
Visual Debugging of Visualization Software:
A Case Study for Particle Systems

Patricia Crossno Edward Angel
Sandia National Laboratories University of New Mexico

ABSTRACT
Visualization systems are complex dynamic software

systems. Debugging such systems is difficult using conventional
debuggers because the programmer must try to imagine the three-
dimensional geometry based on a list of positions and attributes.
In addition, the programmer must be able to mentally animate
changes in those positions and attributes to grasp dynamic
behaviors within the algorithm. In this paper we shall show that
representing geometry, attributes, and relationships graphically
permits visual pattern recognition skills to be applied to the
debugging problem. The particular application is a particle
system used for isosurface extraction from volumetric data.
Coloring particles based on individual attributes is especially
helpful when these colorings are viewed as animations over
successive iterations in the program. Although we describe a
particular application, the types of tools that we discuss can be
applied to a variety of problems.
CR Categories: D.2.5 [Software]: Software Engineering –
Testing and Debugging.
Keywords: Visual debugging, algorithm animation, program
animation, program visualization, particle systems.

1 INTRODUCTION
Starting with William Reeves’ work in 1983 [8], particle

systems have been used within the graphics community in a
variety of applications. Particle systems have been used to model
“fuzzy objects” such as clouds, fire and water [8][4][11].
Hierarchical particle systems have been used to model trees and
grass [12][7]. The combination of particle systems with
behavioral rules, known as behavioral animation, has been used
to model the flocking behavior of birds, herds, and schools of fish
[9]. Particle systems have also been used for implicit surface
modeling [14][16] and as the basis for meshing algorithms
[1][10][17]. We have used particle systems to extract isosurfaces
from volume data [3].

As particle systems have been applied to more sophisticated
problems, the software has become increasingly more complex.
Not only has the size of the systems increased but the particles
can be programmed to have complex behaviors and particle
systems can include multiple types of particles. Software
implementations include a variety of data structures to store and
manipulate the particles. The evolution of other visual systems
both for specific applications and in general-purpose systems,
such as VTK and AVS, has shown similar properties.

During the course of our work, we quickly decided that
conventional debugging tools were inadequate for dealing with
something as complex and dynamic as a particle system. Our
solution was to build a number of graphical tools so that we could
debug our code visually. The human eye can instantly recognize
patterns or mistakes that hours of examining particle information
would not reveal. These tools were invaluable in situations where
the sheer number of particles would have precluded the
examination of each of the particles individually.

The literature provides examples of earlier work in visual
debugging. There are papers on general algorithm visualization
[6][2][13]. More closely related to our work are papers on visual
debugging of geometric algorithms. Tal and Dobkin present a
system, GASP, for visualizing geometric algorithms from
computational geometry [15].

Wolfenbarger, et al. describe a framework called CoMeT
that provides a graphical debugging environment for their
meshing algorithms [17]. Using this tool they can watch the
evolution of the mesh with respect to particle positions and links
between particles.

Huang, et al. developed a stochastic energy minimization
approach for untangling knots [5]. In their paper, they used two
different coloration schemes to represent energy at various
positions within the knot’s curve. Although, Huang et al. never
explicitly claimed to use these colorings as visual debugging
tools, the information about the energy distributions would have
been useful for interpreting the behavior of the algorithm over
time.

This case study describes the tools that we developed for
visually debugging a particle system that does isosurface
extraction. We used Advanced Visual Systems scientific
visualization system, AVS 5.0, as our software platform. We
wrote a particle system module and used AVS’s visual
programming paradigm to input an AVS field data type from their
read field module and to output AVS’s geometry data type to their
geometry module. We used the various graphical user interface
widgets that AVS provides to manipulate variables such as
surface value and curvature factor within the particle system
module. The geometry viewer not only provided controls for
rendering the resulting surface models in a variety of useful ways,
but also provided a user interface for flying around the models.
Nevertheless, debugging the system would have been difficult
with just these tools alone.

2 OVERVIEW OF THE ALGORITHM
To understand the sorts of problems we faced, it is important

to have a general understanding of our particle algorithm.
Initially, we place a number of particles on an isosurface. The
particles move about on the surface and adaptively change their
population until they reach a state of equilibrium. Depending on
the surface, this can result in tens of thousands of particles
evolving over dozens of time steps. Once the particle positions
are fixed, they are used as vertices in a triangulation of the
surface.

With each iteration of the system, particles can move, grow
or shrink, and be born or die. Particle movement is based on
forces exerted on each particle by its neighbors. The amount of
force exerted by a particular particle is a function of its size and
the distance between it and each of its neighbors. The size, in turn,
is based on the curvature of the surface at the particle’s current
location combined with the repulsive forces from its neighbors.
Birth and death are triggered by particles growing or shrinking
past certain limits, indicating that the particle is either in an area
that is under or over populated, respectively.

In calculating repulsion forces, we need to sum up the forces
exerted on any one particle by those particles within a limited

neighborhood. To facilitate this operation, we created a data
structure that links particles that are deemed to be close enough to
impact one another’s force calculations. Surface normal
information is used to prevent linking particles that are spatially
proximate, but that lie on non-adjacent surfaces.

In our system, surfaces can have edges when the volume
boundaries intersect the isosurface. These boundaries create
problems with respect to both the movement of particles near the
edges and the triangulation of particles on an edge. To facilitate
specialized handling of these particles, we created different
particle types and subtypes.

To generate a surface from the particle positions after the
system reaches equilibrium, we developed an advancing-front
triangulation algorithm that makes use of the existing neighbor
information and surface-normal information at each particle.

3 VISUAL DEBUGGING TOOLS
In this section, we describe the visual tools we developed to

examine various aspects of our particle system. Each of the four
sections relates to the tools used to visualize a particular data
element or data structure in the system. The tools can be used
statically to examine data values across all of the particles at a
particular time, or they can be used dynamically to animate
changing attributes of the system as it evolves over time.

3.1 Particle Placement and Size
For speed, we draw the particles as hexahedral

approximations to spheres. The size of each sphere is set using the
corresponding particle’s radius of repulsion as the radius of the
sphere. The particles are output at the end of each iteration so that
we can follow their movement and the increases or decreases in
population. We can superimpose the particles upon a
conventionally produced isosurface of the data set to see how
closely the particles follow the surface and whether their
population density matches the curvature of the surface in that
region.

In addition to seeing the particles, we want to be able to
select a particular particle and know the contents of its associated
fields such as the particle identifier, position, isovalue at that
position, normal vector, curvature, and neighbor count. Knowing
the particle identifier is especially useful because we can target a
conventional debugger to break whenever that particle is
accessed. Then we can follow the individual calculations for
those particles that exhibit unexpected or unusual behavior.

For particle selection, we enable AVS’s pick operation and
we use the particle element’s address as the value returned by the
pick. We highlight the selected particle in green to provide visual
feedback that we have picked the intended particle.

3.2 Neighbor Links and Surface Normals
To evaluate how particles are connected together in the web

of neighbors, we draw a line between each pair of particles that
share a neighbor link. Sometimes, it is useful to see each
particle’s normal vector, so we draw the normal as a straight line
of length one starting at the particle’s position as shown in Figure
1. The neighbor links and the normals are output at each iteration
along with the particle hexahedra. Because the neighbor links, the
normals, and the particles are created as three separate objects,
AVS enables us to independently turn their display on and off and
color them separately (though the hexahedra are colored by based
on attributes, as is explained in the next section).

Sometimes the size of the particles obscures the neighbor
links in areas of high particle density. If we wish to see just the
particle location without the particle size information, we can turn
the hexahedra off and darken the normals to distinguish them
from the neighbor links (we typically use black normals with cyan
neighbor links). By substituting the particle normal vectors for the
hexahedra, we get a much better view of the dynamic neighbor
link behaviors. We can watch the particles move about, breaking
and forming neighbor links. Holes appear in the mesh of neighbor
links when particles die. Later, neighboring particles around the
hole move into the gap to fill it in. At any point in the simulation,
we can disable the display update (which causes the simulation to
pause) and turn on the hexahedral particle display to see particle
sizes or other attributes that are encoded in each particle’s
coloration.

Figure 1: Normals for each particle are drawn in black,
neighbor links in cyan.

3.3 Particle Attributes
There are a number of particle attributes that we are

interested in tracking across the entire system. Initially, we tried
to monitor these attributes by printing out statistics such as the
low, high, and average values for these attributes. But without
knowing the spatial distributions, the information was of limited
use. So we decided to color each of the particles based on the
particle’s value for the attribute of interest.

Figure 2: Particles colored by energy level.

We use set of radio buttons on the AVS control panel to
select which attribute to use in coloring the particles during the

next iteration. These attributes include the particle energy, type,
ratio of repulsion radius to desired repulsion radius, number of
neighbors, and particles born within the last several time steps. In
each case, the meanings of the colors are unique to the attribute.

We are interested in particle energy values because energy
levels are involved in the particle system reaching equilibrium,
and hence termination. Following Huang’s example, we color
energy along a continuum between blue and red, with blue
representing no energy and red representing high energy, as is
shown in Figure 2. The middle of the range, is the desired energy
level for the system. So over the lifetime of the particle system
the color of the particles should shift from blues and reds to a
uniform purple. Because the energy range is artificially limited
and the range can greatly exceed the specified maximum, we
distinguish particles whose energy values are far outside the range
by coloring them green.

Figure 3: Particles colored by particle type.

Sometimes it is useful to color particles based on their types
because particle type can change over the course of time. Then
particle type transitions can be monitored and particle behaviors
can be compared against types. When particles are colored by
type, interior particles are colored blue, edge particles are red,
corner particles (where more than one edge subtype intersect) are
green, and ghost particles (similar to edges, but based on
processor boundaries instead of a volume boundaries) are colored
cyan.

Figure 4: Particles colored by the ratio of repulsion
radius to desired repulsion radius.

Each particle’s size (repulsion radius) is calculated using a
feedback equation that combines a curvature-based desired

repulsion radius with the population pressures in the local
neighborhood of the particle. Over time, we want the ratio of
repulsion radius to desired repulsion radius to approach one. To
get some idea of the number and location of particles that are
approaching this ratio at various times during the evolution of the
system, we created a particle coloration type based on this ratio.
The ratio range from .5 to 1.5 is mapped into the blue to red color
range so that the ideal ratio falls in the middle (purple). Particles
whose ratios are less than .5 are colored yellow, and particles
whose ratios are greater than 1.5 are colored green. This way,
particles whose size is outside the expected range are highlighted
and yet distinguishable as to whether their ratio is high or low.

Figure 5: Particles colored by the number of neighbor links.

Another attribute of great interest is the number of neighbors
for each particle. Much of the tuning of our particle system
involved identifying how to keep the number of neighbor links
low, while still preserving sufficient connectivity between
particles to obtain good triangulations. Although the information
is contained in the neighbor links, the number of particles
combined with the difficulty of discerning in three-dimensions
which links originated from which particles made another
approach necessary. It is much simpler to color the particles
based on the number of neighbors. Because the ideal number of
neighbors is 6, we map the range from 0 to 12 into the blue to red
color range. Particles with 6 neighbors are colored purple.
Particles with neighbor counts in the range from 13 to 50 are
colored yellow, and particles with more than 50 neighbors are
colored green.

Figure 6: Particles colored by time steps since birth.

In adjusting birth/death parameters, we found that the sheer
number of particles often makes it difficult to discern which
particles have just been born, and which particles are older.
Because the particle identifiers are assigned in counting order, we
can keep track of the maximum particle identifier at a particular
step. We only find it useful to distinctly color the previous three
steps. Particles that have just been created are colored red.
Particles created in the previous time step are colored magenta.
Particles from the time step before last are purple, and all older
particles are colored blue.

3.4 Triangle Generation Order

Figure 7: Incremental triangle output.

During the debugging of this algorithm we sometimes would
end up with overlapping triangles or holes in the surface. In
tracking down the underlying causes for these errors, we made use
of an AVS rendering mode in which triangles are drawn outlined
in white. We combined this rendering style with our own option
to update the display of the triangulated surface after each section
of triangles is generated. This technique enabled us to watch the
triangulation evolve and to use the picking feature to identify
which particles were involved when mistakes are made. We could
then go back in the debugger and step through the triangulation
code to the point when the erroneous triangles were created. This
proved to be extremely useful in debugging the triangulation
code.

4 RESULTS AND CONCLUSION
As visualization systems have evolved, the difficulties of

debugging visualization codes have increased. In this paper, we
examined a particular particle system visualization. While writing
the code, we found that we had underestimated the difficulties
inherent in implementing and working with complex dynamic
systems of this sort. These complexities led to our development
of a set of visual debugging methods.

As a result of this work we have reached three conclusions.
First, for the very same reasons we develop visualization methods
for extracting information from data, we should see visualization
as a way of extracting information about our software systems.

Second, visual debugging tools must be application specific.
Third, incrementally adding visual debugging functionality to our
code showed us exactly what we needed to see and was simpler
and faster to implement than trying to learn to use existing visual
debugging systems.

5 ACKNOWLEDGEMENTS
The DOE Mathematics, Information, and Computer Science

Office funded this research. The work was performed at Sandia
National Laboratories. Sandia is a multi-program laboratory
operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract DE-
AC04-94AL85000. The use of AVS in this work is not a product
endorsement by Sandia National Laboratories.

REFERENCES
[1] Bosson, F. Anisotropic Mesh Generation with Particles.

Masters Thesis, Carnegie Mellon University, 1996.
[2] Brown, M. Exploring Algorithms Using Balsa-II. Computer, 21

(5): 14-36. May 1988.
[3] Crossno, P. and E. Angel. Isosurface Extraction Using Particle

Systems. Proceedings of Visualization ’97, pages 495-498.
October 1997.

[4] Fournier, A. and W. Reeves. A Simple Model of Ocean Waves.
Computer Graphics (SIGGRAPH 86 Conference Proceedings),
20 (4): 75-84. August 1986.

[5] Huang, M., et al. Untangling Knots by Stochastic Energy
Optimization. Proceedings of Visualization ’96, pages 279-286.
October 1996.

[6] Price, B., et al. A Principled Taxonomy of Software
Visualization. Journal of Visual Languages and Computing,
4(3): 211-266. September 1993.

[7] Reeves, W. and R. Blau. Approximate and Probabilistic
Algorithms for Shading and Rendering Structured Particle
Systems. Computer Graphics (SIGGRAPH 85 Conference
Proceedings), 19 (3): 313-322. July 1985.

[8] Reeves, W. Particle Systems – A Technique for Modeling a
Class of Fuzzy Objects. Computer Graphics (SIGGRAPH 83
Conference Proceedings), 17 (3): 359-376. July 1983.

[9] Reynolds, C. Flocks, Herds, and Schools: A Distributed
Behavioral Model. Computer Graphics (SIGGRAPH 87
Conference Proceedings), 21 (4): 25-34. July 1987.

[10] Shimada, K. Anisotropic Triangular Meshing of Parametric
Surfaces via Close Packing of Ellipsoidal Bubbles. 6th

International Meshing Roundtable. 1997.
[11] Sims, K. Particle Animation and Rendering Using Data Parallel

Computation. Computer Graphics (SIGGRAPH 90 Conference
Proceedings), 24 (4): 405-413. August 1990.

[12] Smith, A. Plants, Fractals, and Formal Languages. Computer
Graphics (SIGGRAPH 843 Conference Proceedings), 18 (3): 1-
10. July 1984.

[13] Stasko, J. Tango: A Framework and System for Algorithm
Animation. Computer, 23 (9): 27-39. September 1990.

[14] Szeliski, R. and D. Tonnesen. Surface Modeling with Oriented
Particle Systems. Computer Graphics (SIGGRAPH 92
Conference Proceedings), 26 (2): 185-194. July 1992.

[15] Tal, A. and D. Dobkin. Visualization of Geometric Algorithms.
IEEE Transactions on Visualization and Computer Graphics, 1
(2): 194-204. June 1995.

[16] Witkin, A. and P. Heckbert. Using Particles to Sample and
Control Implicit Surfaces. Computer Graphics Proceedings,
Annual Conference Series 1994. 269-277. 1994.

[17] Wolfenbarger, P. et al. A Global Minimization-Based,
Automatic Quadrilateral Meshing Algorithm. 7th International
Meshing Roundtable. 1998.

