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Abstract. Simple preconditioned iterations can provide an efficient alternative to more elabo-
rate eigenvalue algorithms. We observe that these simple methods can be viewed as forward Euler
discretizations of well-known autonomous differential equations that enjoy appealing geometric prop-
erties. This connection facilitates novel results describing convergence of a class of preconditioned
eigensolvers to the leftmost eigenvalue, provides insight into the role of orthogonality and biorthog-
onality, and suggests the development of new methods and analyses based on more sophisticated
discretizations. These results also highlight the effect of preconditioning on the convergence and
stability of the continuous-time system and its discretization.
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1. Introduction. Suppose we seek a small number of eigenvalues (and the asso-
ciated eigenspace) of the non-Hermitian matrix A ∈ Cn×n, having at our disposal a
nonsingular matrix N ∈ Cn×n that approximates A. Given a starting vector p0 ∈ Cn,
compute

pj+1 = pj + N−1(θj −A)pj , (1.1)

where θj −A is shorthand for Iθj −A, and

θj =
(Apj ,pj)
(pj ,pj)

for some inner product (·, ·). Knyazev, Neymeyr, and others have studied this iteration
for Hermitian positive definite A; see [21, 22] and references therein for convergence
analysis and numerical experiments.

Clearly the choice of N will influence the behavior of this iteration. With N = A,
the method (1.1) reduces to (scaled) inverse iteration:

pj+1 = A−1pjθj .

We are interested in the case where N approximates A, yet one can apply N−1 to a
vector much more efficiently than A−1 itself. Such a N acts as a preconditioner for
A, and hence (1.1) represents a preconditioned iteration.

This method contrasts with a different class of algorithms, based on inverse itera-
tion (or the shift-invert Arnoldi algorithm), that apply a preconditioner to accelerate
an “inner iteration” that approximates the solution to a linear system at each step;
see, e.g., [24, 13, 16] and [6, Ch. 11]. For numerous practical large-scale non-Hermitian
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eigenvalue problems, such as those described in [25, 41], these inner iterations can be
extremely expensive and highly dependent on the quality of the preconditioner. In
contrast, as we shall see, the iteration (1.1) can converge to a leftmost eigenpair even
when N is a suitable multiple of the identity.

This paper provides a rigorous convergence theory that establishes sufficient con-
ditions for (1.1) to converge to the leftmost eigenpair for non-Hermitian A. We obtain
these results by viewing this iteration as the forward Euler discretization of the au-
tonomous nonlinear differential equation

ṗ = N−1
(
p

(Ap,p)
(p,p)

−Ap
)

(1.2)

with a unit step size. Here A and N are fixed but p depends on a parameter,
t; ṗ denotes differentiation with respect to t. In the absence of preconditioning, the
differential equation (1.2) has been studied in connection with power iteration [10, 29],
as described in more detail below. The nonzero steady-states of this system correspond
to (right) eigenvectors of A, and hence one might attempt to compute eigenvalues by
driving this differential equation to steady-state as swiftly as possible. Properties of
the preconditioner determine which of the eigenvectors is an attracting steady-state.

The differential equation (1.2) enjoys a distinguished property, observed, for ex-
ample, in [10, 29] with N = I. Suppose that p solves (1.2), θ = (p,p)−1(Ap,p), and
N is self-adjoint and invertible (A may be non-self-adjoint). Then for all t,

d

dt
(p,Np) =

(
N−1(pθ −Ap),Np

)
+
(
p,NN−1(pθ −Ap)

)
= (pθ,p)− (Ap,p) + (p,pθ)− (p,Ap)
= 0. (1.3)

Thus (p,Np) is an invariant (or first integral), as its value is independent of time;
see [19, §1.3] for a discussion of the unpreconditioned case (N = I), and, e.g., [4, 18]
for a general introduction to invariant theory and geometric integration.

The invariant describes a manifold in n-dimensional space, (p,Np) = (p0,Np0),
on which the solution to the differential equation with p(0) = p0 must fall. Simple
discretizations, such as Euler’s method (1.1), do not typically respect such invari-
ants, giving approximate solutions that drift from the manifold. Invariant-preserving
alternatives (see, e.g., [18, 26]) generally require significantly more computation per
step (though a tractable method for the unpreconditioned, Hermitian case has been
proposed by Nakamura, Kajiwara, and Shiotani [28]). Our goal is to explain the rela-
tionship between convergence and stability of the continuous and discrete dynamical
systems. In particular, the quadratic invariant is a crucial property of the continuous
system, and plays an important role in the convergence theory of the corresponding
discretization, even when that iteration does not preserve the invariant.

For a non-Hermitian problem, one naturally wonders how (1.1) can be modified
to incorporate estimates of both left and right eigenvectors. In this case, we obtain
the coupled iteration (given here without preconditioning){

ṗ = pθ −Ap,
q̇ = qθ −A∗q,

θ =
(Ap,q)
(p,q)

, (1.4)

and a simple derivation reveals that (p,q) is invariant. Our analysis demonstrates
that this two-sided dynamical system often suffers from finite-time blowup; in the
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discrete scheme this is tantamount to incurable breakdown, a well-known ailment of
oblique projection methods (see [5] for a discussion and references to the literature
within the context of non-Hermitian Lanczos methods).

A longstanding association exists between eigenvalue iterations and differential
equations [1, 2, 3, 10, 11, 15, 19], often involving the observation that iterates of
a particular eigenvalue algorithm are exactly discrete-time samples of some under-
lying continuous-time system. Notable examples include Rayleigh quotient gradient
flow [10, 27], connections between the QR algorithm for dense eigenproblems and Toda
flow [29, 39], and more general “isospectral flows” [42]. For example, Chu notes that
the iterates of the standard power method can be obtained as integer-time samples of
the solution to the system (1.2) with N = I and A replaced by log A [10, eq. (2.7)].

The present study draws upon this body of work, but takes a different perspec-
tive: we seek a better understanding of iterations such as (1.1) that only provide
approximate solutions (with a truncation error due to discretization) to continuous
time systems such as (1.2). The distinction is significant: for example, a continuous-
time generalization of the power method will converge, with mild caveats, to the
largest magnitude eigenvalue, whereas the related systems we study can potentially
converge to the leftmost eigenvalue at a shift-independent rate with little more work
per iteration than the power method; see Theorems 4.4 and 6.3.

The connection between eigensolvers and continuous-time dynamical systems also
arises in applications. For example, the Car–Parrinello method [8] determines the
Kohn–Sham eigenstates from a second order ordinary differential equation, Newton’s
equations of motion (see [34, p. 1086] for a formulation using (1.2) with no precon-
ditioning). The heavy ball optimization method [35] also formulates the minimum of
the Rayleigh quotient via a second order ordinary differential equation. In [7], the
ground state solution of Bose–Einstein condensates are determined via a normalized
gradient flow discretized by several time integration schemes. (Both the Kohn–Sham
eigenstates and Bose–Einstein condensates give rise to self-adjoint nonlinear eigen-
value problems.)

We begin our investigation with a study of various unpreconditioned iterations
(N = I). Section 2 introduces basic differential equations for computation of invariant
subspaces of matrix pencils, then identifies parameter choices that yield invariant-
preserving iterations. Near steady states, the solutions to these systems can be viewed
as exact invariant subspaces for nearby matrices, as observed in Section 3. From this
point we focus on single vector iterations for standard eigenvalue problems. Section 4
describes exact solution formulas for two unpreconditioned continuous-time systems,
one-sided and two-sided methods. As such exact solutions for the preconditioned case
are elusive, we analyze such systems asymptotically using center manifold theory in
Section 5. These two sections provide the foundation for the main result of Section 6,
the development of sufficient conditions for convergence of (1.1) for non-Hermitian
matrices.

2. Dynamical systems and invariant manifolds. We first examine proper-
ties of the dynamical system (1.2) and various generalizations suitable for computing
eigenvalues of non-Hermitian matrix pencils. Let A,B ∈ Cn×n be general matrices
with fixed (time-invariant) entries. For the generalized eigenvalue problem Ax = Bxλ
with N = I, the system (1.2) expands to

ṗ = Bpθ −Ap
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for appropriate θ = θ(t). This equation suggests a generalization from a system with
the single vector p ∈ Cn to a system that evolves an entire subspace, given by the
range of a matrix P ∈ Cn×k:

Ṗ = BPL−AP,

where differentiation is still with respect to the autonomous variable t; we shall address
the choice of L(t) ∈ Ck×k momentarily. (Quantities such as L are t-dependent unless
explicitly stated otherwise; we typically suppress the t argument to simplify notation.)

For non-Hermitian problems one might simultaneously evolve an equation for the
adjoint to obtain approximations to the left eigenspace, which suggests the system

Ṗ = BPL−AP
Q̇ = B∗QM∗ −A∗Q,

(2.1)

with initial conditions P(0) = P0 and Q(0) = Q0, where P,Q ∈ Cn×k, and L,M ∈
Ck×k. The choice we make for the time-dependent L,M ∈ Ck×k can potentially
couple P and Q as introduced in (1.4). Here ·∗ denotes the conjugate transpose and
(·, ·) the standard Euclidean inner product (though this analysis generalizes readily
to arbitrary inner products). If this system is at a steady state, i.e., Ṗ = Q̇ = 0, then

BPL = AP, B∗QM∗ = A∗Q, (2.2)

and hence, provided P and Q have full column rank, the eigenvalues of L and M are
included in the spectrum of the pencil A− λB, while the columns of P and Q span
right- and left-invariant subspaces of the same pencil. We shall motivate the choice of
L and M through generalizations of the invariant discussed in the introduction. The
following notation facilitates the analysis of these subspace iterations.

Definition 2.1. Given P,Q ∈ Cn×k, define (P,Q) = Q∗P ∈ Ck×k, i.e., the
(i, j) entry of (P,Q) satisfies (P,Q)i,j := (Pej ,Qei), where e` denotes the `th column
of the k × k identity matrix.

In this notation, we have the homogeneity property (PL,Q) = Q∗PL = (P,Q)L.
Consider the pairs of (time-dependent) functions

(Q,P), (P,Q) and (P,P), (Q,Q) (2.3)

with derivatives

d

dt
(Q,P) = (Q̇,P) + (Q, Ṗ),

d

dt
(P,Q) = (Ṗ,Q) + (P, Q̇),

and

d

dt
(P,P) = (Ṗ,P) + (P, Ṗ),

d

dt
(Q,Q) = (Q̇,Q) + (Q, Q̇).

Inspired by (1.3), we next investigate how best to choose L and M to make either
pair in (2.3) invariant under the system (2.1).

Theorem 2.2. For the system of ordinary differential equations (2.1) with initial
conditions P(0) = P0 ∈ Cn×k and Q(0) = Q0 ∈ Cn×k, the choices

L = (BP,Q)−1(AP,Q), M∗ = (Q,BP)−1(Q,AP) (2.4)
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give

d

dt
(P,Q) =

d

dt
(Q,P) = 0,

and hence (P,Q) = (P0,Q0) and (Q,P) = (Q0,P0) hold for all t.
Proof. Note that

d

dt
(P,Q) = (Ṗ,Q) + (P, Q̇)

= (BP,Q)L− (AP,Q) + M(P,B∗Q)− (P,A∗Q)( d
dt

(Q,P)
)∗

= (P, Q̇) + (Ṗ,Q)

= M(P,B∗Q)− (P,A∗Q) + (BP,Q)L− (AP,Q),

where we have used (2.1) and the homogeneity property. We can force (d/dt)(P,Q)
to zero by setting L and M as in (2.4).

The next result is a direct analogue of Theorem 2.2 for the second pair in (2.3).
We omit the proof, a minor adaptation of the last one.

Theorem 2.3. For the system of ordinary differential equations (2.1) with initial
conditions P(0) = P0 ∈ Cn×k and Q(0) = Q0 ∈ Cn×k, the choices

L = (BP,P)−1(AP,P), M∗ = (Q,BQ)−1(Q,AQ)

give

d

dt
(P,P) =

d

dt
(Q,Q) = 0,

and hence (P,P) = (P0,P0) and (Q,Q) = (Q0,Q0) for all t.
The formulations for L and M given in Theorems 2.2 and 2.3 are known as

generalized Rayleigh quotients [38]. With these values of L and M, we refer to (2.1) as
the two-sided and one-sided dynamical systems. Theorem 2.2 shows that if P∗0Q0 = I,
then the two-sided solutions will preserve this property (allowing for biorthogonal
bases for left and right invariant subspaces), though possibly at the expense of growing
‖P‖ or ‖Q‖. Theorem 2.3, on the other hand, shows that the one-sided iteration
maintains ‖P‖ and ‖Q‖, though biorthogonality will generally be lost. From the
invariants we also see that the system preserves the rank of solutions to both one-
and two-sided equations—provided they exist (see Section 4). Since (P,P) is fixed for
the one-sided system, so too are all singular values (and thus the rank) of P. For the
two-sided system, if (P0,Q0) is full rank, (P,Q) must always be as well, and hence
P and Q individually have full rank.

We denote the dynamical systems (2.1) given the generalized Rayleigh quotients
of Theorems 2.2 and 2.3 as “two-sided” and “one-sided”, respectively. We refer to the
ensuing schemes that result from discretizing (2.1) as “two-sided” and “one-sided”
iterations.

3. Invariants and backward stability. We saw in (2.2) that, at a steady
state, the eigenvalues of L and M are exact eigenvalues of the pencil A − λB. As
the system approaches a steady state, how well do the eigenvalues of the invariant-
preserving choices for L and M approximate the eigenvalues of the pencil?

First consider the one-sided system, with L as given in Theorem 2.3 and P full
rank. The first part of (2.1) can then be written as

0 = BPL− (A + Ṗ(P,P)−1P∗)P,
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from which we see that the eigenvalues of L form a subset of the spectrum of the
perturbed pencil (A + Ṗ(P,P)−1P∗) − λB. How large can such perturbations be?
Note that (P,P)−1P∗ = P+ is the pseudoinverse of P, and so

‖Ṗ(P,P)−1P∗‖ ≤ ‖Ṗ‖‖P+‖ =
‖Ṗ‖
σk

,

where σk is the smallest singular value of P ∈ Cn×k. As discussed at the end of
Section 2, the choice of L in Theorem 2.3 that makes (P,P) invariant also makes σk
invariant. Thus when ‖Ṗ‖ is small, i.e., near a steady state, we conclude that the
eigenvalues of L are the exact eigenvalues of a nearby pencil, with σ−1

k acting as a
condition number does in a backward error bound; that condition number can be set
to one simply by taking (P0,P0) = I. (This is related to an error bound for Rayleigh–
Ritz eigenvalue estimates for a Hermitian matrix using a non-orthogonal basis; see [32,
Thm. 11.10.1].) This analysis suggests that a departure from orthogonality in a
numerical integration of the differential equation is reflected in degrading accuracy of
the approximate eigenvalues.

Now consider the two-sided system with L and M as given by Theorem 2.2 with
nonsingular (BP,Q). We wish to rewrite (2.1) in the form

0 = BPL− (A + E)P
0 = B∗QM∗ − (A∗ + E∗)Q

for the same E in both iterations. Lemma 1 of [20] implies that such a perturbation
E exists if and only if

(BP,Q)L = M(BP,Q),

which holds for the choice of L and M given in Theorem 2.2. The perturbation E is
not unique, but EP = Ṗ and E∗Q = Q̇. Moreover, the “Main Theorem” of [20] gives

min ‖E‖2 = max{‖Ṗ‖2, ‖Q̇‖2}

if (P,P) = Ik and (Q,Q) = Ik. However, as the authors of [20] explain, a small ‖E‖2
is irrelevant unless ‖(P,Q)−1‖2 is also small. In particular, when P is orthogonal to
Q, min ‖E‖2 is undefined. The discussion following Theorem 4.1 in subsection 4.1
explains that a large (or undefined) ‖(P,Q)−1‖2 is equivalent to near breakdown (or
serious breakdown) of the two-sided dynamical system.

We caution the reader that backward stability alone does not provide information
on forward error, or accuracy, of the steady-states when A 6= A∗. The relevance of
backward stability is that the solution of our one- and two-sided systems are, at all
times, steady-states for a related dynamical system. The distance to this related
perturbed system depends upon the norm of the residuals.

4. Convergence analysis. At least for single-vector iterations (i.e., k = 1),
the analysis of the one- and two-sided dynamical systems follows readily from the
remarkable fact that, in many cases, simple formulas give the exact solutions of these
nonlinear differential equations. This observation, inspired by a lemma of Nanda [29],
informs convergence analysis of the eigeniterations that result from the discretization
of these equations. Though expressed for the standard eigenvalue problem, these re-
sults can naturally be adapted to the generalized case by replacing A with B−1A. We
discuss the solution operators for two-sided systems, followed by one-sided systems.
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4.1. Two-sided systems. The following result generalizes a result of Nanda [29,
Lemma 1.4] for the two-sided dynamical system.

Theorem 4.1. Consider the partitioned set of ordinary differential equations

ṗ = pθ −Ap
q̇ = qθ̄ −A∗q, (4.1)

with p(0) = p0 and q(0) = q0, where p,q ∈ Cn, (p0,q0) 6= 0, and

θ =
(Ap,q)
(p,q)

.

Then there exists some tf > 0 such that for all t ∈ [0, tf),

p(t) = e−Atp0π(t), q(t) = e−A∗tq0π(t),

where

π(t) =

√
(p0,q0)

(e−Atp0, e−A∗tq0)
. (4.2)

Proof. We define p(t) = e−Atp0π(t) and q(t) = e−A∗tq0π(t), and will show that
these formulas satisfy the system (4.1). Note that

π̇ =
π

2

(
(Ae−Atp0, e

−A∗tq0) + (e−Atp0,A∗e−A∗tq0)
)

(e−Atp0, e−A∗tq0)

= π
(Ae−Atp0, e

−A∗tq0)
(e−Atp0, e−A∗tq0)

= π
(Ae−Atp0π, e

−A∗tq0π̄)
(e−Atp0π, e−A∗tq0π̄)

= π
(Ap,q)
(p,q)

= πθ.

Differentiating the formulas for p and q thus gives

ṗ = −Ae−Atp0π + e−Atp0π̇ = −Ap + θp

q̇ = −A∗e−A∗tq0π̄ + e−A∗tq0 ˙̄π = −A∗q + θ̄q,

as required. The hypothesis that (p0,q0) 6= 0 ensures the existence of the solution at
time t = 0. The formula will hold for all t > 0, until potentially

(e−Atp0, e
−A∗tq0) = 0. (4.3)

We define tf to be the smallest positive t for which (4.3) holds. If no such positive t
exists, the solution exists for all t > 0 and we can take tf =∞ in the statement of the
theorem.

Theorem 4.1 gives (p,q) = (p0,q0), precisely as Theorem 2.2 indicates. Under
the conditions of Theorem 4.1, solutions of the two-sided single-vector equations (4.1)
have the same direction as solutions of the simpler linear systems ẋ = −Ax, x(0) = p0

and ẏ = −A∗y, y(0) = q0, but the magnitudes of p and q vary nonlinearly with (4.2).
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In particular, the inner product of p and q can be zero—even with both p and q
nonzero—-leading to finite time blow-up of (4.1). Note that if(

e−Atp0√
(p0,q0)

,
e−A∗tq0√
(q0,p0)

)
= 0

then π(t) is undefined. Hence, finite time blow-up is analogous to serious break-
down [43, p. 389], a problem endemic to oblique projection methods (see, e.g., [5]).
This ratio will be nonzero but small in the vicinity of blow-up (or near-breakdown),
a situation that commonly occurs in discretizations of these equations. The salient
issue is that p and q are nearly orthogonal and so

(p,q)
‖p‖ ‖q‖

=
(

e−Atp0

‖e−Atp0‖
,
e−A∗tq0

‖e−A∗tq0‖

)
(4.4)

is a useful quantity to measure. This number is small when the secant of the angle
between p and q is large. In Section 6 we shall see the important consequences of
these observations for eigensolvers derived from the discretization of (4.1).

One can avoid breakdown altogether by using starting vectors p0 and q0 that are
sufficiently accurate approximations to the right and left eigenvectors of A associated
with the leftmost eigenvalue. Suppose A is diagonalizable with a simple leftmost
eigenvalue λ1, and all other eigenvalues strictly to the right of λ1. Thus there exists
invertible X and diagonal Λ such that

A = XΛX−1

with Λ1,1 = λ1. Write λj = Λj,j , so that Reλj > Reλ1 for j = 2, . . . , n. Define
r = X−1p0 and s = X∗q0, i.e., r and s are the expansions of the starting vectors in
biorthogonal bases of right and left eigenvectors of A.

Theorem 4.2. Under the setting established in the last paragraph, the condition

|r1s1| >
n∑
j=2

|rjsj |

is sufficient to ensure that the dynamical system (4.1) has a solution for all t ≥ 0
given by Theorem 4.1, i.e., no incurable breakdown occurs.

Proof. First note that

(e−Atp0, e
−A∗tq0) = (Xe−ΛtX−1p0,X−∗e−Λ∗tX∗q0) = (e−2Λtr, s) =

n∑
j=1

rjsje
−2λjt.

Since Reλ1 < Reλj for j > 2, we have |e−2λ1t| ≥ |e−2λjt| for all t ≥ 0. The hypothesis
involving r and s thus implies, for t ≥ 0, that

|r1s1e−2λ1t| ≥
n∑
j=2

|rjsje−2λjt|.

Given this expression, we can twice apply the triangle inequality to conclude

0 < |r1s1e−2λ1t| −
n∑
j=2

|rjsje−2λjt|

≤ |r1s1e−2λ1t| −
∣∣∣∣ n∑
j=2

rjsje
−2λjt

∣∣∣∣ ≤ ∣∣∣∣ n∑
j=1

rjsje
−2λjt

∣∣∣∣ = |(e−Atp0, e
−A∗tq0)|.



DYNAMICAL SYSTEMS AND ITERATIVE EIGENSOLVERS 9

Hence π(t) in Theorem 4.1 is finite for all t ≥ 0, ensuring that the solution to the
dynamical system (4.1) does not blow up at finite time.

Theorem 4.2 implies that finite time blow-up (or serious breakdown) is not generic
for (4.1). However, the sufficient condition provided suggests that excellent initial
approximations to the leftmost (left and right) eigenvectors are needed.

4.2. One-sided systems. The single vector one-sided system possesses a similar
exact solution, which has been studied in the context of gradient flows associated with
Rayleigh quotient iteration. We shall see that finite-time blow-up is never a concern
for such systems. The following is a modest restatement of a result of Nanda [29,
Lemma 1.4] (who considers the differential equation acting on the unit ball in Rn).

Theorem 4.3. Consider the ordinary differential equation

ṗ = pθ −Ap, (4.5)

with A ∈ Rn×n and initial condition p(0) = p0 ∈ Rn, where p0 6= 0 and

θ =
(Ap,p)
(p,p)

.

Then for all t ≥ 0, equation (4.5) has the exact solution

p(t) = e−Atp0ω(t)

where

ω(t) =

√
(p0,p0)

(e−Atp0, e−Atp0)
.

We omit the proof of this result, which closely mimics that of Theorem 4.1. Of
course, a similar formula can be written for the one-sided equation for q(t). The re-
striction to real matrices guarantees that (Ae−Atp0, e

−Atp0) = (e−Atp0,Ae−Atp0);
the result also hold for complex Hermitian A.

As before, p has the same direction as the solution to the dynamical system
ẋ = −Ax with x(0) = p0, but the magnitude is scaled by the nonlinear scalar ω.
Provided p0 6= 0, the one-sided system (4.5) cannot blow up in finite time, since
(p,p) 6= 0, in stark contrast to the two-sided iteration. This collinearity implies that
the p vectors produced by the one- and two-sided systems provide equally accurate
approximations to the desired eigenvector, at least until the latter breaks down.

When A has a unique simple eigenvalue of smallest real part and the hypotheses
of Theorem 4.1 or 4.3 are met, the asymptotic analysis of the associated dynamical
system readily follows; cf. [19, §1.3] for a generic asymptotic linear stability analysis
of the one-sided iteration. In fact, one can develop explicit bounds on the sine of the
angle between p and the desired eigenvector x1, defined as

sin ∠(p,x1) := min
α∈C

‖αp− x1‖
‖x1‖

.

Theorem 4.4. Suppose A can be diagonalized, A = XΛX−1, and the eigenvalues
of A can be ordered as

Real(λ1) < Real(λ2) ≤ · · · ≤ Real(λn).
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Let x1 and y1 denote right and left eigenvectors associated with λ1, with ‖x1‖ = 1
and y∗1x1 = 1. Then the solution p(t) to both systems (4.1) and (4.5) satisfies

sin ∠(p(t),x1) ≤ ‖X‖ ‖X−1‖ ‖p0‖
|y∗1p0|

eRe(λ1−λ2)t

for all t ≥ 0 in the case of (4.5), and for all t ∈ [0, tf ) in the case of (4.1).
Proof. Since x1 is a unit vector, we can write

sin ∠(p(t),x1) = min
α∈C
‖αp(t)− x1‖.

In both (4.5) and (4.1), p(t) is collinear with e−Atp0, so we can proceed with

sin ∠(p(t),x1) = min
α∈C
‖αXe−ΛtX−1p0 − x1‖

≤
∥∥∥ eλ1t

y∗1p0
Xe−ΛtX−1p0 − x1

∥∥∥ ≤ ‖X‖ ‖X−1‖ ‖p0‖
|y∗1p0|

eRe(λ1−λ2)t.

The first inequality follows from choosing a (sub-optimal) value of α that cancels the
terms in the x1 direction. (For similar analysis of the Arnoldi eigenvalue iteration,
see [37, Prop. 2.1].)

An analogous bound could be developed for the convergence of q to the left
eigenvector y1. When A is far from normal, one typically observes a transient stage of
convergence that could be better described via analysis that avoids the diagonalization
of A; see, e.g.,[40, §28], which includes similar analysis for the power method.

The two-sided iteration converges to left and right eigenvectors of A associated
with the leftmost eigenvalue, provided the method does not breakdown on the way to
this limit. Several natural questions arise: How common is breakdown? How well
do discretizations mimic this dynamical system? Before investigating these issues in
Section 6, we first address how preconditioning can accelerate—and complicate—the
convergence of these continuous-time systems.

5. Preconditioned dynamical systems. What does it mean to precondition
the eigenvalue problem? Several different strategies have been proposed in the lit-
erature (see especially the discussion in [21, pp. 109–110]); here we shall investigate
analogous approaches for our continuous time dynamical systems, and the implications
such modifications have on the convergence behavior described in the last section.

One might first consider applying to the generalized eigenvalue problem

Ap = Bpλ,

left and right preconditioners M and N, so as to obtain the equivalent pencil

(M−1AN)(N−1p) = (M−1BN)(N−1p)λ. (5.1)

Provided B is invertible, one could then define

Â := (M−1BN)−1(M−1AN) = N−1B−1AN

p̂ := N−1p,

then apply the concepts from the preceding sections to the standard eigenvalue prob-
lem Âp̂ = p̂λ. For example, we could seek the leftmost eigenpair of Â by evolving
the dynamical system

˙̂p = p̂θ̂ − Âp̂,
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with the (preconditioned) Rayleigh quotient

θ̂ =
(Âp̂, p̂)
(p̂, p̂)

=
(N−1B−1Ap,N−1p)

(N−1p,N−1p)
.

Note that Â and B−1A share the same spectrum because they are similar, and hence
the asymptotic rate in Theorem 4.4 is immune to the preconditioner. The application
of N could affect the system’s transient behavior, but M exerts no influence at all.1

Several choices for N are interesting. Taking N = A−1 gives Â = AB−1, an
alternative to the B−1A form suggested by the original problem. Similarity trans-
formations can also be used to balance a matrix to improve the conditioning of the
eigenvalue problem [31, 33], in which case N is constructed as a diagonal matrix that
reduces the norm of Â. Such balancing tends to decrease the departure from nor-
mality associated with the largest magnitude eigenvalues. In fact, in the 1960 article
that introduced this idea, Osborne refers to this procedure as “pre-conditioning” [31].
A more extreme—if impractical—approach takes N to be a matrix that diagonal-
izes B−1A (provided such a matrix exists), a choice that minimizes the constant
‖X‖‖X−1‖ that describes the departure from normality in Theorem 4.4.

As useful as such improvements might be, these strategies fail to alter the asymp-
totic convergence rate described in Theorem 4.4. To potentially improve this rate,
one can apply the preconditioner N−1 directly to the residual pθ−Ap. Consider the
dynamical system

ṗ = N−1(pθ −Ap), (5.2)

where θ refers to the usual (unpreconditioned) Rayleigh quotient θ = (Ap,p)/(p,p).
Discretization of this system results in the familiar preconditioned eigensolver de-
scribed in (1.1). For this case, a generalization of Theorem 4.3 has proved elusive; we
have found no closed form for the exact solution. Indeed, as we shall next see, the
choice of preconditioner can even complicate the system’s local behavior.

Let x1 denote a unit eigenvector of A associated with the eigenvalue λ1. Note
that x1 is a steady-state of (5.2), linearizing about which gives the Jacobian

J = N−1(I− x1x
∗
1)(λ1 −A). (5.3)

As Jx1 = 0, the Jacobian J always has a zero eigenvalue, adding complexity to
conventional linear stability analysis. The challenge can be magnified by a poor
choice for N. For example, suppose

A =
[
1 0
0 2

]
, N = N−1 =

[
0 1
1 0

]
, x1 =

[
1
0

]
, λ1 = 1,

so that

J =
[
0 1
1 0

] [
0 0
0 1

] [
0 0
0 −1

]
=
[
0 −1
0 0

]
,

i.e., the Jacobian is a Jordan block with a double eigenvalue at zero.

1Alternatively, by substituting (M−1BN)−1ep := N−1p in equation (5.1), we obtain a system

driven by eA = M−1AB−1M that is independent of N.



12 M. EMBREE AND R. B. LEHOUCQ

To obtain a rough impression of the behavior of the continuous system when θ is
in the vicinity of λ1, consider the constant-coefficient equation ṗ = N−1(pλ1 −Ap),
whose solution obeys the simple formula

p(t) = eN
−1(λ1−A)tp(0).

Hence the asymptotic behavior of p is controlled by the spectrum of N−1(λ1 −A).
Assuming that N−1(λ1 − A) has a simple zero eigenvalue, the convergence of this
system to the dominant eigenvector depends on the nonzero eigenvalues of N−1(λ1−
A): if this matrix has any other eigenvalues in the closed right half plane, the system
will not generically converge; if all nonzero eigenvalues are in the open left half plane,
then the convergence rate will be determined by the rightmost of them.

Specific choices for N−1 will naturally depend significantly on the application
problem at hand; in our general setting we seek to characterize basic traits of effec-
tive preconditioners. From the perspective of the convergence rate of the continuous
dynamical system, we seek a preconditioner N−1 such that the nonzero eigenvalues
of N−1(λ1 −A) are as far to the left as possible. While the leftmost eigenvalues of
N−1(λ1 − A) do not much affect the behavior of the continuous system, they can
have a significant effect on the stability of the discretized difference equation, i.e.,
the related eigensolvers. For example, if N−1(λ1 − A) moves all nonzero eigenval-
ues into the left half plane, then replacing N by 1

2N doubles the convergence rate
of the continuous system. (We shall see on page 17 that there is “no free lunch” for
practical computations: the improved convergence rate of the continuous system is
counter-balanced by the need to use a smaller step size in the discretized system.)

To rigorously analyze the local behavior of the fully nonlinear system when p
approximates the eigenvector x1, we shall apply the Center Manifold Theorem [9, 17],
a tool for studying a dynamical system whose Jacobian has an eigenvalue on the
imaginary axis. (Alternatively, we could restrict the system to the unit sphere in
Rn.) Without loss of generality, assume that λ1 = 0, so that the Jacobian at x1 (5.3)
takes the form J = −N−1(I− x1x

∗
1)A. Thus for p near x1 we have

ṗ = Jp + F(p)

for the nonlinear function F(p) = N−1(θ(p)p− (Ap,x1)x1) that, by definition of the
Jacobian, satisfies ‖F(p)‖ = o(‖p− x1‖).

Suppose that J has a simple zero eigenvalue, and the rest of its spectrum is in
the open left half plane. There exists some invertible (real, if J is real) matrix S with
first column x1 and

S−1JS =
[

0 0
0 C

]
for some C ∈ C(n−1)×(n−1) whose spectrum is in the open left half plane.

We now transform coordinates into a form in which the Center Manifold Theorem
can most readily be applied. Define

r(t) = S−1(p(t)− x1),

so that

ṙ = (S−1JS)S−1(p− x1) + S−1F(p) =
[

0 0
0 C

]
r + G(r),
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where G(r) := S−1F(Sr + x1) = S−1F(p). By design, S−1x1 = e1, and hence G(r)
satisfies

G(r) = S−1N−1S
(( (ASr,Sr) + (ASr,x1)

(Sr,Sr) + 2(x1,Sr) + 1

)
(r + e1)− ((ASr,x1)e1

)
. (5.4)

Now we are prepared to cast this diagonalized problem into the conventional setting
for Center Manifold Theory. We write

r =
[
α
b

]
for α ∈ R and b ∈ Rn−1. Using MATLAB index notation for convenience, the r
system is simply [

α̇

ḃ

]
=
[

0 0
0 C

] [
α
b

]
+
[

G([α; b])1
G([α; b])2:n

]
that is

α̇ = G([α; b])1, ḃ = Cb + G([α; b])2:n.

Notice that the component α only figures in the nonlinear terms; we wish to
determine how that contribution affects the magnitude of the b component—that
is, the portion of the solution that we hope decays as t → ∞. Notice that b = 0
corresponds to the case when p is collinear with x1. In this case p may differ from
the unit eigenvector x1, but regardless it is a fixed point of the dynamical system,
and provided p 6= 0 we are content. In particular, if b = 0, then ASr = 0 too (recall
that λ = 0), and we can see from (5.4) that G(r) = 0. In this case

α̇ = G([α; 0])1 = 0, ḃ = C0 + G([α; 0])2:n = 0,

so any such r is a fixed point of the dynamical system. We can put this in grander
language: there exists some δ > 0 such that if

r0 ∈
{[

α
0

]
: |x| < δ

}
=: M,

then the dynamical system with r(0) = r0 satisfies r(t) ∈ M for all t > 0. (In
particular, r(t) = r(0) ∈M.) The set M is called a local invariant manifold. We can
define this manifold (locally) by the requirement that

b = g(α) := 0,

which trivially satisfies g(0) = 0 and the Jacobian of g at α = 0 is Dg(0) = 0;
furthermore, g is arbitrarily smooth near α = 0. Together, these properties ensure
that M is a center manifold of the dynamical system. (We are fortunate in this case
to have an explicit, trivial expression for this manifold.)

All that remains is to apply Theorem 2 from Carr [9, p. 4]. Consider the equation

u̇ = G([u; g(u)])1 = G([u; 0])1 = 0.
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The solution u(t) = 0 is clearly stable—if u(t) = ε, then |u(t) − 0| = |ε| is bounded
for all t > 0—and thus Theorem 2(a) from [9] implies that the solution r(t) = 0 is a
stable solution of the system

ṙ =
[

0 0
0 C

]
r + G(r).

Note that the solution u(t) = 0 is not asymptotically stable, that is, we do not have
u(t) → 0 if u(0) = ε for small, nonzero ε. Were this the case, then we would be
able to conclude that the r system was asymptotically stable. This would contradict
our expectation that the original dynamical system will converge to something in
span{x1}, not necessarily to x1 itself. In particular, if N is self-adjoint, then (Np,p)
is an invariant of the system, and so we expect that p(t)→ ξx1 for ξ determined by

|ξ|2 =
(Np,p)

(Nx1,x1)
.

We now have stability of the zero state of the r system, but that only means
that solutions sufficiently close to r = 0 do not diverge. To say more—to say that
the solutions actually converge to the center manifold—we can apply Theorem 2(b)
of [9], which we slightly paraphrase here. Since the zero solution of the r equation
is stable, for ‖[α(0); b(0)]‖ sufficiently small, there exists some solution u(t) of the
equation u̇(t) = G([u; g(u)])1 = 0 and positive constant γ such that

α(t) = u(t) +O(e−γt), b(t) = g(u(t)) +O(e−γt).

In particular, in our setting such solutions u(t) will be constant: u(t) = c, and so
there exist

α(t) = c+O(e−γt), b(t) = O(e−γt),

and in particular ‖b(t)‖ → 0 as t→∞. Thus for ‖r0‖ sufficiently small,

r(t) =
[
c
0

]
+O(e−γt),

so that p(t) = Sr(t) + x1 = (1 + c)x1 +O(e−γt). The preceding discussion is summa-
rized in the following result.

Theorem 5.1. If ‖p(0)−x1‖ is sufficiently small and N−1(I−x1x
∗
1)(λ−A) has

a simple zero eigenvalue with all other eigenvalues in the open left half plane, then
there exists γ > 0 and ξ ∈ R such that, as t→∞,

‖p(t)− ξx1‖ = O(e−γt).

In the case of self-adjoint, invertible N, |ξ| = |(p0,Np0)|.
Note that if N is Hermitian and invertible but indefinite, then there always exists

some unit vector p0 such that (p0,Np0) = 0. If this starting vector is sufficiently
close to the unit eigenvector x1 of A, then we have not ruled out the possibility that
the system converges to the zero vector, rather than a desired eigenvector.
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6. Discrete dynamical systems. The previous sections have addressed the
quadratic invariant and convergence behavior of the continuous-time one- and two-
sided dynamical systems. For purposes of computation, one naturally wonders how
closely such properties are mimicked by the solutions to discretizations of these sys-
tems. The present section considers the convergence and preservation of the quadratic
invariant by the discrete flow under a forward Euler time integration. We focus on
this canonical integrator for three reasons: (1) this discretization leads to the algo-
rithm (1.1) proposed in the literature; (2) analysis for forward Euler serves as a first
step toward understanding more sophisticated algorithms; (3) more elaborate meth-
ods are not always practical. For example, the implicit midpoint rule will preserve
the quadratic invariant (p,Np) [18, IV.2.1] of the one-sided system (1.2), but since
this method takes the form

pj+1 = pj + hN−1
(
θj+1

(pj + pj+1

2

)
−A

(pj + pj+1

2

))
θj+1 =

(pj + pj+1)TA(pj + pj+1)
(pj + pj+1)T (pj + pj+1)

,

its implementation requires the solution of a (nonlinear) system of equations at each
step: a far more expensive proposition (per step) than the humble forward Euler
method. (For a more sophisticated discretization in the unpreconditioned Hermitian
case, along with a cautionary note about use of large step-size in the forward Euler
method, see [28].)

6.1. Departure from the manifold. Given A ∈ Rn×n, for notational conve-
nience we rewrite the two-sided system in the form

ṗ = pθ −Ap =: f(p,q)
q̇ = qθ −ATq =: g(p,q), (6.1)

with θ = (qTp)−1qTAp = θT and initial conditions p(0) = p0 ∈ Rn and q(0) = q0 ∈
Rn. Similarly, the one-sided system (now including preconditioning) is

ṗ = N−1(pθ −Ap) =: N−1f(p,p), (6.2)

with θ = (pTp)−1pTAp = θT and p(0) = p0 ∈ Rn.
In Section 2 we showed that this system preserves the quadratic invariant qTp.

To what extent do discretizations respect such conservation, and what are the impli-
cations of any drift from this manifold? To understand the role of discrete quadratic
invariants, we consider the error when using a forward Euler time integrator.

We begin with the two-sided iteration. The finite-time blow-up established in
Theorem 4.1 is a strike against this method. Before abandoning it altogether, we wish
to investigate the consequences of the blow-up on the discrete two-sided eigensolver.
The forward Euler applied to (6.1) leads to the iteration

pj+1 = pj + hfj (6.3)
qj+1 = qj + hgj , (6.4)

where fj := f(pj ,qj) and gj := g(pj ,qj). With the mild caveat that qTj pj 6= 0, the
form of the Rayleigh quotient gives

qTj fj = 0 = pTj gj .
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This simple observation is critical to understanding the drift of the forward Euler
iterates from the invariant manifold. It implies, for example, that the first iteration
of (6.3)–(6.4) produces a iterate that is quadratically close to the manifold:

qT1 p1 = qT0 p0 + h2(gT0 f0),

which is perhaps surprising given the forward Euler method’s O(h) accuracy. Writing
the departure from the manifold as

dj = qTj pj − qT0 p0,

we thus have d1 = h2(gT0 f0). From this we can compute

d2 = (qT2 p2 − qT1 p1) + d1 = h2(gT1 f1 + gT0 f0)

and, in general, dj+1 = h2
∑j
k=0 gTk fk. (This result is a special case of one derived

in [18] for partitioned Runge–Kutta systems.) Thus we can bound the relative drift
from the manifold as

|qTj+1pj+1 − qT0 p0|
|qT0 p0|

≤ h2

j∑
k=0

‖fk‖ ‖gk‖
|qT0 p0|

. (6.5)

The definitions of f(p,q) and g(p,q) imply

‖fk‖ ≤ (|θk|+ ‖A‖) ‖pk‖ ≤
(

1 +
‖qk‖‖pk‖
|qTk pk|

)
‖A‖‖pk‖

‖gk‖ ≤ (|θk|+ ‖A‖) ‖qk‖ ≤
(

1 +
‖pk‖‖qk‖
|pTk qk|

)
‖A‖‖qk‖.

Substituting these formulas into (6.5), we arrive at the following result.
Theorem 6.1. The forward Euler iterates (6.3)–(6.4) for the two-sided dynamical

system (6.1) satisfy

|qTj+1pj+1 − qT0 p0|
|qT0 p0|

≤ h2 ‖A‖2

|qT0 p0|

j∑
k=0

(
1 +
‖qk‖‖pk‖
|qTk pk|

)2

‖qk‖‖pk‖. (6.6)

This bound implies that the departure from the manifold is proportional to the
square of the step size, and involves the secants of the angles formed by qk and pk,
k = 0, . . . , j, as well as the norms of qk and pk. Moreover, unless the cosines of
the angles between qk and pk are bounded away from zero, there does not exist a
step size h such that all iterates remain near the quadratic manifold. The proof of the
theorem demonstrates that the secant of the angle is at least as large as the normalized
residuals. Numerical experiments indicate that these bounds are descriptive; see the
first example in Section 6.3. A conclusion is that serious breakdown (as discussed
after Theorem 4.1) leads to incurable breakdown of the two-sided iteration because
forward Euler mimics the continuous solution and cannot “step-over” the point of
blow-up.

Given the shortcomings of the two-sided iteration, we shall henceforth focus on the
one-sided dynamical system, and also include preconditioning (6.2). The associated
forward Euler discretization takes the form

pj+1 = pj + hN−1fj , (6.7)
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where now fj = f(pj ,pj). (Here we see that the time-step h directly multiplies the
preconditioner N, so that the effect of scaling N to improve the convergence rate
of the continuous-time system, as discussed on page 12 is equivalent to choosing a
smaller time-step in the discrete setting.)

The following analysis will play a useful role in our main convergence result,
Theorem 6.3. For the rest of the paper we assume that N is symmetric and invertible,
which, as seen in the Introduction, ensures that solutions of the continuous system
reside on an invariant manifold pTNp = constant. At each time step, the discrete
iteration incurs a local departure from that manifold of

ej+1 := pTj+1Npj+1 − pTj Npj = h2fTj N−1fj .

Hence if N−1 is additionally positive definite (e.g., N−1 = I), the drift is monotone
increasing—an important property for the forthcoming convergence theory.

When N is positive definite, we can define vector norms

‖z‖2N−1 := zTN−1z, ‖z‖2N := zTNz

(which in turn induce matrix norms), with ‖z‖N−1 ≤ ‖N−1‖‖z‖N. Thus we write

ej+1 = h2‖fj‖2N−1 ≤ h2‖N−1‖2‖fj‖2N = h2‖N−1‖2‖rj‖2N‖pj‖2N,

where we use the normalized residual rj := fj/‖pj‖N = (θj − A)pj/‖pj‖N. Now
consider the aggregate, global drift from the manifold:

dj+1 := pTj+1Npj+1 − pT0 Np0

=
j+1∑
k=1

ek ≤ h2‖N−1‖2
j∑

k=0

‖rk‖2N(dk + ‖p0‖2N).

In particular, dj+1 is determined by the step size, the residual norms, and the growth
in the norm of the iterates. For further simplification, choose some M > 0 such that
‖rk‖2N ≤M for all k = 0, . . . , j. One coarse (but j-independent) possibility is

M := inf
s∈R

4‖A− s‖2N ≥ inf
s∈R
‖(A− s)− (θk − s)‖2N ≥ ‖rk‖2N, (6.8)

which is invariant to shifts in A. (In terms of the Euclidean norm, we thus have
M ≤ 4κ(N) infs∈R ‖A− s‖2, where κ(N) = ‖N‖‖N−1‖.) Hence

dj+1 ≤ h2M‖N−1‖2
j∑

k=0

(dk + ‖p0‖N)2 = h2M‖N−1‖2
(

(j + 1)‖p0‖2N +
j∑

k=1

dk

)
(since d0 = 0). Thus if we define the sequence {d̂k} by

d̂j+1 = h2M‖N−1‖2
(

(j + 1) +
j∑

k=1

d̂k

)
, (6.9)

then the departure from the manifold obeys dj+1 ≤ d̂j+1‖p0‖2N. Equation (6.9) is a
binomial recurrence whose solution can be written explicitly:

d̂j+1 =
j+1∑
k=1

(
j + 1
k

)
(h2M‖N−1‖2)k = (1 + h2M‖N−1‖2)j+1 − 1.
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Theorem 6.2. Let N ∈ Rn×n be symmetric and positive definite, and define
M by (6.8). Then the forward Euler iterates (6.7) for the preconditioned one-sided
dynamical system (6.2) satisfy

0 ≤
pTj+1Npj+1 − pT0 Np0

pT0 Np0

≤ (1 + h2M‖N−1‖2)j+1 − 1, (6.10)

the upper bound being asymptotic to (j + 1)h2‖N−1‖2M as h→ 0.
Note that a small eigenvalue of N results in a small time-step h. The bound also

provides an estimate of a critical time step

h
√
j + 1 /

1
‖N−1‖

√
M

for forward Euler, limiting the departure from the quadratic manifold. Highly non-
normal problems for which ‖A− s‖ � maxk |λk − s| also result in tiny time-steps.

Theorem 6.2 leads to an interesting observation—despite the fact that the forward
Euler method generally incurs an O(h) truncation error and the global error grows
exponentially in j for for fixed h (see equation (6.12) and, e.g., [14, §1.3]), for a one-
sided iteration the drift from the quadratic manifold is O(h2) and both linear and
non-decreasing in j for all starting vectors, under mild restrictions. This monotone
departure from the manifold is exploited in the discrete convergence analysis to follow.
So, although, explicit Runge–Kutta methods (such as forward Euler) do not preserve
quadratic invariants (see [18, Chapter IV]), the forward Euler iterates for the one-
sided systems remain nearby. The reader is referred to [18, Chapter IV] for further
information and references, including the use of projection to remain on the quadratic
manifold.

6.2. Discrete convergence theory. Just as the local drift from the manifold at
each iteration contributes to the global drift, so local truncation errors committed by
each step of an ODE solver aggregate into a global error. How does this accumulated
error affect convergence of the discrete method as we compute pj with j →∞?

In this section, we seek conditions that will ensure that the discrete preconditioned
one-sided iteration (6.7) converges to the same eigenvector as the continuous system.

First, we establish the setting that will be used through this rest of this sec-
tion. Suppose A ∈ Rn×n has a simple eigenvalue λ1 strictly to the left of all other
eigenvalues (and hence real). Without loss of generality (via a unitary similarity
transformation) we can assume that A takes the form

A =
[
λ1 dT

0 C

]
. (6.11)

Let x1 and y1 denote unit-length right and left eigenvectors associated with λ1; in
these coordinates we can take x1 = [1, 0, . . . , 0]T . Theorems 4.3, 4.4, and 5.1 provide
conditions under which the solution p(t) of the continuous system converges in angle
to the eigenvector x1 (e.g., if N = I and yT1 p0 6= 0).

Before beginning the convergence analysis, one should appreciate that the con-
ditions established in the last paragraph are not sufficient to guarantee convergence
of the discrete iteration. Consider the following example. When N = I, the forward
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Euler iterate of the one-sided system at step k can be written as

pk =
k−1∏
j=0

ϕj(A)p0

for linear factors ϕj(z) = 1+h(θj−z). If any of these factors has λ1 as a root, then pk
will have no component in the direction of the eigenvector x1, and so λ1 and x1 will
not influence the iteration: convergence of pk to x1 is impossible. Concrete matrices
that exhibit such behavior are simple to construct. For any fixed h > 0, set

A =
[
0 −1− 2/h
0 1

]
, p0 =

[
1
1

]
,

Theorem 4.3 guarantees that the continuous one-sided system will converge for this A
and p0. At the first step of the forward Euler method θ0 = −1/h, so that ϕ0(0) = 0
and p1 = [h+2,−h]T is an eigenvector for λ2 = 1, and pk will never have a component
in the x1 direction for any k ≥ 1. (Note that ϕj(λ1) = 1 +h(θj−λ1) = 0 implies that
θj − λ1 = −1/h < 0, and this is impossible if A is normal. As h is reduced, complete
deflation requires an increasing departure from normality.) The more sophisticated
restarted Arnoldi algorithm exhibits a similar phenomenon; see [12].

Under what circumstances can we guarantee convergence? To answer this ques-
tion, we first review the conventional global error analysis for the forward Euler
method; for details, see, e.g., [14, §1.3]. The first step begins with the exact solu-
tion at time t = 0: p0 = p(0). Each subsequent step introduces a local truncation
error, while also magnifying the global error aggregated at previous steps. Suppose
we wish to integrate for t ∈ [0, τ ] with τ = kh for some integer k. With the local
truncation error at each step bounded by

Th := max
0≤t≤τ

1
2h‖p̈(t)‖,

one can show that

‖pk − p(τ)‖ ≤ Th
L

(
eτL − 1

)
, (6.12)

where L is a Lipschitz constant for our differential equation; in Appendix A we show
that L = 10‖N−1‖‖A‖ will suffice. This expression for the global error captures an
essential feature: for fixed τ , the fact that Th = O(h) implies that we can always
select h > 0 sufficiently small as to make the difference between the forward Euler
iterate pτ/h and the exact solution p(τ) arbitrarily small. However, if we increase k
with h > 0 fixed, the bound indicates an exponential growth in the error. To show
that pk converges (in angle) to an eigenvector as k →∞, further work is required. In
this effort, the preservation of the quadratic invariant characterized in Theorem 6.2
plays an essential role.

Preconditioning significantly complicates the convergence theory. For simplicity,
our analysis imposes the stringent requirement that, in the coordinates in which A
takes the form (6.11), we have

N−1 =
[
η 0
0 M

]
(6.13)
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in addition to the requirement that N−1 be symmetric and positive definite. The triv-
ial off-diagonal blocks prevent the preconditioner from using the growing component
of pk in x1 to enlarge the component in the unwanted eigenspace.

A crucial ingredient in our convergence analysis is the constant

γ := ‖Π1(I + hN(λ1 −A))‖ = ‖I + hM(λ1 −C)‖,

where Π1 := I − x1x
T
1 is a projector onto the complement of the desired invariant

subspace. This constant γ, a function of h, measures the potency of the preconditioner:
the smaller, the better. For example, in the ideal case that M = (C−λ1)−1, we have
γ = |1− h|, giving γ = 0 for the large step size h = 1, and that γ → 1 as h→ 0.

With γ in hand, we are prepared to state our convergence result. Here, κ(N) =
‖N‖‖N−1‖ denotes the condition number of the preconditioner.

Theorem 6.3. Given (6.11), (6.13), and assumptions on λ1, x1, and N estab-
lished in the previous paragraphs, suppose that p0 is chosen so that the continuous
dynamical system converges in angle to an eigenvector associated with the distinct,
simple leftmost eigenvalue λ1 (e.g., yT1 p0 6= 0 suffices if N = I). Furthermore, sup-
pose there exists h > 0 for which

γ ∈ [0, 1/
√
κ(N)). (6.14)

Then after preliminary iteration with a sufficiently small time-step h0, the forward
Euler method with time-step h will converge (in angle) to the desired eigenvector:

sin(∠(pk,x1)) = O(γk). (6.15)

Asymptotically, the Rayleigh quotient converges to λ at the same rate:

|θk − λ| = O(γk), (6.16)

which in the case d = 0 improves to |θk − λ| = O(γ2k).
Proof. Denote the kth iterate by

pk =
[
αk
bk

]
.

• Convergence of the forward Euler method to the continuous solution, and conver-
gence of the continuous solution to the eigenvector, together ensure that preliminary
forward Euler steps will get close to the eigenvector. To show that sin(∠(pk,x1))→ 0
as k → ∞, we will show that ‖bk‖ → 0 while |αk| is bounded away from zero. The
convergence of the forward Euler method at a fixed time τ ≥ 0 (see equation (6.12)),
with the assumption that the continuous system converges for the given p0 (as de-
scribed in Sections 4–5), ensures that we can run the forward Euler iteration with a
sufficiently small time-step that, after k ≥ 0 iterations, ‖bk‖ is sufficiently small that

‖bk‖2‖λ1 −C‖
α2
k + ‖bk‖2

+
‖bk‖‖d‖√
α2
k + ‖bk‖2

≤ ε

h‖M‖
(6.17)

for some ε ∈ [0, 1/
√
κ(N) − γ); here γ ∈ [0, 1/

√
κ(N)) and h > 0 are as in the

statement of the theorem. Note that the left hand side of (6.17) will get small when
‖bk‖ is small, since |αk| is bounded away from zero. This follows from Theorem 6.2
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(monotonic drift of the invariant) and the fact that N is symmetric positive definite,
which imply that for any j,

‖pj‖2 ≥
1
‖N‖

pTj Npj ≥
1
‖N‖

pTj−1Npj−1 ≥
1

κ(N)
‖pj−1‖2. (6.18)

• Condition (6.17) ensures that θk is close to λ1. Since

θk =
λ1α

2
k + αkdTbk + bTkCbk

α2
k + ‖bk‖2

,

we have

|θk − λ1| =
|λ1α

2
k + αkdTbk + bTkCbk − λ1(α2

k + bTk bk)|
α2
k + ‖bk‖2

≤ |b
T
k (C− λ1)bk|
α2
k + ‖bk‖2

+
|αk|‖bk‖‖d‖
α2
k + ‖bk‖2

≤ ‖bk‖
2 ‖C− λ1‖

α2
k + ‖bk‖2

+
‖bk‖‖d‖√
α2
k + ‖bk‖2

, (6.19)

where the last inequality uses the fact that |αk| ≤
√
α2
k + ‖bk‖2. Now condition (6.17)

implies that the Rayleigh quotient θk is sufficiently close to the eigenvalue λ1:

|θk − λ1| ≤
ε

h‖M‖
. (6.20)

The next step of the iteration, with time-step h > 0 specified in the statement of the
theorem, produces[

αk+1

bk+1

]
= pk+1 = pk + hN−1(θk −A)pk =

[
αk + ηh((θk − λ1)αk − dTbk)

(I + hM(θk −C))bk

]
.

Adding zero in a convenient way gives

‖bk+1‖ = ‖(I + hM(λ1 −C))bk + h(θk − λ1)Mbk‖

≤ ‖I + hM(λ1 −C)‖‖bk‖+ h|λ1 − θk|‖M‖‖bk‖

≤ (γ + ε)‖bk‖. (6.21)

In particular, since 0 ≤ γ + ε < 1/κ(N) ≤ 1, this guarantees a fixed reduction in
the component of the forward Euler iterate in the unwanted eigenspace. (The second
inequality follows from condition (6.14) and bound (6.20).) After checking a few
details, we shall see that this condition is the key to convergence.
• Subsequent Rayleigh quotients must also remain close to λ1. We now show that the
new Rayleigh quotient, θk+1, automatically satisfies the requirement (6.20) with the
same ε > 0 and time-step. Repeating the calculation that culminated in (6.19), we
obtain

|θk+1 − λ1| ≤
‖bk+1‖2 ‖C− λ1‖
α2
k+1 + ‖bk+1‖2

+
‖d‖‖bk+1‖√
α2
k+1 + ‖bk+1‖2

.



22 M. EMBREE AND R. B. LEHOUCQ

Now we use (6.18), a consequence of the monotonic drift from the invariant manifold,
to deduce that

|θk+1 − λ1| ≤
κ(N)(γ + ε)2‖bk‖2 ‖C− λ1‖

α2
k + ‖bk‖2

+

√
κ(N)(γ + ε)‖d‖‖bk‖√

α2
k + ‖bk‖2

≤ ‖bk‖
2 ‖C− λ1‖

α2
k + ‖bk‖2

+
‖d‖‖bk‖√
α2
k + ‖bk‖2

,

since γ + ε < 1/
√
κ(N). The condition (6.17) then implies that

|θk+1 − λ1| ≤
ε

h‖M‖
,

which guarantees that the Rayleigh quotient cannot wander too far from λ1.
• Subsequent iterates and Rayleigh quotients must eventually converge. The bound
on |θk+1− λ1| just established allows us to repeat the argument resulting in (6.21) at
future steps, giving

‖bk+m‖ ≤ (γ + ε)m‖bk‖

along with, via a slight modification of (6.18),

|θk+m − λ1| ≤
κ(N)(γ + ε)2m‖bk‖2 ‖C− λ1‖

α2
k + ‖bk‖2

+

√
κ(N)(γ + ε)m‖d‖‖bk‖√

α2
k + ‖bk‖2

(6.22)

≤ ‖bk‖
2 ‖C− λ1‖

α2
k + ‖bk‖2

+
‖d‖‖bk‖√
α2
k + ‖bk‖2

.

Thus |θk+m − λ1| ≤ ε/(h‖M‖) for all m ≥ 1. As ‖bk+m‖ → 0, the component in the
desired eigenvector does not vanish, as again a generalization of (6.18) gives

‖pk+m‖ ≥
1√
κ(N)

‖p0‖.

Thus with x1 = e1, we have

sin ∠(pk+m,x1) = min
ξ

‖ξpk+m − x1‖
‖x1‖

= min
ξ

∥∥∥∥ [ξαk+m − 1
ξbk+m

] ∥∥∥∥
≤ ‖bk+m‖
|αk+m|

≤ (γ + ε)m
‖bk‖
|αk+m|

where we have taken ξ = α−1
k+m for the first inequality. As |αk+m| is bounded away

from zero, we have sin ∠(pk+m,x1) = O((γ + ε)m) as m → ∞. Since ‖bk+m‖ → 0
as m → ∞, we can take the ε used in (6.19) to be arbitrarily small as the iterations
progress, giving the asymptotic rate given in (6.15). Similarly, from (6.22) we observe
that the Rayleigh quotient converges as in (6.16). The O(γm) term in that bound
falls out if d = 0.

We now make several remarks concerning Theorem 6.14 and its proof. (1) As N
becomes increasingly ill-conditioned, the hypothesis (6.14) in the theorem becomes
more and more difficult to satisfy. We can only guarantee convergence for an ill-
conditioned preconditioner if that preconditioner gives a small value of γ, i.e., if it gives
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a rapid convergence rate. (2) A curiosity of condition (6.17) is that the requirement
is more strict when convergence is slower, i.e., when γ is near κ(N)−1/2. (3) One does
not in general know whether θk falls to the left or right of λ1. If A is normal, then as
θk must fall the convex hull of its spectrum, and so θk ≥ λ1; for nonnormal A, it is
possible that θk < λ1. (4) The proof of the theorem exploits the monotonic drift from
the manifold described by Theorem 6.2. This drift is easily monitored, so providing
a useful (and cheap) check on convergence of the iteration during computation. If
this drift reaches a point where it is not small, projection to the quadratic manifold
is easily undertaken; see [18, Chapter IV] for further information.

Theorem 6.3 considers the general case of nonsymmetric A and a somewhat strin-
gent notion of preconditioning. For the important special case of symmetric positive
definite A, Knyazev and Neymeyr [23] provide convergence estimates (and review
much literature) for the one-sided forward Euler discretization (6.3). They provide
rates of convergence given a symmetric positive definite preconditioner N for A. How-
ever, a connection with dynamical systems is not made and instead optimization is
applied to the Rayleigh quotient.

If M = I, and C is normal (which is possible even if A itself is not normal due
to d 6= 0) with spectrum given by σ(C) = {λ2, . . . , λn}, we can estimate an optimal
time-step as follows. We wish to minimize

γ = max
i=2,...,n

|1 + h(λ1 − λi)|,

a simple minimax approximation problem on a discrete set; see, e.g., [36, Sec. 8.5]. In
particular, if all the eigenvalues are real (i.e., C is symmetric) and λ2 ≤ λ3 ≤ · · · ≤ λn,
then the best h must give

1 + h(λ1 − λ2) = −1− h(λ1 − λn).

This can be solved to obtain h = 2/(λ2 + λn − 2λ1), from which we compute

γ =
λn − λ2

λn + λ2 − 2λ1
.

Notice that this agrees with the convergence rate of the power method applied to
A − σI for the optimal shift σ = 1

2 (λ2 + λn) to the leftmost eigenvector x1; see,
e.g., [43, p. 572]. With the optimal choice of h, the forward Euler method recovers
the convergence rate of an optimally shifted power method to x1.

Again, suppose that M = I, so that γ = γ(h) → 1 as h → 0. However, this
limit need not be approached from below; that is, for some matrices C we will have
γ(h) > 1 for all h sufficiently small.2 The behavior of γ in this limit bears a close
connection to the logarithmic norm of λ1 −C, which is defined as

β(λ1 −C) := lim
h↓0

‖I + h(λ1 −C)‖ − 1
h

;

see, e.g., [30],[40, Chap. 17]. In particular, γ(h) < 1 for all sufficiently small h > 0
provided β(λ1 − C) < 0. One can show that the logarithmic norm of a matrix

2In this case the matrix A does not satisfy the hypotheses of the theorem; convergence is still
possible. Experiments with a small example gave convergence after a bit of initial irregularity.
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coincides with the numerical abscissa, that is, the real part of the rightmost point in
the numerical range:

β(λ1 −C) = max
v∈Cn−1,‖v‖=1

Re v∗(λ1 −C)v

= max{η : η ∈ σ( 1
2 ((λ1 −C) + (λ1 −CT ))},

see, e.g., [40, Theorem 17.4]. When is γ(h) > 1? That is, for what matrices can we
not apply our convergence theory by taking h arbitrarily small? We can answer this
question by finding requirements on C that ensure β(λ1 −C) < 0. From the above
analysis we see that

β(λ1 −C) = λ1 − min
v∈Cn−1,‖v=1‖

Re v∗Cv.

Since C is essentially the restriction A|x⊥1 of A to the orthogonal complement of the
eigenvector x1, we can summarize as follows.

Lemma 6.4. Suppose N = I. Then γ < 1 for all h sufficiently small if and only
if λ1 is not in the numerical range of A|x⊥1 (equivalently, C).

6.3. Numerical experiments. In this section we investigate Theorems 4.1, 6.1
and 6.3 through several computational examples. Our first experiment applies to the
tridiagonal matrix

Tn
ρ ≡


2 −1 + ρ 0

−1− ρ 2
. . .

. . . . . . −1 + ρ
0 −1− ρ 2

 ∈ Rn×n

where n = 100 and ρ = 1/(20(n+ 1)). The eigenvalues are all real and the condition
number of the matrix of eigenvectors is modest. All computations in Figure 6.1 use
the same starting vectors p0 and q0, which are taken to be (different) random vectors.
(Results vary with the other choices for these vectors.)

Figures 6.1(a) and (b) show the exact solution to the two-sided unpreconditioned
system, as given by Theorem 4.1. The residuals ‖ · p‖ = ‖pθ − Ap‖ and ‖ · q‖ =
‖qθ − A∗q‖ begin to decrease, but then rise as t approaches a critical point near
t = 0.675, where cusps develop, indicating that a pole as given by π(t) of Theorem 4.1
is encountered by the flow. The same behavior is seen in a plot of the secant of the
angle between p and q. Figures 6.1(c) and (d) display the discrete flow associated
with a forward Euler time integrator with a time step of h = 0.025. As expected,
when the iterates depart from the quadratic manifold, the residuals explode in size,
as in the exact solution. One can also show that the secant of the angle between pj
and qj , and the norms of pj and qj also begin to grown near t ≈ .675, consistent
with Theorem 6.1.

Decreasing the time-step h does not avoid the blow-up—in fact, the time at which
the explosive growth occurs is largely independent of the time-step because of the onset
of incurable breakdown associated with the continuous dynamical system. In contrast
to the latter, the discrete dynamical system cannot simply step over the pole asso-
ciated with continuous dynamical system. Aside from special cases such as the one
described by Theorem 4.2, these results appear to be common and do not significantly
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(a) Residual norms (‖ṗ‖, ‖q̇‖), exact flow
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(c) FE residual norms (‖fk‖, ‖gk‖), h = 0.025
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Fig. 6.1. Sampled flow and forward Euler (FE) approximations for the two-sided system with
T100
ρ and ρ = 1/(20 · 101). The horizontal axis denotes time. Note the blow-up of the exact solution

near t = 0.675, and the consequences of this behavior for the discretized method.

depend on specially engineered starting vectors (though breakdown will occur at dif-
ferent points in time, of course). We also implemented the symplectic Euler method
(that preserves quadratic invariants) for this class of matrices and observed behavior
consistent with the forward Euler method combined with a projection. In contrast,
the one-sided discretized forward Euler iterations converge to the left eigenvalue and
associated eigenvector.

Next we investigate the convergence analysis described in Theorem 6.3 for a simple
example with N = I. Let A be the matrix with aj,j = (j − 1)/(N − 1) for j =
1, . . . , N , and all other entries equal to zero except perhaps for the vector dT in
entries 2 through N of the first row; cf. (6.11). The plots in Figure 6.2 use N =
64, comparing dT = 0 (left) and dT = [1, . . . , 1] (right). In both cases we take
h = 1/2, for which (6.14) gives γ = 0.992 . . . ∈ [0, 1) as required. We take p0 to
be the same randomly-generated unit vector in both cases. This initial vector does
not satisfy (6.17), but this condition is eventually met after a number of iterations,
denoted by the vertical line in each plot. For the normal case in the left plot, ‖bk‖
converges like γk, while the error in the Rayleigh quotient |θk−λ1| converges like γ2k

as predicted. The nonnormality induced by the d vector spoils this convergence for
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Fig. 6.2. Computational confirmation of Theorem 6.3 for a normal matrix (left) and a non-
normal matrix (right), both with N = I. In the normal case, the residual |θk−λ| converges like γ2k,
while in the nonnormal case |θk − λ| only converges like γk. The vertical lines denote the point at
which the hypotheses of the convergence theorem hold.

the Rayleigh quotient, as seen in the right plot; now both ‖bk‖ and |θk−λ1| converge
like γk, consistent with Theorem 6.3. The spikes in the latter plot correspond to points
where the Rayleigh quotient θk crossed over the desired eigenvalue λ1, something only
possible for nonnormal iterations.

7. Summary. This paper demonstrates the fruitful relationship between several
nonlinear dynamical systems and certain simple preconditioned eigensolvers for non-
symmetric eigenvalue problems. Properties of the continuous-time systems, such as
system invariants and the asymptotic behavior of the exact solution, can inform the
convergence theory for practical algorithms derived from discretizations, as we illus-
trate with Theorem 6.1 for the forward Euler discretization. Generalizations to more
sophisticated discretizations, along with relaxation of the stringent requirements on
the preconditioner in Theorem 6.1, are natural avenues for future research.

Acknowledgements. We thank Pierre-Antoine Absil, Moody Chu, Kyle Galli-
van, Anthony Kellems, Christian Lubich, and Qiang Ye, and anonymous referees for
their numerous helpful suggestions concerning this work and its presentation.

Appendix A. Lipschitz constant for Euler’s method. To apply the stan-
dard convergence theory for the forward Euler method applied to the system

ṗ = N−1(θ(p)p−Ap),

we seek a constant L > 0 such that

‖N−1(θ(u)u−Au)−N−1(θ(v)v −Av)‖ ≤ L‖u− v‖

for all u,v ∈ Rn. First we note that

‖(θ(u)u−Au)− (θ(v)v −Av)‖ ≤ ‖θ(u)u− θ(v)v‖+ ‖A‖‖u− v‖.

We focus attention on the first term on the right:

‖θ(u)u− θ(v)v‖ ≤ ‖θ(u)u− θ(v)u + θ(v)u− θ(v)v‖

≤ |θ(u)− θ(v)|‖u‖+ |θ(v)|‖u− v‖

≤ |θ(u)− θ(v)|‖u‖+ ‖A‖‖u− v‖. (A.1)
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(In this last inequality and others that follow, we neglect the opportunity to take
tighter bounds that would lead to smaller constants but greater analytical complexity.)

Next we need to bound |θ(u) − θ(v)|‖u‖ in terms of ‖u − v‖. For convenience
(assuming neither u nor v is zero), define the unit vectors û = u/‖u‖ and v̂ = v/‖v‖,
with ε = v̂ − û, so that

|θ(u)− θ(v)| = |ûTAû− v̂TAv̂|

= |ûTAû− ûTAû− εTAû− ûTAε + εTAε|

≤ 2‖ε‖‖A‖+ ‖ε‖2‖A‖. (A.2)

Now note that

‖ε‖ = ‖v̂ − û‖ =

∥∥∥‖u‖v − ‖v‖v + ‖v‖v − ‖v‖u
∥∥∥

‖u‖‖v‖
≤

∣∣∣‖u‖ − ‖v‖∣∣∣
‖u‖

+
‖u− v‖
‖u‖

.

Apply the triangle inequality to obtain
∣∣∣‖u‖−‖v‖∣∣∣ ≤ ‖u−v‖, from which we conclude

‖ε‖ ≤ 2
‖u‖
‖u− v‖. (A.3)

Since û and v̂ are unit vectors, we alternatively have the coarse bound ‖ε‖ = ‖û−v̂‖ ≤
2, which we can apply to (A.2) to obtain

|θ(u)− θ(v)| ≤ 2‖ε‖‖A‖+ ‖ε‖2‖A‖

≤ 2‖ε‖‖A‖+ 2‖ε‖‖A‖ = 4‖A‖‖ε‖.

Now using (A.3), the bound first bound on ‖ε‖,

|θ(u)− θ(v)| ≤ 8
‖A‖
‖u‖
‖u− v‖.

Substituting this bound into (A.1) gives

‖θ(u)u− θ(v)v‖ ≤ 9‖A‖‖u− v‖,

and finally we arrive at the Lipschitz constant

‖N−1(θ(u)u−Au)−N−1(θ(v)v −Av)‖ ≤ 10‖N−1‖‖A‖‖u− v‖.

Thus we define

L = 10‖N−1‖‖A‖. (A.4)

The Rayleigh quotient θ(p) is undefined in the case that p = 0. However, as
‖p‖ → 0, we have that ‖θ(p)p − Ap‖ → 0, and this motivates the definition that
θ(p)p−Ap = 0 if p = 0.

The above analysis excludes the case that u = 0 and/or v = 0, but with our
definition of this singular case we have, e.g., if u = 0, that

‖(θ(u)u−Au)− (θ(v)v −Av)‖ = ‖θ(v)v −Av)‖ ≤ 2‖A‖‖v‖ ≤ 10‖A‖‖u− v‖,

and obviously if u = v = 0, we have

‖θ(u)u−Au)− (θ(v)v −Av)‖ = 0 = 10‖A‖‖u− v‖.

Hence, the Lipschitz constant (A.4) holds for all u and v.
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