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ABSTRACT

We present a new approach to isosurface extraction from
volume data using particle systems. Particle behavior is dynamic
and can be based on laws of physics or artificia rules. For
isosurface etraction, we program particles to be atracted
towards a specific surface value while simultaneously repelling
adjacent particles. The repulsive forces are based on the
curvature of the surface & that location. A birth-deah process
results in a denser concentration of particles in aress of high
curvature and sparser populations in aress of lower curvature.
The overall level of detail is controlled through a scaling factor
that increases or decreases the repulsive forces of the particles.
Once particles reach equilibrium, their locations are used as
vertices in generating a triangular mesh of the surface.

Advantages of our approach include: vertex densities are based
on surface fedures rather than on the sampling rate of the
volume; a single scaling factor simplifies level of detail contral;
meshing is efficient because it uses neighbor information that has
arealy been generated during the force calculations.

1. INTRODUCTION

Isosurface extraction produces a geometric model representing
a subset of volume data. For a number of yeas, the marching
cubes algarithm [2] has been the conventional method used to
generate surface models from volume data. However, it suffers
from the drawback that it generates a large number of triangles,
many of which do not contribute relevant detail to the resulting
model. Rendering time increases with model size. This problem
has led to data reduction schemes auch as triangle decimation
[6], and retili ng polygonal surfaces [8]. These dgarithms ®ek to
keep greaer numbers of triangles in those regions of the model
that have sharp edges or high degrees of curvature while
reducing the number of triangles in flatter regions.
Unfortunately, a grea ded of work is expended in bulding up a
polygonal model, much of which ends up being discarded.

We sought to develop a new approach to finding isosurfaces
that would concentrate vertices in areas of high curvature @& an
intrinsic part of the model construction process We chose to use
particle systems as the basis for our new algaithm. The
literature contains a number of relevant papers.

Szeliski and Tonneson combined deformable surface modeling
and oriented particle systems to model freeform surfaces [7].
Figueiredo et a. modeled implicit surfaces using a particle
repulsion approach combined with Delaunay triangulation [1].
Pang applied particle systems and bkehavioral animation to
scientific visualization via the metaphor of a spray can as the
user interface for “painting” volume data sets with dfferent
particle types [3][4]. Witkin and Heckbert used particle systems
to display and interactively “sculpt” implicit surface models [9].
In their adaptive repulsion scheme, each particle has its own
repulsion radius and cecides individually whether to split or die.

Although our work was originaly based on Witkin and
Heckbert's, it differs from theirs in a number of respects. Like
Figueiredo they modeled implicit surfaces for which they have
analytically defined functions. We do not know the underlying
functions that we ae trying to model. We have only sampled
data and must approximate function values and cerivatives. We
are limited by the domain of the volume data set and must
constrain particles to remain within certain coordinates. We have
differentiated the particles that move dong vdume boundaries
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from those that move in the interior. Interactive manipulation of
the model is not of interest, so we have no control points.

Witkin and Heckbert used a uniform distribution of particles
and an O (n®) calculation in evaluating repulsion forces between
particles. In our system, we have alapted Witkin and Heckbert's
birth/deeh scheme to accommodate anonuriform distribution of
particles by having each particle seek and maintain its own
desired repulsion radius, rather than some global value. The
desired repulsion radius, and hence particle density, is based on
local curvature estimates multiplied by a scaling factor. This
enables us to easily control the level of detail i n the model.

After amodel is creaed, we can change the level of detail by
adjusting the scaling factor and all owing the existing particles to
redistribute themselves based on the new density level. We use
a hybrid 3D bin and dstance-ordered list scheme to reduce the
repulsion force calculations to a local neighborhood around eech
particle. Surface normals are used to identify disjoint particles.
Once equili brium is reached, the neighborhoad lists are used to
reduce the search space needed in triangulating the points.

Here is a pseudo-code description of our algorithm:

Read Vol une Data Set

Cal cul ate Gradients at Al Sanple Points

Initialize Particles

Creat e Nei ghbor Wb

Repeat Until Particles Reach Equilibrium

Split or Kill Particles
Updat e Web Connecti ons

Conput e Repul si on Forces

Adj ust Repul si on Radii

Adj ust Bin Size

Cal cul ate Velocities

Update Particle Positions
Updat e Desired Repul sion Radii

Tri angul ate

In this paper we use the following notational conventions.
Vectors appea in bold face type, scalars and functions in italics.
Partial differentiation is denoted by subscripts. Superscripts of i
or j denote members of a collection of objects, whereas other
superscripts are exponents. A dot over a letter indicates a
derivative with respect to time.

2. SYSTEM INITIALIZATION

An isosurface is defined to be dl the points in the volume that
are ejual to some selected value, which we will refer to as the
surface value, s. It is assumed that although none of the sample
points may exactly equal s, if there ae values above and below s,
the underlying function must equal s somewhere in between.
Since we do not know the underlying function, we use trili nea
interpolation between the aght neighboring sample points (those
forming the nearest cube aound the particle location) to dbtain
an approximation of the function at that location. We define our
surface & F (X) = G (X) - s= 0, where G (X) is the interpolated
value & the location specified by x. We subtract s from G (x) to
provide the functional evaluation at apoint, F'.

When the volume data is read in, we estimate the gradient at
each sample point using central differences. Later, these vectors
are trilinealy interpolated component-by-component using the
eight neighboring gradients whenever the normal or derivative &
a point, F{, is required. Boundary checking must be done to
insure that particles are not outside the volume domain before
estimating F' or F .



The number and dacement of particles at startup is calculated
whil e computing the gradients at the sample points. A particle is
placed between any adjacent samples whose values are on
opposite sides of the surface value. The particle location is
found ly linea interpolation between the samples. In this way
we guarantee that all of the disconnected components (that are
within a voxel in size) contain a seed point. However, the
density of the particle placement is based on the sampling rate of
the volume data set, rather than the local curvature of the
surface. At this paint, all of the particles have the same radius of
repulsion and are sorted into a threedimensional lattice of bins.
The bin dmensions are initialized to twice the initia radius of
repulsion. As the particles redistribute themselves based on the
repulsive forces between them, the radii of repulsion will be
gradually adjusted based on the local surface curvature and the
local particle population.

3. CALCULATING REPULSION FORCES

The repulsive force on a particular particle by al of its
neighbors, P', isdefined as:

Pi=(o Hr' Eil +
PR

where ¢' is the repulsion radius of particlei, o’ is the repulsion
radius of particle j, rYis the vector between perticles i and j,
E' isthe energy of particle i due to particle j, and E! is the
energy of particlej dueto particlei. Thisdefinition is essentialy
the same & used by Witkin and Heckbert [9], though we have
changed the meaning o n from al of the particles in the system
to the number of partlcles in a limited region around partlcle
thus avoiding an O (n®) force calculation. The energy term is also
from Witkin and Heckbert and consists of the Gausdan
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where a isaglobal constant for repulsion amplitude. Typically
o' # ol andthus E! isgeneraly not equal to EN.

Idedly, each of abin’s threedimensions is close to the size of
aparticle's pherical repulsion dameter, 20. Then if the particle
is positioned anywhere within the bin, its repulsive range never
extends beyond the 3x3x3 Hock of bins centered on the bin
containing the particle. This <heme limits the number of
particles that are checked during the repulsion force calculation
to just those particles that are in the block of twenty-seven hins
centered about that particle. This works well so long as the radii
of repulsion are fairly uniform. However, once curvature-based
repulsion is garted, bin size must be ajusted to kegy up with
the largest radius in the system. Otherwise, adjacent particles
are not seen and a particle’s radius can grow very large due to
the lack of forces acting on it. But increasing bin size reduces
the dficiency of the system in handing smaller particles snce
large numbers of particles may then share the same bin.

Ancther difficulty with the bin scheme is that particles that
share abin bu are on physically disconnected components will
interact with one another. Instead, we want only particles on the
same surface to be included in the repulsion force calculations
for one another. We determine whether two particles are on the
same surface by comparing the normals. If the normals differ by
more than 90 degress, the particles are assumed to either be on a
disconnected component, or to lie on a fold of the same surface
that is not directly connected. The bin scheme does not facilit ate
storing these distinctions in the neighbor relationships.

Our solution is to use alinked list of neighbors (ordered by
distance) for each particle, while still retaining the bins. In
combination, these lists form aweb of proximity relationships for

each disconnected component of the surface. Because the energy
from a particular particle drops off rapidly with distance, only
particles within a limited region around a particle ae included in
that particle’s neighborhoaod li st.

Initially, each particle’s list is creaed by seaching the block
of twenty-seven hins. Particle j is included in particle i's
neighbor list if the distance between the two particles is lessthan
two times the radius of repulsion of the largest of the two
particles and the angle between the normals of the particles is
lessthan ninety degrees.

Later, with every iteration, neighboring particles’ neighbor
lists are searched for particles that have moved into range. Once
these new particles have been added to the list and the distances
of the ealier neighbors updated, the end of the list is examined
for the removal of particles that have drifted out of range. We ae
seeking a hexagonal packing to equalize the aspect ratio of
triangles in the resulting triangulation, so if the list contains less
than six neighbors, it is left alone. Beyond the six, we remove
only those particles that are out of range. If there ae lessthan
three neighbors, the bins are seached. Early on, there ae
typicaly large numbers of deahs among particles in areas of low
curvature, leasing particles isolated and dsconnected from
neighboring web sections. By keeping the bins, we ae ale to
find reighbors later on when the particle’'s radius of repulsion
has grown sufficiently to bring them into range.

4. PARTICLE DENSITY

The use of a changeable radius of repulsion and a birth-deah
process alows us to balance between local issuues such as
distributing particles in a region and global issies such as
achieving a desired overall density. For a uniform distribution of
particles across the surface, al of the particles in the system
would seek to reach a common radius of repulsion defined as a
single global parameter,d . This radius of repulsion would be
achieved by al of the partices when the system reaches
equili brium. If a particle is nea equili brium and its radius of
repulsion exceeds the desired repulsion radius, it will split. If a
particle is nea equili brium and its radius of repulsion is less
than some fraction of the desired repulsion radius, it will die.

We prefer a nonuriform particle distribution, so that we can
concentrate particles in areas where there is high curvature. For
there to be anonuriform particle distribution, each particle must
have its own desired repulsion radius, &', which can be
independently adjusted based on the curvature of the local
surface. We initially set each particle’s desired repulsion radius
to the same value. Then the desired repulsion radius for each
particle is gradually changed to one based on the (estimated)
curvature of the surface & that point.
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Figure 1: Coordinates tangent to surface at particle position.

Curvature can be thought of as the radius of the largest sphere
that will fit against the surface & the particle’s position without



passng through the surface & any other point [8]. Note that the
curvature has an inverse relationship with the size of the sphere,
so that regions of high curvature fit only small spheres, and
regions of low curvature fit large spheres. In order to estimate
the curvature for each particle (asumed to be on an isosurface),
we construct a coordinate system tangent to the estimated surface
at the position of the particle, as shown in Figure 1.

We normalize F! to be aunit vector, n. Then we rotate n to
form a set of orthonormal coordinate aes, u and v, in the plane
tangent to the surface & the particle’'s position. In the figure, the
particle is the gray point at the center of the n, u, v axes.
Additional derivatives are taken at positions that are plus and
minus a small distance € from the particle position along u, v,
and hoth dagonals between u and v (shown as small black dots
in Figure 1). After the derivatives are normalized, the dot
product is computed between each of them and n. The minimum
of these dot productsis saved.
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Figure 2: Calculating the radius of repulsion.

In Figure 2, the tangent plane and the surface ae viewed in
cross €ction. We take the accosine of the minimum of the dot
products to derive the agle, 8, between n and the normali zed
derivative. This angle is then used to compute the radius, r, of
the small est inscribed sphere:

r=(e/ltarg))+e

The estimated curvature is %t to the natural log d r - 1. The
natural logis used as a scaling mechanism to prevent the radius
from becoming infinitely large in the case of a flat surface.
However, for inpu values of less than one, the natural log
returns a negative value, which is unacceptable for a desired
repulsion radius. Consequently, we aldetor prior to taking the
log. We subtract out one from the curvature to shift the section of
the logarithmic aurve to ane with a small er slope.

The change in the desired repulsion radius is caculated as
o'= - (6'- '), where for particle i, &' is the change in the
desired repulsion radius, g' is the current desired repulsion
radius, and ¢' isthe curvature & particlei’s current positi on.

The desired repulsion radius sould aways have some
minimal value. Therefore, the potential new desired repulsion
radius is checked against a minimum value before permitting the
upckte to ocaur. If the update would make the desired repulsion
radius too small, the update is not done. Otherwise, the desired
repulsion radius is updated using Euler’ s method:

ot +at)=61(t)+Ato!

5. PARTICLE MOVEMENT

We compute particle velocity using a modification of the
velocity equation in Witkin and Heckbert [9]:
. : i i i
()= - B P A g
where P' isthe sum of the repulsive forces on particlei, Fi is
the normal or derivative of the unkrown function F (X) at the

current location of particlei, F' isthe vaue of F (X) at particle
i, and @(t) is afeedback coefficient that increases with time.

Particle movement is calculated using an adaptive step-size
embedded fourth-order Runge-Kutta solver for acauracy and
stability [5]. Instead of treaing the entire particle system as a
unit, we operate on each particle independently, with each one
maintaining its own step-size variable. This choice permits us to
take smaller steps in areas of high curvature and larger steps
elsewhere. Also, we can tred particles on volume boundaries
differently from interior particles by zeroing aut the velocity
components that would take them outside the volume domain.
Particle positions are not updated urtil new positions for all
particles have been calculated. Also, repulsion forces are
calculated for every particle prior to calculating any vel ociti es.

However, once we alded the alaptive step-size solver, we
foundthat if we kept particles very close to the surface, they lost
mobility. Particle mohility is fundamental to achieving a goad
distribution. Yet, if we dlowed sufficient error tolerances to
ensure mobility, then particles would jitter back and forth after
they reached the desired dstribution. Jittering made termination
a problem since the size of the steps taken were large enough to
be indistinguishable from valid movement during distribution.
Termination is evaluated by monitoring the changes in radii of
repulsion, particle position, and particle population. If the
changes are less than some smal amount, we consider
equili brium has been reached.

By modifying the feedback coefficient to change over time, we
produce a damping effect on particle motion and eliminate
jittering. Increasing @ (t) increases the particle’s movement
toward the surface dong the normal and decreases movement in
the direction the particle is being pushed by the repulsive forces.
We tried a variety of functions for ¢ (t), but found that simply
incrementing ¢(t) with each step of the simulation worked best.

6. TRIANGULATION

Given that for each particle we have aneighbor list sorted by
distance and dstinguishing between dsconnected components,
we decided to develop our own triangulation agorithm to
capitalize on this information. We start with a particle ad its
neaest neighbor. We creae an edge list with the edge between
the two points. Using ane of the particles as pivot vertex, we
sort al of the neighboring particles by angle into aring aroundit.
We have a beginning and ending angle based on the elges
leading to and from the pivot point. With the first pivot point the
ending angleis 2.

Then we evaluate ring vertices for removal by looking at each
one's placement with respect to the two adjacent vertices in the
ring. If the vertex considered for removal fall sinside the triangle
formed by its neighbors and the pivot vertex, it must be kept.
Otherwise, the aspect ratios of the dternative triangulations with
and without the current ring vertex are evaluated. The
aternative with the higher aspect ratio is slected. Once the
entire ring has been evaluated, the pivot vertex is used to
triangulate the ring in a star configuration and the outside edges
of the star are substituted into the elge list for the two edges
touching the pivot vertex. As each remaining ring particle is used
in the triangulation, it is marked as “used”. After triangulation,
pivot vertices are marked as “done”, since once encircled, no
further triangles can use them. Then a new pivot vertex is
selected from the edge list by traversing it counterclockwise.

Whenever the surface encounters a volume bouncary, a
different kind of edge dement is used to distinguish it. These
are not removed from the list urtil al of the interior edges have
been removed. Then the elge list is freed and a new one begun
using an “unwsed” particle. The bins are systematically seached
for a starting particle for anew edge list. Once dl particles have
been used, triangulation is complete.



Figure Marching Cubes & Decimation Particle System (Scale Factor = 1)
Vertices Triangles Vertices Triangles
Fig 4: Hyperboloid 350 660 354 619
Fig 5: Blast Wave 2070 4055 2180 4292
Fig 6: Hydrogen 1787 3566 1780 3546

Table 1: Vertex and triangle counts for Figures 4 through 6.

7. RESULTS

In Figures 4 through 6 in the color plate, we present three
examples of the results of our algorithm compared with the
output from our own implementation of Marching Cubes
combined with triangle decimation. In each case, we used the
combination of decimation parameters (distance to plane,
distance to edge, fedure angle, and aspect ratio) that reduced the
number of vertices in the Marching Cubes aurface to closely
match the number of vertices in the particle system surface. In
this way, a fair comparison can be made of how the two methods
distribute asimilar numbers of points. The vertex and triangle
courts for each figure ae given in Table 1. Note that because of
the way decimation parameters work, it is difficult to control
both the number of vertices and the aspect ratio o the triangles.

In each figure, (a) shows the surfaces rendered with the
triangles outlined in white and (b) shows the surfaces rendered
using Gouraud shading. The Marching Cubes outputs are
colored pink, and the particle system outputs are colored red.

In Figure 4, we show the results of running the particle system
over a 32 volume generated from a function. It is a hyperboloid
of two sheds in which the separation between the lobes ocaurs
within a single cell. This provides a test case where particles
have close spatial proximity, but belong an dsjoint components.
Although both methods correctly separate the shees, notice that
our method concentrates a greaer number of points nea the tip,
producing smoather curves in both sheds nea the point of
separation. The Marching Cubes example displays noticeable
artifacts both in the tip of the larger shee and in the flattening o
the Iobe on the other side.

In Figure 5, the two methods are compared on a 64° volume
data set that is a single time step of a ssmulation of a blast wave
hitting a barrier. This example demonstrates how our method
handles sharp corners. We view it from this angle to display the
sharpnessof the ridges at the bottom of the curl. In (a), the sizes
of the triangles in this region are so small that they appea as a
mass of white. In (b), this concentration of points results in a
sharp clean ridge in the surface creaed by our particle system.
The Marching Cubes surface displays artifacts in this region.

In Figure 6, we present the results from a 64° volume data set
of ahydrogen atom. We included this data set to demonstrate the
effect of different surface curvatures on particle density
distribution. In the particle system example, the concentration of
particles on the ring contrasts with the more sparsely popul ated
balls and clealy shows the curvature-based repulsion radii at
work. Notice the smoathness of the ring compared to the
squared edges of the ring in the Marching Cubes example. Also,
the points on the two ball s of the model are smoathly distributed
using aur method, whereas decimation tends to clump the points.
The particle system produces a smoather surface.

8. CONCLUSION AND FUTURE WORK

We have shown that particle systems provide an aternate
method for extracting isosurfaces from volumetric data. The
principal advantage of this approach is that we directly generate
the desired vertex density concentrating particles in regions
where there is high curvature. By building the model this way,
we ae ale to produce smoather surfaces with fewer artifacts

than decimated Marching Cubes. This advantage is even more
pronounced when the level of detail i s reduced.

Ancther advantage of our approach is that the scaling factor
provides a simple means of contralling the level of detail that
preserves goad aspect ratios in the resulting triangulation.
Changes in the scaling factor do not require recalculation of the
surface from scratch. Instead the system starts from the current
particle configuration and adjusts the repulsive forces between
particles over severa iterations. The particles redistribute
themselves and adjust their population to accommodate the
increase or decrease in density that isrequired.

There ae many possble directions to take this work now.
Because particle systems are inherently paralel, we can easily
paralelize our agorithm to run in a massvely parale
environment. Due to the object-oriented approach we used in
our implementation of the particle system, extending it to qperate
on irregular grids would only require replacing the code that
evaluates F' and F{. Or perhaps the evaluations of F' and
Ft could be modified to interact with multiple volumes
simultaneously so that surfaces representing the intersection or
union of surfaces could be generated. It would also be goad to be
able to quantify the differences between the surfaces generated
by Marching Cubes and our method using some sort of error
measure from a known surface.
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Figure 4(a): Hyperboloid of 2 sheets with outlined
tnangulation. Marching Cubes combined with
decimation is on the left in pink, and the particle
system triangulation is on the right in red.

Figure 5(a): Blast wave (viewed Figure 5(b): Blast wave (viewed

from behind) with outlined from behind) with Gouraud

triangulation. Marching Cubes shading. Marching Cubes

combined with decimation is combined with decimation is

on the top in pink, and the on the top in pink, and the

particte system triangulation particle system surface 1s
Figure 4(b): Hyperboloid of 2 sheets with Gouraud is on the bottom in red. on the bottom in red.

shading. Marching Cubes combined with
decimation is on the left in pink, and the particle
system surface is on the right in red.

Figure 6(a): Hydrogen atorn with outlined triangulation. Figure 6(b): Hydrogen atom with Gouraud shading.
Marching Cubes combined with decimation is on the Marching Cubes combined with decimation is on the
left in pink, and the particle system triangulation is on left in pink, and the particle system surface is on the
the nght in red. right in red.

Isosurface Extraction Using Particle Systems

Patricia Crossno, Edward Angel

585



