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Abstract

Operating system noise has been shown to be a key limiter of application scalability in high-end

systems. While several studies have attempted to quantify the sources and effects of system interfer-

ence using user-level mechanisms, there are few published studies on the effect of different kinds of

kernel-generated noise on application performance at scale. In this paper, we examine the sensitivity of

real-world, large-scale applications to a range of OS noise patterns using a kernel-based noise injection

mechanism implemented in the Catamount lightweight kernel. Our results demonstrate the importance

of how noise is generated, in terms of frequency and duration, and how this impact changes with appli-

cation scale. For example, our results show that 2.5% net processor noise at 10,000 nodes can have no

impact or can result in over a factor of 20 slowdown for the same application, depending solely on how

the noise is generated. We also discuss how the characteristics of the applications we studied, for example

computation/communication ratios, collective communication sizes, and other characteristics, related to

their tendency to amplify or absorb noise. Finally, we discuss the implications of our findings on the

design of new operating systems, middleware, and other system services for high-end parallel systems.

1 Introduction

Recent research has shown that operating system (OS) interference is a key limiter of application performance

in large-scale systems [7, 13]. This performance impact is generally attributed to interference with synchro-

nization between application instances on distributed hosts by operating system services and associated

daemons. Attempts to limit this “noise” or “jitter” in commodity systems by, for example, gang-scheduling

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
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timer interrupts and system daemons or by dedicating specific processors to OS tasks, have to this point

required applications to pay sizable performance costs. Custom lightweight kernels that perform work only

when explicitly requested to by the application—thereby virtually eliminating OS noise—have been shown

to have better application scalability than commodity kernels [3], but at the cost of a limited set of available

OS services.

Characterizing the effects OS noise on different large-scale applications is crucial to understanding the

tradeoffs involved in the design and implementation of operating systems for large-scale systems. For ex-

ample, OS designers need such information not only to make informed decisions about which services to

implement, but also how to decompose and schedule these services to minimize their impact on application

performance. This knowledge is even more important in light of current efforts that aggregate OS activities

and when considering the increasing amount of work an OS is likely to perform as the core count in proces-

sors continues to increase. Understanding application sensitivity to OS noise is also important for helping

determine the appropriate system software options for a given workload and system.

There is already evidence that previous studies are insufficient for these purposes. Previous research that

has focused on micro-benchmarks and improved methods for measuring idle OS noise signatures in order

to compare operating systems [15] has led some OS developers to pursue complex OS modifications that

dramatically reduce idle noise signatures, but that in turn significantly degrade application performance.

For example, Cray reduced the timer interrupt frequency of Linux well below normal to demonstrate an

idle noise signature equivalent to a lightweight kernel [18], but application performance was so poor that

this kernel was essentially unusable in a production environment [6]. Similarly, collective communication

micro-benchmark performance has been an emphasis of several noise studies [16, 1], despite the fact that

evidence has shown no correlation between the impact of noise on application performance and the impact

of noise on collective communication performance as measured with micro-benchmarks [13].

In this study, we directly quantify the application performance costs of local operating system interference

on a range of real-world large-scale applications using over ten thousand nodes. We have implemented a

kernel-based noise injection framework in the Catamount lightweight compute-node kernel [8] and have used

this framework to inject various levels of noise into applications running on the Sandia/Cray Red Storm

system [4]. The main contributions of this paper are:

• presentation of a kernel-based noise injection framework

• a characterization of the importance of how noise is generated to application performance
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• an analysis of application influences that lead to noise absorption or amplification

To our knowledge, this is the first such analysis of the impact of noise using a kernel-based injection approach

using an OS that is inherently noiseless.

The remainder of this paper is organized as follows. The following section offers a definition of OS noise,

describes sources of noise in high-performance systems, and discusses strategies that others have used to

mitigate the impact of noise on applications. In Section 3, we describe our approach to injecting kernel-level

noise, and continue in Section 4 with a description of the test environment. Section 5 presents our results

that illustrate the impact of different types of noise on application performance. An analysis of how the

performance results correlate with application communication and computation characteristics is provided

in Section 6. Section 7 describes our work in relation to previous research, and we conclude in Section 8

with a discussion of the implications of our findings for the design of future system software for high-end

systems, as well as a discussion of possible directions for future research.

2 Background

OS interference, also referred to as noise or jitter, is caused by asynchronous interruption of the application

by the system software on the node. This interruption can occur for a variety of reasons, from the periodic

timer “tick” commonly used by many commodity operating systems to keep track of time to the scheduling

points used to replace the currently running process with another task or kernel daemon. In each of these

cases, processor cycles are taken away for the duration of the noise event, which can typically vary from a

few microseconds to a few milliseconds.

The detrimental side effects of OS interference on massively parallel processing systems have been known

and studied, primarily qualitatively, for nearly two decades. For example, the origins of the Catamount

lightweight kernel can be traced back to the difficulties inherent in trying to use a commodity server OS on a

massively parallel machine—OSF1 [19] on a 3744-processor Intel Paragon circa 1993. More recently, Petrini

et al. [13] raised the visibility of noise in a thorough study on the performance impact of noise on a large-

scale cluster built from commodity hardware components running a commodity operating system. This paper

reinforced the lessons that had been learned several years earlier on special-purpose parallel platforms—that

operating system behavior can potentially have detrimental impacts on application performance at scale.

Previous investigations have suggested that the global performance cost of noise is due to the variance

in the time it takes processes to participate in a collective operation such as MPI Allreduce. Many par-
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allel applications operate in a synchronous manner with distinct compute-then-communicate phases. For

some codes, the communication phase can involve fine-grain global communication operations. For these

applications, noise can delay one or more processes from reaching the global communication phase, forcing

other processes to wait and accumulating the effects of noise on multiple nodes [11]. In addition, noise can

similarly slow individual collective communication operations, particularly when a tree-based collective oper-

ation is implemented in software and the non-leaf nodes are delayed. In some cases, this situation has caused

collective operations that usually take microseconds or milliseconds, to take seconds to complete [7, 13].

3 Approach

To evaluate the impact of noise on HPC applications, we built a kernel-level noise injection framework into

the Catamount lightweight operating system that runs on the Red Storm machine at Sandia National Labs.

Catamount is an ideal choice due to its extremely low native noise signature and demonstrated record of

scalability. In addition, integration within Catamount allows for testing noise effects on a well-balanced

machine (in terms of relative compute to communication performance) at scales of over ten thousand nodes.

Our noise injection framework provides the ability to specify a per-job noise pattern to be generated

by the operating system during application execution. Parameters for noise generation pattern include:

the frequency of the noise, duration of each individual noise event, the set of participating nodes, and a

randomization method for noise patterns across nodes.

Noise is generated using a timer interrupt mechanism within Catamount. During job launch, the noise

pattern parameters are distributed to each node. If the node should not randomize the interrupt frequency,

the node sets the timer interrupt frequency equal to the specified noise frequency. When a timer interrupt is

generated, Catamount interrupts the application and spins in a tight busy-loop for the duration requested. If

a randomized frequency and/or duration is requested, the given parameter is interpreted to be the arithmetic

mean of a Poisson-distributed random variable. The actual durations and inter-arrival times for noise

generation are then calculated using this random variable.

4 Test Environment

In this section, we provide an overview of the hardware and software environment of our test system. This

includes a description of our test platform, the three applications we ran on this platform, and performance

analysis tools used to gather performance data about these applications.
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4.1 Platform

The machine used for our experiments is the Red Storm system located at Sandia National Laboratories. Red

Storm is a Cray XT3/4 series machine consisting of over 13,000 nodes, with each compute node containing

a 2.4 GHz dual-core AMD Opteron processor and either 2 GB or 4 GB of main memory. Additionally,

each node contains a Cray SeaStar [2] network interface and high-speed router. The SeaStar is connected

to the Opteron via a HyperTransport link. The current generation SeaStar is capable of sustaining a peak

unidirectional injection bandwidth of more than 2 GB/s and a peak unidirectional link bandwidth of more

than 3 GB/s. For our tests, we changed the system to run the Catamount lightweight kernel containing our

noise injection framework instead of the normal production version of Catamount.

4.2 Applications

We have collected results from three applications, CTH, SAGE, and POP, that represent important HPC

modeling and simulation workloads. These applications represent a range of different computational tech-

niques, all frequently run at very large scales (i.e. tens of thousands of nodes), and are key applications to

both the United States Departments of Energy and Defense. We made three runs of each application under

a variety of noise injection patterns for processor counts from two to over ten thousand nodes and observed

the application slowdown in comparison to a run with no noise. We briefly describe these applications below.

CTH [5] is a multi-material, large deformation, strong shock wave, solid mechanics code developed

by Sandia National Laboratories with models for multi-phase, elastic viscoplastic, porous, and explosive

materials. CTH supports three-dimensional rectangular meshes; two-dimensional rectangular, and cylindrical

meshes; and one-dimensional rectilinear, cylindrical, and spherical meshes, and uses second-order accurate

numerical methods to reduce dispersion and dissipation and to produce accurate, efficient results. It is used

for studying armor/anti-armor interactions, warhead design, high explosive initiation physics, and weapons

safety issues.

SAGE, SAIC’s Adaptive Grid Eulerian hydrocode, is a multi-dimensional, multi-material, Eulerian hy-

drodynamics code with adaptive mesh refinement that uses second-order accurate numerical techniques [9].

It represents a large class of production applications at Los Alamos National Laboratory. It is a large-scale

parallel code written in Fortran 90 and uses MPI for inter-processor communications. It routinely runs on

thousands of processors for months at a time.

The Parallel Ocean Program (POP) [10] is an ocean circulation model developed at Los Alamos National

Labs that is capable of ocean simulations as well as coupled atmosphere, ice, and land climate simula-
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tions. Time integration is split into two parts: baroclinic and barotropic. In the baroclinic stage, the

three-dimensional vertically-varying tendencies are integrated using a leapfrog scheme. The baroclinic stage

consists of a preconditioned conjugate gradient solver which is used to solve for the two-dimensional surface

pressure.

4.3 Performance Analysis Tools

In an effort to provide insight on how operating system interference affects the performance of these ap-

plications, we used two different tools for collecting application performance data. First, tracing data was

collected for each application using the Cray Performance Analysis Tool (CrayPAT) to investigate global ap-

plication performance. Second, we used the MPIP MPI profiling library to collect statistics on the individual

MPI operations performed.

CrayPAT is a performance analysis tool provided with the Cray XT series of machines. It provides

tools to instrument a program at key points in order to trace the application execution. In addition to

tracing capabilities, CrayPAT also provides access to the hardware performance counters on a node. We

used CrayPAT to track how the time in each MPI function varies with the scale of the application.

MPIP [17] is a lightweight, scalable MPI profiling library that collects statistical data on MPI function

calls. We used this profiling library to gather statistics such as the frequency of MPI function calls and the

sizes of messages used in various MPI functions.

5 Results

5.1 Overview

In this section, we present results showing the impact of different types of noise on the performance the three

applications described in the previous section. First, we measured the impact of two representative com-

modity noise signatures; a high-frequency, low-duration similar to the timer interrupt profile measured on a

moderately loaded commodity InfiniBand cluster, and a low-frequency, high-duration noise signature similar

to that of periodic kernel daemon on a loaded commodity platform. Following this, we present results show-

ing how application performance varies for a fixed total amount of noise with changing frequency/duration

characteristics and for increasing noise with either frequency or duration fixed.

The majority of these signatures represent a 2.5% net processor noise signature. We focus on 2.5%

profiles due to both specific measurements made on commodity systems and results of previous research
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that demonstrate the importance of this noise level [13]. It is important to note that unloaded systems (e.g.

those doing no communication, I/O, or memory management activities) can have lower noise signatures

with corresponding lower overheads. However, we believe these unloaded noise patterns are not realistic for

characterizing the behavior of real-world HPC applications, and Nataraj’s recent results showing significant

OS overhead from scheduling and ACPI interrupts on loaded HPC Linux systems [11] support this view.

5.2 Noise Impact

Figure 1 illustrates the performance impact of two noise signatures on POP, CTH, and SAGE. This slowdown

represents the global accumulation of noise after the local net processor injected noise has been removed. For

example, if we inject 2.5% net CPU noise and measure a 20% performance slowdown, the global accumulation

of noise is only 17.5% This percentage reflects the sensitivity of an application to a given noise signature.

Note that this global accumulated noise percentage can be negative. This has been termed absorption [11]

and can happen, for example, when a noise event occurs while the application is in MPI Wait—the noise is

absorbed during the normal application wait time.

Figure 1(a) illustrates the impact of a high-frequency, low-duration noise signature similar to that of the

timer interrupt profile measured on a loaded a general-purpose commodity operating system like Linux. This

2.5% net CPU signature has an injection frequency of 1000 Hz and duration of 25 microseconds. These noise

parameters correspond to a worst-case timer interrupt signature measured on a loaded commodity InfiniBand

Linux cluster. For CTH and SAGE, the impact of the noise remains nearly constant and relatively minimal as

scale increases—at these scales, CTH and SAGE are relatively insensitive to high-frequency, low-duration.

POP, on the other hand, performs dramatically worse for this noise signature as the number of nodes

increases—a nearly 30% slowdown at scale.

Figure 1(b) shows the impact of a low-frequency, high-duration noise signature; this 2.5% net CPU

signature reflects the behavior of an application process competing with an intermittent kernel thread (e.g. a

Linux bottom-half handler) or system daemon. This signature has a 10 Hz frequency and a 2500 microsecond

duration. As in the previous results, this noise signature does not greatly affect the performance of CTH. On

the other hand, SAGE incurs an accumulated slowdown of over 50% at this scale from a 2.5% net processor

signature. Most impressive is the global impact noise has on POP. At these scales, the slowdown of POP

due to the global effect of injected noise is nearly 2000%. This performance trend continued for POP out

to ten thousand nodes, but due to limited dedicated system time, POP runs were stopped after reaching a

factor of 20 slowdown.
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Figure 1: Performance slowdown for two common commodity noise signatures. Each signature corresponds
to 2.5% net processor noise. Loaded timer interrupt is a high-frequency, low duration signature while schedule
is low-frequency, high-duration signature

5.3 Parameter Sensitivity

In the previous section, we showed the impact of common commodity noise signatures on application per-

formance. For identical percentages of time spent in noise, we saw vastly different impact on application

performance. In this section, we investigate the sensitivity of these applications to a wider range of fre-

quency and duration noise signature parameters. We first look at sensitivity from the perspective of a fixed

percentage of net noise, and then extend those results to increasing amounts of net noise on larger node

counts.

5.3.1 Fixed Total Noise

Figure 2 shows the the performance impact of a constant 2.5% net processor noise signature with varied

frequency and duration on POP, SAGE, and CTH for different node counts. Again, this slowdown repre-

sents the global accumulation of noise after the local net processor injected noise has been removed. The

overwhelming trend from this data is the impact of lower-frequency, higher-duration noise signatures. Both

SAGE and CTH in fact see basically no impact for frequencies greater than 25 Hz for these fixed percentage

noise profiles. In addition, for both SAGE and CTH, node count has very little effect on the impact of

injected noise.

POP’s performance, on the other hand, changes dramatically with changing noise distribution and scale.

First, as we saw previously, the impact of noise on POP’s performance is much greater than for CTH and
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Figure 2: Sensitivity of POP, SAGE, and CTH to noise frequency and duration parameters for a fixed 2.5%
net processor noise signature

SAGE, with POP having a nearly 1900% slowdown to a 2.5% CPU noise signature compared to nearly 60%

for SAGE. In addition to the absolute differences in impact, there is a marked difference in the trends of

these graphs—while CTH and SAGE’s performance does not change with scale, POP performance under

low-frequency, high-duration noise degrades dramatically as scale increases. In addition, while CTH and

SAGE are essentially sensitive to only the largest duration signatures tested, POP is sensitive, to varying

degrees, to a much broader range of noise patterns.

5.3.2 Increasing Noise Signatures

We have established the sensitivity of our applications to higher-duration noise patterns for a fixed percentage

of noise; we now investigate the impact of varying the percentage of injected noise by changing only noise

frequency or duration. Figure 3 shows the global performance impact of noise for various net processor

injected noise for durations from one to fifty microseconds. Figure 3(a) shows the results for POP. It is

interesting to note POP’s sensitivity to duration. For each of the plotted durations, the difference between

the first and last point is an increase by a factor of five in net injected noise. With this factor of five increase,

POP performance degrades by at most 20-25%. This again shows POP’s sensitivity to the duration of of a

noise pattern and its relative insensitivity to the frequency of the noise pattern.

Figure 3(b) illustrates the duration sensitivity of CTH. In contrast to POP, CTH is relatively insensitive

to the durations in this range. In fact, CTH is able to absorb a portion of the noise injected. Negative values

on the Y-axis represent the amount of the injected noise that the application was able to absorb. Therefore,

CTH can absorb around 20% of the injected noise in this range. We omitted SAGE results because in this

duration range, SAGE showed very little global performance impact with varying small degrees of absorption

and accumulation of the injected noise.
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Figure 3: Noise duration sensitivity of POP and CTH for varying net processor injection percentages

6 Analysis

In this section, we investigate measured communication and computation characteristics of our tested appli-

cations in order to better understand the performance impact of OS noise. For each application, we present

the amount of time spent in communication versus computation, and how communication time is spent in

different MPI functions. We then combine this data with the performance results from the previous section

to understand how each application’s communication demands effects its sensitivity to noise. Although we

tested our noise framework on application scales of over 10,000 nodes, we could not run our applications

under tracing for node counts greater than 512 due to limitations of CrayPAT. Given the scalability of these

applications, the trends and conclusions we outline are appropriate for larger node counts.

6.1 POP

Recall from Section 5 that POP is sensitive to a variety of noise signatures, with a slowdown for a 2.5% net

processor signature varying from 30% in the high-frequency, low-duration case to over 1900% in the low-

frequency, high-duration case. Figure 4 illustrates the ratio of computation and communication time and

provides a breakdown of communication time per MPI function for POP from 10 to 512 nodes. Figure 4(a)

shows how the communication/computation ratio changes with node count. As node count increases, POP

spends an increasing amount of time in communication. Figure 4(b) provides a breakdown of the increasing

communication time by MPI function. As node count increases, an increasing amount of POP’s runtime

is spent in MPI collective operations – in this case MPI Allreduce, MPI Bcast and MPI Barrier. These

collective operations are those operations that have been shown to amplify OS noise. In addition, POP
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Figure 4: POP computation/communication ratio and percentage of communication time per MPI function

performs 20 times as many MPI Allreduce operations per time interval as SAGE and CTH. All of these

factors lead to POP’s sensitivity to operating system noise.

6.2 SAGE and CTH

We now turn our attention to the application characteristics of CTH and SAGE that lead to their varying

degrees of noise sensitivity. Recall again from Section 5 that CTH is relatively insensitive to noise; in fact

it absorbs a certain significant percentage of OS noise, while SAGE shows a sensitivity to low-frequency,

high-frequency noise signatures.

6.2.1 Similarities between SAGE and CTH

Figure 5 illustrates the communication and computation ratios for CTH and SAGE for node counts from 2

to 512. For both of these applications, we see that as node count increases, the portion of communication

time increases in a logarithmic fashion. This is in contrast to that of POP, shown in Figure 4(a), and we

believe this explains the large difference in noise sensitivity between POP and the other two applications.

6.2.2 Communication Differences between SAGE and CTH

While SAGE and CTH are both less sensitive to noise than POP, they do show differences in how they react

to low-frequency, high-duration noise. To further determine why SAGE is more sensitive to low-frequency,

high-duration noise than CTH, we examine the characteristics of these collective operations in greater detail

and the sensitivity to noise of these operations. Specifically, we examine how much time SAGE and CTH
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Figure 5: Communication/Computation ratio for SAGE and CTH

spend in different communication calls, the specific details of these calls, and the performance difference that

noise makes based on these differences.

Differences in MPI Calls. Figure 6 shows the percentage of communication time spent per MPI function

for both CTH and SAGE, and shows the primary differences in communication behavior between these two

applications. Specifically, figure 6(a) shows that SAGE spends the majority of its communication time in

MPI Allreduce and MPI Wait. CTH, on the other hand, spreads its time across MPI Allreduce, MPI Bcast,

MPI Send, MPI Wait, and MPI Isend, as shown in Figure 6(b). Note also that although SAGE spends more

time in MPI Allreduce, each of these two applications spend a similar amount of time in collective operations,

with the majority of time in collective being in MPI Allreduce for SAGE and MPI Allreduce and MPI Bcast

for CTH.

Figure 7 shows the breakdown by size in bytes for MPI Allreduce and MPI Bcast for both CTH and

SAGE on a 512-node application run. From this figure, we see that although both CTH and SAGE perform

a similar number of MPI Allreduce operations, the sizes of those operations vary in size between the two

applications. Specifically, CTH has an average MPI Allreduce size of approximately 32 bytes, while SAGE’s

average is approximately 8 bytes.

Figure 7(b) shows the breakdown of broadcast sizes for CTH. Note we do not include SAGE in this figure

as it does not perform a significant number of MPI Bcast operations. From this figure we see the majority

of the broadcast operations are smaller and the average is around 1024 bytes in length.
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Figure 6: Percentage of communication time spent per MPI function for SAGE and CTH
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Figure 7: Percentage of MPI Allreduce and MPI Bcast operations broken down by size in bytes for CTH
and SAGE
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Figure 8: Performance impact of MPI Allreduce and MPI Bcast for a 2.5% net processor noise signature
with a 10Hz frequency and 2500us duration

Impact of MPI Usage Differences on Noise Sensitivity. To understand how these different uses of

MPI effect each application’s sensitivity to noise, we examined the performance of these specific operations

under the 2.5% low-frequency noise signature to which SAGE demonstrated sensitivity in section 5. Figure 8

shows the performance impact of this signature on MPI Allreduce and MPI Bcast operations for 128 nodes.

From this figure, we can see that MPI Bcast is much less sensitive to this noise signature than MPI Allreduce,

with MPI Bcast showing a factor of 2–4 slowdown and MPI Allreduce showing a factor of 12–35 slowdown.

In addition, small MPI Allreduce calls appear to be much more sensitive to this noise signature than larger

operations.

Based on this, we believe that SAGE’s sensitivity to OS noise comes from a combination of sources:

SAGE spends more time in MPI Allreduce than CTH, MPI Allreduce operations are more sensitive to

noise over MPI Bcast operations, and SAGE’s smaller MPI Allreduce operations are impacted to greater

degree than CTH’s larger ones. In addition, CTH is likely able to absorb some of the injected noise due to

the fact that it spends 60% of its time in operations that can potentially absorb noise (MPI Send, MPI Wait,

and MPI Recv).

7 Related Work

As mentioned previously, Petrini et al. [13] most recently raised the visibility of the impact of OS noise

on application performance. Their thorough study investigated performance issues from OS noise on a

large-scale cluster built from commodity hardware components, running a commodity operating system, and
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running a cluster software environment designed for data center applications. While the findings of this

paper from an OS perspective were largely well known, such as turning off unnecessary system daemons

(like the line printer daemon), the paper brought to light several important new findings relevant to OS

noise. First, the authors developed a micro-benchmark specifically for measuring OS noise on a parallel

machine; such benchmarks were previously non-existent. Second, the paper demonstrates the inability of

communication micro-benchmarks to accurately reflect and/or predict application performance. Specifically,

the micro-benchmark performance of a global reduction communication operation was increased by a factor

of seven. Yet, despite the application spending more than half of its time performing this operation, the

application showed negligible performance improvement. Finally, the authors offered a conjecture that OS

noise is most damaging when the application resonates with OS noise—high-frequency, fine-grained noise

only affects fine-grained applications and low-frequency, coarse-grained noise only affects coarse-grained

applications.

Similarly, Jones et al. [7] attacked the OS noise problem observed in global reduction communication

operation performance on a large IBM system running AIX. Their approach was to coordinate “rogue”

system activity by gang scheduling daemons across all of the nodes. This strategy led to a factor of 3

improvement in the time to perform a global reduction operation on several hundred nodes, and also allowed

the use of all 16 processors on a node rather than dedicating one processor to only running system tasks.

Due to the complexity of doing application-level analysis, their results were limited to global reduction

micro-benchmark results.

Sottile and Minnich [15] described the limitations of the Fixed Work Quantum (FWQ) micro-benchmark

and suggested that a Fixed Time Quantum (FTQ) micro-benchmark is a better approach for measuring OS

interference. The FTQ benchmark eliminates the possibility of the influence of OS noise on the measurements,

while the FTQ benchmark is itself susceptible to OS noise.

Tsafrir et al. [16] attempted to quantify the effect of OS noise using a probabilistic approach. They

also implemented a micro-benchmark similar to the FTQ benchmark and instrumented a Linux kernel to

log OS interrupts. They stipulate that OS timer ticks are the main source of OS noise and that a tickless

kernel is a possible solution to the noise problem. However, tickless kernels do not entirely address the

issue. One important component that most massively parallel processing systems have that clusters do not

is an infrastructure that monitors the health of the system using some type of heartbeat mechanism. These

heartbeats are very infrequent – usually one per second – and small in duration, but their signature is very

similar to OS ticks.
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Beckman et al. [1] investigated the effect of user-level noise on an IBM BG/L system. This system runs

a custom lightweight OS like Catamount that demonstrates very little noise. The authors showed that a

properly configured Linux kernel can have a noise signature similar to that of a lightweight kernel. They then

injected noise using a user-level communication library and measured the impact on communication micro-

benchmarks. Their results showed that noise levels had to be very high in order to show any real impact.

Given Petrini’s previous work showing no direct correlation between application performance and collective

communication micro-benchmark performance [13], and the authors’ reliance solely on such synthetic micro-

benchmarks on a single platform we question their broad conclusion that “running a general-purpose OS

such as Linux on massively parallel machines should be viable”.

More recently, Nataraj et al. [11] used the KTAU toolkit to investigate the kernel activities of a general-

purpose operating system. This toolkit instruments the Linux kernel to collect measurements from various

kernel components including system calls, scheduling, interrupt handling, and network operations. The

authors begin by showing the effectiveness of the KTAU toolkit for measuring the OS noise in Linux. In

addition, they show how their toolkit can be used to track the accumulation and absorption of noise during

the communication stages of an application. However, this work, unlike ours, only presented results from a

128-node development system that may or may not generalize to a massively parallel machines containing

tens of thousands of nodes. More importantly, while their tool can be used to identify possible sources of

noise, the authors did not relate the effects of noise to the performance of a large-scale application (e.g. the

largest source of noise may not be the most harmful).

8 Conclusions

8.1 Summary of Results

In this paper, we present the first systematic study of the effect of OS noise on the performance of a range

of applications on a large-scale system. Our results show that OS noise can have a dramatic impact on

the performance of applications at scale, even at comparatively low noise levels. For example, we show

that 1000 Hz 25µs noise interference—an amount of interference measured on a large-scale commodity Linux

cluster—can cause a 30% slowdown in application performance on ten thousand nodes. Our results also show

that, even for applications that are relatively insensitive to noise, this noise level can cause a 5% application

slowdown above and beyond the slowdown resulting from the CPU time the OS directly takes from the

application. We also show that infrequent noise, similar to that resulting from intermittently running kernel
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service threads, can cause a 15% to 1900% slowdown in the performance of applications on only 2500 nodes.

More generally, our results show the importance of quantifying how noise is generated in high-performance

systems, and that simply reducing the total noise in the system may not improve application performance.

Specifically, our results show that applications are often able to absorb substantial amounts of high-frequency,

low-duration noise but tend to amplify low-frequency, high-duration noise. For example, that an applica-

tion notorious for amplifying noise (POP) amplifies high-duration low-frequency noise by 1900% at 2500

nodes, but does not amplify high-frequency low-duration noise. Similarly, a noise-tolerant, coarse-grained

application such as CTH is better able to absorb high-frequency low-duration noise than it is able to absorb

high-duration low-frequency noise.

In terms of applications behavior, our results confirm the widespread theory that the sensitivity of an

application to OS noise is strongly related to the communication/computation ratio of a program, the amount

of collective communications used by an application, and something previous researchers had not noted—the

size of these collective communications. In particular, our results lead us to believe that applications that

use extremely small collective communications (e.g. 8-byte MPI Allreduce) appear much more susceptible

to noise than ones that use even slightly larger versions (e.g. 32 bytes) of the same collectives.

8.2 Implications for System Software Design

Overall, our results reinforce the importance of being noise-conscious when designing system software for

large-scale parallel systems. Operating system designers must carefully consider the performance vs. usability

tradeoffs involved in every service, as some services can have dramatic performance impact at scale. While

this is challenging, our results also provide guidance on how to implement services that system designers

deem necessary—designers should focus on decomposing periodic services into small pieces that run more

often to reduce the impact of unavoidable system noise on application performance.

Unfortunately, a number of system software designers appear to be taking the opposite approach and are

aggregating periodic work into longer, less-frequent interruptions [18]. Our results suggest that while this

may reduce the noise signature of these systems in noise measurement micro-benchmarks such as FTQ [15],

it is also likely to degrade application performance. In general, many of our application results also reinforce

the importance of using applications to evaluate system performance, and that relying on only synthetic

micro-benchmarks is insufficient [12].

In addition, the susceptibility of small collectives to noise has substantial implications for system software

designers. Because these operations seem to dramatically amplify even small amounts of noise, system soft-
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ware that seeks to support applications requiring such communication must be particularly noise conscious.

In particular, techniques such as lightweight kernels [14], non-blocking collective communication primitives,

and/or hardware-based collective implementations that mitigate the performance impact of noise on appli-

cations appear to be critical for supporting important applications—especially considering the increasing

node count that may be required to achieve multi-petascale or exascale levels of performance.

8.3 Future Work

There are several avenues of future work related to this study. First, we would like to analyze more applica-

tions in order to increase our understanding of application sensitivity to noise. While the set of applications

covers a range of important problems and scalable computational techniques, additional application exper-

imentation would further increase our understanding of the relationship between OS noise, communication

primitive performance, and application performance. Obtaining access to large-scale applications, problem

sets, appropriate application scientist expertise, and dedicated system time to run these applications has

proven challenging, but we believe that this approach is key to understanding the overall impact of OS noise

in large-scale parallel applications.

We are also interested in analyzing how basic OS services, for example memory management, can influence

the generation and impact of noise. We are exploring modifications to our noise framework that allow

Catamount’s memory management strategy to be more representative of a general-purpose OS like Linux.

Specifically, we are implementing a non-contiguous memory page allocation scheme that better resembles

the way Linux allocates and manages physical memory pages. We suspect that this capability will further

degrade the performance of our emulated general-purpose noise signature to be more representative of what

happens in a commodity OS environment.

Finally, we are also interested in exploring the influence of system balance on OS noise. Our conjecture

is that systems that are less balanced in terms of network performance are more likely to be able to absorb

noise than those that are more evenly balanced. An application that is network bound seems less likely to

be impacted by processor cycles taken away by OS activities. We are exploring hardware-based mechanisms

for degrading network injection bandwidth and network link bandwidth on the Cray XT to give it a balance

ratio similar to a large commodity cluster.
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