of real space). We will use

the notation φi = φ(x− xi) to simplify what follows. We see immediately that

∇xi
φi = −∇xφi, (13)

and if φ is not smooth then this statement is to be understood in a distributional sense.

We now define an operator that represents the mass density at a point x as

ρ =
∑
i

miφ(x− xi) =
∑
i

miφi. (14)

We can now state the result obtained by previous authors (e.g. section IV of [6]) for conser-

vation of mass, namely

∂tρ̂+ ∂µπ̂
µ = 0, (15)

where the momentum density π̂ is the phase space expectation of the momentum density

operator

π =
∑
i

miviφi =
∑
i

piφi. (16)

This result bears a little discussion. In the continuum mechanics literature, the primary

variables are mass density and material velocity. But from a microscopic point of view the

primary variables are mass and momentum densities. Evidently material velocity must be

defined in terms of mass and momentum densities. That is

ρ̂v = π̂ (17)

defines the material velocity field v. Note that (15) is a linear equation. This means that we

can apply an averaging procedure to (15) and obtain another linear equation in the averaged

quantities, so that the averaged mass density is pushed around by an averaged momentum

density. No such simple procedure is available when velocity is chosen as a basic variable.

4. CONSERVATION OF LINEAR MOMENTUM

We now compute the time derivative for phase space expectation of the momentum

density operator given in (15). The momentum density operator depends on both the

momentum and position variables pi and xi, respectively, so both terms in (11) contribute

to the desired result. Thus,

∂tπ̂
ν =

〈∑
i

∂πν

∂xµi
vµi

〉
−

〈∑
i

∂πν

∂pµi

∂U

∂xµi

〉
,
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and a straightforward manipulation (see section V of [6]) results in

∂tπ
ν + ∂µ(vµπν) = ∂µσ

µν
K −

〈∑
i

∂πν

∂pµi

∂U

∂xµi

〉
, (18)

where σK is the kinetic stress tensor is

σµν
K = −

〈∑
i

mi(v
µ
i − vµ)(vνi − vν)φi

〉
. (19)

The LHS of (18) is now in the desired conservation law form where the material velocity v

is given by (17). As originally noted by Irving–Kirkwood the kinetic stress represents stress

due to averaged thermal motion vi − v of the atoms and represents, for example, pressure

in an ideal gas.

We have thus far not varied significantly from the results established by previous authors

but at this point we will make a departure. The remaining work is to convert the second

term on the RHS of (18) to a form convenient for peridynamics. Rather than assuming

central force interactions, we use the expression (7) derived for ∇xi
U in terms of derivatives

with respect to the distance parameters ξij. Therefore, (7) implies that〈∑
i

∂πν

∂pµi

∂U

∂xµi

〉
=

〈∑
i

φi
∑
j

(xνi − xνj )Gij

〉
(20)

=

〈∑
i,j

(xνi − xνj )φiGij

〉
, (21)

where
∂πν

∂pµi
= φiδµν .

Therefore (18) can be rewritten as

∂tπ
ν + ∂µ(vµπν) = ∂µσ

µν
K −

〈∑
i,j

(xνi − xνj )φiGij

〉
. (22)

By assumption ∫
x′
φ′j dx

′ = 1, φ′j = φ(x′ − xj), (23)

so that

∂tπ
ν + ∂µ(vµπν) = ∂µσ

µν
K −

∫
x′

〈∑
i,j

(xνi − xνj )φiφ
′
jGij

〉
dx′. (24)
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Now note that 〈∑
i,j

(xνi − xνj )φiφ
′
jGij

〉
= −

〈∑
i,j

(xνj − xνi )φiφ
′
jGij

〉

= −

〈∑
j,i

(xνi − xνj )φjφ
′
iGji

〉

= −

〈∑
j,i

(xνi − xνj )φiφ
′
jGij

〉
,

where the last step follows because Gji = Gij, and the fact that the integrand of (24) is

antisymmetric with respect to x and x′. If we make the identifications

Tν(x,x′) = −

〈∑
i,j

xνi φiφ
′
jGij

〉
, Tν(x′,x) = −

〈∑
i,j

xνjφiφ
′
jGij

〉
, (25)

then the peridynamic balance of linear momentum (2) results. Evidently, the differential

force density (T(x,x′)−T(x′,x)) dx′ is the phase space expectation of the force per unit

volume squared for atoms located near x and x′.

Several remarks are in order. First, rewriting the internal force density (rightmost term

of (22)) as the integral of a force density per volume (rightmost term of) (24) is due to

Noll [7]. This is a crucial step not taken by Irving-Kirkwood, and leads to a closed form

expression for the potential stress given by Lemma I of [7]. Second, in general,

(T(x,x′)−T(x′,x))× (x′ − x) 6= 0, (26)

regardless of whether the atom interaction corresponds to a central force (e.g. Gij is only

a function of the distance parameter ξij). Bond-based peridynamics [1] does assume that

x′ − x is collinear with T(x,x′) − T(x′,x) (an ordinary peridynamic material), while the

more general peridynamic state theory [2] allows for the weak form of Newton’s third law

(or a nonordinary peridynamic material).

Third, let τ be a region in real space. Because Tν(x,x′)−Tν(x′,x) is antisymmetric, we

have that∫
x∈τ

∫
x′

(Tν(x,x′)−Tν(x′,x)) dx′ dx =

∫
x∈τ

∫
x′ /∈τ

(Tν(x,x′)−Tν(x′,x)) dx′ dx. (27)

The mechanical interpretation is that the RHS of (27) represents the internal force on the

region τ exerted by the region outside of τ . Now integrate (24) over the region τ in real

10

S
an

di
a 

N
at

io
na

l L
ab

s 
Te

ch
ni

ca
l R

ep
or

t 2
00

9-
07

91
J



space to obtain∫
x∈τ

(∂tπ
ν + ∂µ(vµπν)) dx =

∫
∂τ

σµν
K nµ dA

−
∫

x∈τ

∫
x′ /∈τ

(Tν(x,x′)−Tν(x′,x)) dx′ dx, (28)

where n is the normal to the surface ∂τ of τ . In words, the rate of change of linear momentum

is balanced by the sum of forces external to τ . The balance law (28) obviates the need

for periodic boundary conditions when considering subsets of the N atoms because the

interaction with the remainder of the atoms is given by the RHS of (28).

The fourth remark is that the rightmost expression (21) bears a superficial resemblance

to the rightmost term of eq. (5.8) of [6]. If we assume central force interactions, then that

equation is a specialized application of our derivation in which the bond-based peridynamic

[1] conservation of linear momentum (2) results. The use of the generalized force Gij allows

us to avoid the partitioning of the potential into pairwise terms that only depend on the

positions xj and xk (see the discussion following eq. (3.6) of [6]). Similar restrictions are

used by other authors, see eq. (1.1) of [8] and eq. (3.2) of [10]. Several papers [13–15] have

tried to generalize beyond central force interactions using a notion of the force of particle i

upon particle j. However, the details of these decompositions are unspecified and generally

require some arbitrary partitioning of the potential U . Moreover, as Noll [16] explains, the

principle of material frame indifference implies that any force interaction that only depends

upon particles i and j must be a central force interaction (e.g. Gij is only a function of the

distance parameter ξij). Apparently this was not appreciated by Irving and Kirkwood [6],

who initially assume pairwise interactions, and then further assume (superfluously) central

force interactions. We believe that the current derivation is the first applicable to a general

multibody potential. We conjecture that the use of generalized forces is the only way to

derive simple formulas for the peridynamic force state or for microscopic stress for a general

multibody potential, since (7) does not induce an obvious pairwise decomposition into forces.

Our fifth remark is that we have not established that any peridynamic internal force

density is derivable as expectation in phase space. An example of such a peridynamic

force density is given by [2, Section 17] associated with a nonordinary material containing

a couple. Instead, for an interatomic potential U invariant under translation, rotation, and

reflection, expectation in phase space results in a peridynamic internal force density that is

the integrated difference of force states (e.g. the rightmost term of the RHS of (2)).
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5. SYMMETRIC CAUCHY STRESS TENSOR

We now explain how the RHS of (22) may be recast as the divergence of a microscopic

symmetric stress tensor field, or the Cauchy stress tensor. Moreover, we show that the two

seemingly distinct expressions for the stress tensor derived first by Noll [7] and then by

Hardy [10] are indeed the same.

We first consider Hardy’s stress tensor. First, the identity

φi =
1

2
(φi − φj) +

1

2
(φi + φj) (29)

implies that 〈∑
i,j

(xνi − xνj )φiGij

〉
=

1

2

〈∑
i,j

(xνi − xνj )(φi − φj)Gij

〉
, (30)

because
1

2

〈∑
i,j

(xνi − xνj )(φi + φj)Gij

〉
= 0,

which follows by exchanging the labels i and j. Therefore, (30) implies that we may rewrite

(22) as

∂tπ
ν + ∂µ(vµπν) = ∂µσ

µν
K −

〈∑
i,j

1

2
(xνi − xνj )(φi − φj)Gij

〉
. (31)

Second, following Hardy [10], we define a function β(xi,xj,x) such that

φi − φj = −(xi − xj) · ∇xβ(xi,xj,x) (32)

where the bond function β depends only on the function φ. The solution given by Hardy is

β(xi,xj,x) =

∫ 1

0

dλφ(x− λxi − (1− λ)xj). (33)

If we substitute (32) into (31), and pull the operator ∇x outside the expectation, we have

∂tπ
ν + ∂µ(vµπν) = ∂µσ

µν
K + ∂µσ

µν
H (34)

where we identify a microscopic stress tensor field σH as

σµν
H (x) =

1

2

〈∑
i,j

(xµi − xµj )(xνi − xνj )Gijβ(xi,xj,x)

〉
. (35)

We see that

∂µ (σµν
H ) =

∫
x′

〈∑
i,j

(xνi − xνj )φiφ
′
jGij

〉
dx′,

12
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and therefore the peridynamic conservation of linear momentum is equivalent to

∂tπ
ν + ∂µ(vµπν) = ∂µ (σµν

K + σµν
H ) , (36)

where σ = σK +σH is a Cauchy stress tensor that is explicitly symmetric. The stress tensor

field given by (35) is a compact and general representation of the non-kinetic, or potential

part of the stress. Compare, for example, the corresponding expression in [17] that is only

carried out for the Tersoff [18, 19] potential.

The continuum stress is now given as the expectation of a microscopic operator that is

explicitly symmetric, for a general multibody potential U . The symmetry of the stress tensor

is a consequence of the derivation in terms of distance parameters, that in turn is enabled

directly by the assumption of the invariance of the potential under translation, rotation,

and reflection. Moreover, there is no need to partition the potential energy U between

pairs of atoms. The derivatives Gij are defined in terms of the total potential energy U

without regard to any such partitioning and there is no arbitrariness in the definition of the

microscopic stress other than the choice of the smoothing function φ.

Lemma I of [7] (again, see the English translation [8] and associated commentary [9])

may also be used to derive another expression for a symmetric potential stress σµν
N so that

∂µ (σµν
N ) =

〈∫
x′

∑
i,j

(xνi − xνj )φiφ
′
jGij dx

′

〉
,

where

σµν
N (x) =

1

2

〈∑
i,j

∫
z

η(xi,xj,x, z)Gij zµ zν dz

〉
, (37)

with

η(xi,xj,x, z) =

∫ 1

0

dλφ(x + λz− xi)φ(x− (1− λ)z− xj). (38)

Note that σµν
N = σνµ

N easily follows, and so the Noll stress σN is symmetric.

We now establish that σN = σH . Subtracting (36) from

∂tπ
ν + ∂µ(vµπν) = ∂µ (σµν

K + σµν
N ) ,

leads to ∂µ (σµν
N − σµν

N ) = 0. Therefore σN and σH differ by a solenoidal tensor that must

be nonsymmetric. Because each of σN and σH are symmetric, this solenoidal tensor must

be the zero tensor, and so we conclude that

σN = σH . (39)
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This equivalence is crucially dependent upon symmetry of σN and σH , which in turn depends

upon the assumption that the interatomic potential is invariant under reflection. To the best

of our knowledge, this equivalence has not appeared in the literature. See [20, 21] for other

comparisons between σN and σH . In the remainder of the paper, we refer to

σU (40)

as the potential stress and the context determines whether the representations σN or σH

are used.

6. CONSERVATION OF ANGULAR MOMENTUM

The second remark at the end of Section 4 explained that in general, the difference of force

states at x and x′, respectively, is not collinear with the line through x and x′; see (26). This

implies that the opposing forces (T(x,x′)−T(x′,x)) dx′ dx and (T(x′,x)−T(x,x′)) dx dx′

only satisfy the weak form of Newton’s third law. Therefore, the peridynamic conservation

of angular momentum must be considered. From (2), it follows that the peridynamic balance

law for the conservation of angular momentum is∫
x∈τ

x× (∂tπ + ∂µ(vπ)) dx =

∫
∂τ

x× σKn dA

+

∫
x∈τ

∫
x′∈τ

x× (T(x,x′)−T(x′,x)) dx′ dx, (41)

where n is the normal to the surface ∂τ of a region τ of real space. In words, (41) states

that the rate of change of angular momentum is balanced by the sum of torques exerted on

τ .

Section 5 demonstrated that

∇ · σU =

∫
x′∈τ

(T(x,x′)−T(x′,x)) dx′ (42)

and σT
U = σU . Hence, we have that∫

x∈τ

∫
x′∈τ

x× (T(x,x′)−T(x′,x)) dx′ dx =

∫
x∈τ

x×
(∫

x′∈τ
(T(x,x′)−T(x′,x)) dx′

)
dx

=

∫
∂τ

x× σUn dA+

∫
x∈τ
E : σT

U dx

=

∫
∂τ

x× σUn dA
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where E : σT
U denotes the contraction of the third-order permutation tensor E (where εµνξ =

−εξνµ) with the transpose of the potential stress tensor σU . Therefore the balance law for

the conservation of angular momentum (41) is equivalent to∫
x∈τ

x× (∂tπ +∇ · (vπ)) dx =

∫
∂τ

x× σn dA, (43)

where σ = σK + σU , if and only if σT
U = σU . Again, the latter condition follows from

the assumption that the interatomic potential is invariant under reflection, as explained in

Section 5.

7. PERIDYNAMICS AND CLASSICAL CONTINUUM MECHANICS

The Cauchy stress σ for simple nonpolar materials [22], typically associated with consti-

tutive models used within engineering solid mechanics, is understood to be a local tensor.

That is σ(x) only depends upon x and so leads to the contact force∫
∂τ

σn dA

where n is the normal to the surface ∂τ of the region τ of real space. The quantity t(x,n) =

σ(x)n is the traction vector. A continuum theory where a contact force is assumed is

colloquially referred to as a classical continuum theory.

In contrast to a local Cauchy stress tensor, σK + σU is a nonlocal Cauchy stress tensor

because the bond function β (33) (or equivalently the bond function η (38)) is given by a

weighted average. This nonlocality originates in the integral operator of the source term

associated with (24) because x′ 6= x are involved. Lemma II of [7] gives that the traction

force associated with the potential stress σN is∫
∂τ

σNn dA =

∫
x∈τ

∫
x′ /∈τ

(T(x,x′)−T(x′,x)) dx′ dx, (44)

where

σN(x)n =
1

2

〈∑
i,j

∫
z

η(xi,xj,x, z)Gij z (z · n) dz

〉
, (45)

and η is given by (38). The identity (44) is easily established via the divergence theorem

and (27). The traction vector σN(x)n is nonlocal because of the dependence upon x′ 6= x

and so does not lead to a contact force.
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A mechanical interpretation of σN(x)n is as follows. The differential force df between

x + λz− xi and x− (1− λ)z− xj is

df =
1

2

〈∑
i,j

η(xi,xj,x, z)Gij

〉
z (dλ dz)2,

where dz is differential volume. If dA = (dλ dz) / (z · n) is a differential area, then

df

dA
=

1

2

〈∑
i,j

η(xi,xj,x, z)Gij

〉
z (z · n) dλ dz. (46)

Integrating (46) over λ = 0 to λ = 1, and over all z results in (45). In particular, the stress

tensor σN(x) represents a sum of forces per unit area through x in contrast to the (local)

Cauchy stress of the classical continuum theory.

Sufficient conditions for when σU and ∇ ·σU can be approximated by the corresponding

local quantities are given by the analysis [4]. These conditions are that if the motion, con-

stitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic

integral operator may be replaced by a local stress tensor when the volume of force interac-

tions about x is small relative to the volume τ . The balance of linear momentum for classical

continuum mechanics is a direct result of an approximation given sufficient conditions to

the peridynamic balance of linear momentum. The latter balance law is derived from an

ensemble average in phase space. The path from Newton’s second law to the classical bal-

ance of linear momentum (for simple nonpolar materials) traverses peridynamics. We are

not aware that this two step process has been demonstrated in the existing literature.

8. CONCLUSIONS

The main results established in this paper are the derivation of microscopic expressions

for mass and momentum conservations laws, and the nonlocal Cauchy stress. In combination

with the standard results for the kinetic stress, we now have microscopic understanding of

peridynamic force states. These expressions are derived for a general multibody potential

that is given as a function of the square of the particle distances. In particular, the potential

does not have to be a sum of pairwise potentials, it can be any multibody potential that

depends only on particle positions and that is invariant under translation, rotation, and

reflection. It is also not necessary to partition this general potential among the atoms. The
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only arbitrariness in the formalism comes from the function φ that can be thought of as

representing the averaging procedure applied to measurement of atom positions. Finally, we

also discussed how the peridynamic balance law for the conservation of linear momentum

can approximated by the classical continuum balance of linear momentum that assumes

contact forces.
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APPENDIX

Here we include some simple formulas for distance parameter representation of common

multibody terms.

Let x1,x2,x3,x4 be four position vectors. We can write the dot product

(x1 − x2) · (x3 − x4) = ξ14 − ξ13 + ξ23 − ξ24, (47)

which we can easily establish by expanding each of the distance parameters ξij. For the

cosine of a bond angle θ between x2 − x1 and x3 − x1 we have

cos θ =
(x2 − x1) · (x3 − x1)

|x2 − x1| |x3 − x1|

and using the dot product formula above we get cosine of the bond angle in distance pa-

rameter form:

cos θ =
ξ12 + ξ13 − ξ23

r12r13

(48)
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For torsion or dihedral angles we can suppose that we want to compute the torsion angle

around the bond x2,x3 which is the angle between the plane containing the points x1,x2,x3

and the plane containing x2,x3,x4. The cosine of this angle is obviously

cosφ =
((x1 − x2)× (x1 − x3)) · ((x4 − x2)× (x4 − x3))

|x1 − x2| |x1 − x3| |x4 − x2| |x4 − x3|
(49)

and after simplification

cosφ =
ξ12(ξ34 − ξ24 + ξ23) + ξ13(ξ24 − ξ34 + ξ23)− ξ2

23

r12r13r24r34

(50)

Note that sinφ is not invariant under reflection, so it cannot be computed in the distance

parameter representation. Therefore potential terms proportional to something like cos(nφ+

δ) where δ is a phase factor parameter are not generally invariant under reflection. However,

many commonly used potential parameterizations only use torsion phases that are 0 or π

and so this problem does not occur.

We can imagine potentials which depend on the area of a triangle defined by three atoms

or the volume of a tetrahedron defined by four atoms. For the unsigned area of a triangle one

can use Herod’s classical formula, and implicitly we see that there must be such a formula

for the unsigned volume of a tetrahedron. In fact this is given by the formula of Piero della

Francesca.

These formulas are sufficient to transform most standard molecular dynamics potentials

into the distance parameter representation. With the above caveat about torsion potentials

the stress and force state formulas derived in this paper should be applicable to multibody

force fields such as CHARMM[23] and Amber[24]. As another example, the well-known

Stillinger-Weber[25] potential for silicon is given as a sum of two body terms and three body

terms

U =
1

2

∑
ij

f(rij) +
∑
i,j,k

g(rij)g(rik)

(
cos θijk −

1

3

)2

(51)

where f, g are specified functions. Therefore in distance-parameter form the Stillinger-Weber

potential is given by

U =
1

2

∑
ij

f(2
√
ξij) +

∑
i,j,k

g(2
√
ξij)g(2

√
ξik)

(
ξij + ξik − ξjk

2
√
ξijξik

− 1

3

)2

. (52)

Given these formulas the generalized forces Gij are computed by simple differentiation using

(8).
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