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ABSTRACT
We present a new approach to isosurface extraction from

volume data using particle systems. Particle behavior is dynamic
and can be based on laws of physics or artificial rules. For
isosurface extraction, we program particles to be attracted
towards a specific surface value while simultaneously repelli ng
adjacent particles.  The repulsive forces are based on the
curvature of the surface at that location. A birth-death process
results in a denser concentration of particles in areas of high
curvature and sparser populations in areas of lower curvature.
The overall l evel of detail i s controlled through a scaling factor
that increases or decreases the repulsive forces of the particles.
Once particles reach equili brium, their locations are used as
vertices in generating a triangular mesh of the surface.

Advantages of our approach include: vertex densities are based
on surface features rather than on the sampling rate of the
volume; a single scaling factor simpli fies level of detail control;
meshing is eff icient because it uses neighbor information that has
already been generated during the force calculations.

1. INTRODUCTION
Isosurface extraction produces a geometric model representing

a subset of volume data. For a number of years, the marching
cubes algorithm [2] has been the conventional method used to
generate surface models from volume data. However, it suffers
from the drawback that it generates a large number of triangles,
many of which do not contribute relevant detail to the resulting
model.  Rendering time increases with model size. This problem
has led to data reduction schemes such as triangle decimation
[6], and retili ng polygonal surfaces [8].  These algorithms seek to
keep greater numbers of triangles in those regions of the model
that have sharp edges or high degrees of curvature while
reducing the number of triangles in flatter regions.
Unfortunately, a great deal of work is expended in building up a
polygonal model, much of which ends up being discarded.

We sought to develop a new approach to finding isosurfaces
that would concentrate vertices in areas of high curvature as an
intrinsic part of the model construction process.  We chose to use
particle systems as the basis for our new algorithm.  The
literature contains a number of relevant papers.

Szeli ski and Tonneson combined deformable surface modeling
and oriented particle systems to model free-form surfaces [7].
Figueiredo et al. modeled impli cit surfaces using a particle
repulsion approach combined with Delaunay triangulation [1].
Pang applied particle systems and behavioral animation to
scientific visuali zation via the metaphor of a spray can as the
user interface for “painting” volume data sets with different
particle types [3][4]. Witkin and Heckbert used particle systems
to display and interactively “sculpt” impli cit surface models [9].
In their adaptive repulsion scheme, each particle has its own
repulsion radius and decides individuall y whether to split or die.

Although our work was originall y based on Witkin and
Heckbert’ s, it differs from theirs in a number of respects.  Like
Figueiredo they modeled impli cit surfaces for which they have
analyticall y defined functions.  We do not know the underlying
functions that we are trying to model.  We have only sampled
data and must approximate function values and derivatives.  We
are limited by the domain of the volume data set and must
constrain particles to remain within certain coordinates. We have
differentiated the particles that move along volume boundaries

from those that move in the interior.  Interactive manipulation of
the model is not of interest, so we have no control points.

Witkin and Heckbert used a uniform distribution of particles
and an O (n2) calculation in evaluating repulsion forces between
particles. In our system, we have adapted Witkin and Heckbert’ s
birth/death scheme to accommodate a nonuniform distribution of
particles by having each particle seek and maintain its own
desired repulsion radius, rather than some global value.  The
desired repulsion radius, and hence particle density, is based on
local curvature estimates multiplied by a scaling factor. This
enables us to easil y control the level of detail i n the model.

After a model is created, we can change the level of detail by
adjusting the scaling factor and allowing the existing particles to
redistribute themselves based on the new density level.  We use
a hybrid 3D bin and distance-ordered li st scheme to reduce the
repulsion force calculations to a local neighborhood around each
particle. Surface normals are used to identify disjoint particles.
Once equili brium is reached, the neighborhood li sts are used to
reduce the search space needed in triangulating the points.

Here is a pseudo-code description of our algorithm:
Read Volume Data Set
Calculate Gradients at All Sample Points
Initialize Particles
Create Neighbor Web
Repeat Until Particles Reach Equilibrium

Split or Kill Particles
Update Web Connections
Compute Repulsion Forces
Adjust Repulsion Radii
Adjust Bin Size
Calculate Velocities
Update Particle Positions
Update Desired Repulsion Radii

Triangulate
In this paper we use the following notational conventions.

Vectors appear in bold face type, scalars and functions in itali cs.
Partial differentiation is denoted by subscripts.  Superscripts of i
or j denote members of a collection of objects, whereas other
superscripts are exponents.  A dot over a letter indicates a
derivative with respect to time.

2. SYSTEM INITIALIZATION
An isosurface is defined to be all the points in the volume that

are equal to some selected value, which we will refer to as the
surface value, s.  It is assumed that although none of the sample
points may exactly equal s, if there are values above and below s,
the underlying function must equal s somewhere in between.
Since we do not know the underlying function, we use trili near
interpolation between the eight neighboring sample points (those
forming the nearest cube around the particle location) to obtain
an approximation of the function at that location.  We define our
surface as F (x) = G (x) - s = 0, where G (x) is the interpolated
value at the location specified by x.  We subtract s from G (x) to
provide the functional evaluation at a point, iF .

When the volume data is read in, we estimate the gradient at
each sample point using central differences. Later, these vectors
are trili nearly interpolated component-by-component using the
eight neighboring gradients whenever the normal or derivative at
a point, iFx , is required. Boundary checking must be done to
insure that particles are not outside the volume domain before
estimating iF  or iFx .



The number and placement of particles at startup is calculated
while computing the gradients at the sample points. A particle is
placed between any adjacent samples whose values are on
opposite sides of the surface value.  The particle location is
found by li near interpolation between the samples.  In this way
we guarantee that all of the disconnected components (that are
within a voxel in size) contain a seed point.  However, the
density of the particle placement is based on the sampling rate of
the volume data set, rather than the local curvature of the
surface. At this point, all of the particles have the same radius of
repulsion and are sorted into a three-dimensional lattice of bins.
The bin dimensions are initi ali zed to twice the initi al radius of
repulsion.  As the particles redistribute themselves based on the
repulsive forces between them, the radii of repulsion will be
graduall y adjusted based on the local surface curvature and the
local particle population.

3. CALCULATING REPULSION FORCES
The repulsive force on a particular particle by all of its

neighbors, iP , is defined as:
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where ) i is the repulsion radius of particle i, ) j is the repulsion
radius of particle j, ijr is the vector between particles i and j,

ijE  is the energy of particle i due to particle j, and jiE  is the
energy of particle j due to particle i.  This definiti on is essentiall y
the same as used by Witkin and Heckbert [9], though we have
changed the meaning of n from all of the particles in the system
to the number of particles in a limited region around particle,
thus avoiding an O (n2) force calculation. The energy term is also
from Witkin and Heckbert and consists of the Gaussian
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where α  is a global constant for repulsion amplitude. Typicall y
) i ≠ ) j and thus ijE  is generall y not equal to jiE .

Ideall y, each of a bin’s three dimensions is close to the size of
a particle’s spherical repulsion diameter, 2σ.  Then if the particle
is positioned anywhere within the bin, its repulsive range never
extends beyond the 3x3x3 block of bins centered on the bin
containing the particle.  This scheme limits the number of
particles that are checked during the repulsion force calculation
to just those particles that are in the block of twenty-seven bins
centered about that particle. This works well so long as the radii
of repulsion are fairly uniform.  However, once curvature-based
repulsion is started, bin size must be adjusted to keep up with
the largest radius in the system.  Otherwise, adjacent particles
are not seen and a particle’s radius can grow very large due to
the lack of forces acting on it.  But increasing bin size reduces
the eff iciency of the system in handling smaller particles since
large numbers of particles may then share the same bin.

Another diff iculty with the bin scheme is that particles that
share a bin but are on physicall y disconnected components will
interact with one another.  Instead, we want only particles on the
same surface to be included in the repulsion force calculations
for one another.  We determine whether two particles are on the
same surface by comparing the normals.  If the normals differ by
more than 90 degrees, the particles are assumed to either be on a
disconnected component, or to li e on a fold of the same surface
that is not directly connected.  The bin scheme does not facilit ate
storing these distinctions in the neighbor relationships.

Our solution is to use a li nked li st of neighbors (ordered by
distance) for each particle, while still retaining the bins.  In
combination, these li sts form a web of proximity relationships for

each disconnected component of the surface. Because the energy
from a particular particle drops off rapidly with distance, only
particles within a limited region around a particle are included in
that particle’s neighborhood li st.

Initi all y, each particle’s li st is created by searching the block
of twenty-seven bins.  Particle j is included in particle i ’ s
neighbor li st if the distance between the two particles is less than
two times the radius of repulsion of the largest of the two
particles and the angle between the normals of the particles is
less than ninety degrees.

Later, with every iteration, neighboring particles’ neighbor
li sts are searched for particles that have moved into range.  Once
these new particles have been added to the li st and the distances
of the earlier neighbors updated, the end of the li st is examined
for the removal of particles that have drifted out of range. We are
seeking a hexagonal packing to equali ze the aspect ratio of
triangles in the resulting triangulation, so if the li st contains less
than six neighbors, it is left alone.  Beyond the six, we remove
only those particles that are out of range.  If there are less than
three neighbors, the bins are searched.  Early on, there are
typicall y large numbers of deaths among particles in areas of low
curvature, leaving particles isolated and disconnected from
neighboring web sections.  By keeping the bins, we are able to
find neighbors later on when the particle’s radius of repulsion
has grown suff iciently to bring them into range.

4. PARTICLE DENSITY
The use of a changeable radius of repulsion and a birth-death

process allows us to balance between local issues such as
distributing particles in a region and global issues such as
achieving a desired overall density. For a uniform distribution of
particles across the surface, all of the particles in the system
would seek to reach a common radius of repulsion defined as a
single global parameter, σ̂ .  This radius of repulsion would be
achieved by all of the particles when the system reaches
equili brium. If a particle is near equili brium and its radius of
repulsion exceeds the desired repulsion radius, it will split .  If a
particle is near equili brium and its radius of repulsion is less
than some fraction of the desired repulsion radius, it will die.

We prefer a nonuniform particle distribution, so that we can
concentrate particles in areas where there is high curvature. For
there to be a nonuniform particle distribution, each particle must
have its own desired repulsion radius, iσ̂ , which can be
independently adjusted based on the curvature of the local
surface. We initi all y set each particle’s desired repulsion radius
to the same value.  Then the desired repulsion radius for each
particle is graduall y changed to one based on the (estimated)
curvature of the surface at that point.
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Figure 1: Coordinates tangent to surface at particle position.

Curvature can be thought of as the radius of the largest sphere
that will fit against the surface at the particle’s position without



passing through the surface at any other point [8]. Note that the
curvature has an inverse relationship with the size of the sphere,
so that regions of high curvature fit only small spheres, and
regions of low curvature fit large spheres.  In order to estimate
the curvature for each particle (assumed to be on an isosurface),
we construct a coordinate system tangent to the estimated surface
at the position of the particle, as shown in Figure 1.

We normali ze iFx  to be a unit vector, n.  Then we rotate n to
form a set of orthonormal coordinate axes, u and v, in the plane
tangent to the surface at the particle’s position.  In the figure, the
particle is the gray point at the center of the n, u, v axes.
Additional derivatives are taken at positions that are plus and
minus a small distance � from the particle position along u, v,
and both diagonals between u and v (shown as small black dots
in Figure 1). After the derivatives are normali zed, the dot
product is computed between each of them and n. The minimum
of these dot products is saved.
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Figure 2: Calculating the radius of repulsion.

In Figure 2, the tangent plane and the surface are viewed in
cross section.  We take the arccosine of the minimum of the dot
products to derive the angle, θ , between n and the normali zed
derivative.  This angle is then used to compute the radius, r, of
the smallest inscribed sphere:

e)tan/(r += θε
The estimated curvature is set to the natural log of r - 1.  The

natural log is used as a scaling mechanism to prevent the radius
from becoming infinitely large in the case of a flat surface.
However, for input values of less than one, the natural log
returns a negative value, which is unacceptable for a desired
repulsion radius.  Consequently, we add e to r prior to taking the
log. We subtract out one from the curvature to shift the section of
the logarithmic curve to one with a smaller slope.

The change in the desired repulsion radius is calculated as
iσ̂� = − ( iσ̂ − ci), where for particle i, iσ̂�  is the change in the

desired repulsion radius, iσ̂  is the current desired repulsion
radius, and ci is the curvature at particle i ’ s current position.

The desired repulsion radius should always have some
minimal value.  Therefore, the potential new desired repulsion
radius is checked against a minimum value before permitting the
update to occur.  If the update would make the desired repulsion
radius too small , the update is not done.  Otherwise, the desired
repulsion radius is updated using Euler’ s method:
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5. PARTICLE MOVEMENT
We compute particle velocity using a modification of the

velocity equation in Witkin and Heckbert  [9]:

( ) ( ) i
ii

iii
ii F

FF

FtF
t x

xx

x P
Pp

⋅
+⋅−= φ�

where iP  is the sum of the repulsive forces on particle i, iFx  is
the normal or derivative of the unknown function F (x) at the

current location of particle i, iF  is the value of F (x) at particle
i, and φ (t) is a feedback coeff icient that increases with time.

 Particle movement is calculated using an adaptive step-size
embedded fourth-order Runge-Kutta solver for accuracy and
stabilit y [5].   Instead of treating the entire particle system as a
unit, we operate on each particle independently, with each one
maintaining its own step-size variable.  This choice permits us to
take smaller steps in areas of high curvature and larger steps
elsewhere.  Also, we can treat particles on volume boundaries
differently from interior particles by zeroing out the velocity
components that would take them outside the volume domain.
Particle positions are not updated until new positions for all
particles have been calculated.  Also, repulsion forces are
calculated for every particle prior to calculating any velocities.

However, once we added the adaptive step-size solver, we
found that if we kept particles very close to the surface, they lost
mobilit y.  Particle mobilit y is fundamental to achieving a good
distribution.  Yet, if we allowed suff icient error tolerances to
ensure mobilit y, then particles would jitter back and forth after
they reached the desired distribution. Jittering made termination
a problem since the size of the steps taken were large enough to
be indistinguishable from valid movement during distribution.
Termination is evaluated by monitoring the changes in radii of
repulsion, particle position, and particle population.  If the
changes are less than some small amount, we consider
equili brium has been reached.

 By modifying the feedback coeff icient to change over time, we
produce a damping effect on particle motion and eliminate
jittering. Increasing φ (t) increases the particle’s movement
toward the surface along the normal and decreases movement in
the direction the particle is being pushed by the repulsive forces.
We tried a variety of functions for φ (t), but found that simply
incrementing φ (t) with each step of the simulation worked best.

6. TRIANGULATION
Given that for each particle we have a neighbor li st sorted by

distance and distinguishing between disconnected components,
we decided to develop our own triangulation algorithm to
capitali ze on this information.  We start with a particle and its
nearest neighbor.  We create an edge li st with the edge between
the two points.  Using one of the particles as pivot vertex, we
sort all of the neighboring particles by angle into a ring around it.
We have a beginning and ending angle based on the edges
leading to and from the pivot point.  With the first pivot point the
ending angle is 2π.

Then we evaluate ring vertices for removal by looking at each
one’s placement with respect to the two adjacent vertices in the
ring.  If the vertex considered for removal fall s inside the triangle
formed by its neighbors and the pivot vertex, it must be kept.
Otherwise, the aspect ratios of the alternative triangulations with
and without the current ring vertex are evaluated.  The
alternative with the higher aspect ratio is selected.  Once the
entire ring has been evaluated, the pivot vertex is used to
triangulate the ring in a star configuration and the outside edges
of the star are substituted into the edge li st for the two edges
touching the pivot vertex. As each remaining ring particle is used
in the triangulation, it is marked as “used” .  After triangulation,
pivot vertices are marked as “done”, since once encircled, no
further triangles can use them. Then a new pivot vertex is
selected from the edge li st by traversing it counterclockwise.

Whenever the surface encounters a volume boundary, a
different kind of edge element is used to distinguish it.  These
are not removed from the li st until all of the interior edges have
been removed.  Then the edge li st is freed and a new one begun
using an “unused” particle.  The bins are systematicall y searched
for a starting particle for a new edge li st.  Once all particles have
been used, triangulation is complete.



7. RESULTS
In Figures 4 through 6 in the color plate, we present three

examples of the results of our algorithm compared with the
output from our own implementation of Marching Cubes
combined with triangle decimation. In each case, we used the
combination of decimation parameters (distance to plane,
distance to edge, feature angle, and aspect ratio) that reduced the
number of vertices in the Marching Cubes surface to closely
match the number of vertices in the particle system surface.  In
this way, a fair comparison can be made of how the two methods
distribute a similar numbers of points.  The vertex and triangle
counts for each figure are given in Table 1. Note that because of
the way decimation parameters work, it is diff icult to control
both the number of vertices and the aspect ratio of the triangles.

In each figure, (a) shows the surfaces rendered with the
triangles outli ned in white and (b) shows the surfaces rendered
using Gouraud shading.  The Marching Cubes outputs are
colored pink, and the particle system outputs are colored red.

In Figure 4, we show the results of running the particle system
over a 323 volume generated from a function.  It is a hyperboloid
of two sheets in which the separation between the lobes occurs
within a single cell . This provides a test case where particles
have close spatial proximity, but belong on disjoint components.
Although both methods correctly separate the sheets, notice that
our method concentrates a greater number of points near the tip,
producing smoother curves in both sheets near the point of
separation.  The Marching Cubes example displays noticeable
artifacts both in the tip of the larger sheet and in the flattening of
the lobe on the other side.

In Figure 5, the two methods are compared on a 643 volume
data set that is a single time step of a simulation of a blast wave
hitti ng a barrier. This example demonstrates how our method
handles sharp corners.  We view it from this angle to display the
sharpness of the ridges at the bottom of the curl.  In (a), the sizes
of the triangles in this region are so small that they appear as a
mass of white.  In (b), this concentration of points results in a
sharp clean ridge in the surface created by our particle system.
The Marching Cubes surface displays artifacts in this region.

In Figure 6, we present the results from a 643 volume data set
of a hydrogen atom.  We included this data set to demonstrate the
effect of different surface curvatures on particle density
distribution. In the particle system example, the concentration of
particles on the ring contrasts with the more sparsely populated
ball s and clearly shows the curvature-based repulsion radii at
work.  Notice the smoothness of the ring compared to the
squared edges of the ring in the Marching Cubes example.  Also,
the points on the two ball s of the model are smoothly distributed
using our method, whereas decimation tends to clump the points.
The particle system produces a smoother surface.

8. CONCLUSION AND FUTURE WORK
We have shown that particle systems provide an alternate

method for extracting isosurfaces from volumetric data. The
principal advantage of this approach is that we directly generate
the desired vertex density concentrating particles in regions
where there is high curvature.  By building the model this way,
we are able to produce smoother surfaces with fewer artifacts

than decimated Marching Cubes. This advantage is even more
pronounced when the level of detail i s reduced.

Another advantage of our approach is that the scaling factor
provides a simple means of controlli ng the level of detail that
preserves good aspect ratios in the resulting triangulation.
Changes in the scaling factor do not require recalculation of the
surface from scratch.  Instead the system starts from the current
particle configuration and adjusts the repulsive forces between
particles over several iterations. The particles redistribute
themselves and adjust their population to accommodate the
increase or decrease in density that is required.

There are many possible directions to take this work now.
Because particle systems are inherently parallel, we can easil y
paralleli ze our algorithm to run in a massively parallel
environment.  Due to the object-oriented approach we used in
our implementation of the particle system, extending it to operate
on irregular grids would only require replacing the code that
evaluates iF  and iFx .  Or perhaps the evaluations of iF  and

iFx  could be modified to interact with multiple volumes
simultaneously so that surfaces representing the intersection or
union of surfaces could be generated.  It would also be good to be
able to quantify the differences between the surfaces generated
by Marching Cubes and our method using some sort of error
measure from a known surface.
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Figure Marching Cubes & Decimation Particle System (Scale Factor = 1)
Vertices Triangles Vertices Triangles

Fig 4: Hyperboloid 350 660 354 619
Fig 5: Blast Wave 2070 4055 2180 4292
Fig 6: Hydrogen 1787 3566 1780 3546

Table 1: Vertex and triangle counts for Figures 4 through 6.




