
A Visualization Tool for Analyzing Cluster Performance Data

Rena Haynes, Patricia Crossno, Eric Russell
(rahayne, pjcross, edrusse)@sandia.gov

Sandia National Laboratories

Abstract
This paper describes a unique visualization tool that has
been used to analyze performance of the Cplant™
clusters[13] at Sandia National Laboratories. As
commodity cluster systems grow in size and complexity,
understanding performance issues becomes more and
more difficult. We have developed a tool that facilitates
visual performance analysis within the context of the
physical and runtime environment of a system.
Combining an abstract system model with color-coding
for both performance and job information enables quick
fault isolation as well as insight into complex system
behavior.

1. Introduction

Understanding performance issues on clusters
becomes difficult as larger numbers of processors are
networked through complex interconnection topologies.
Many performance analysis tools provide a system level
view by gathering and displaying data from each
processor. As the number of processors contributing to
the analysis increases, textual and predefined graphical
techniques for displaying the data lose effectiveness.
Additionally, independent processor displays contain no
information about the connection relationship among the
processors. Visualization which allows the display of and
interaction with performance data, in the context of the
cluster interconnect, can make system behavior more
understandable.

This paper presents a 3-D visualization tool for
displaying and analyzing performance data in large-scale
clusters. This tool is being used to analyze performance
on Cplant™ clusters at Sandia National Laboratories.
Performance data are shown in the context of system
interconnect topology, computational job mix, and valid
communication paths. By using color to display data
values and providing interaction with multiple views, the
tool allows systems analysts to determine the cause of
problems that can range from communications
bottlenecks to hardware errors.

After a discussion of related works, we describe the
generic model used to map performance data onto a

display of the system. A section on performance data
collection and processing describes the flexibility for data
input. The 3-D display and interaction capabilities, which
allow interrogation and multiple views of data values, are
described. The effectiveness of combining 3-D interactive
visualization of performance data with a network-centric
view of a large cluster is demonstrated in two examples.

2. Related Work

We have found little previous work that uses
visualization to map performance data of large clusters
onto the generalized configurations. The use of
visualization to debug parallel programs is described in
[5]. Several systems instrument applications based on
message passing architectures. Examples of this include
ParaGraph [6], Pablo [12], and Paradyn [10]. ParaGraph
allows display of processor state and communication load
on a predefined set of physical configurations. Pablo and
Paradyn focus on application performance. Pablo presents
statistics in one or two complex views that do not include
the physical topology. Paradyn has focused on developing
search engine algorithms for dynamic instrumentation and
has not developed visualizations on system configurations.
A visualization framework for analyzing communication
performance in conjunction with an application's context is
described in [7]. Examples of monitoring tools are
described in [2], [3], and [8]. These tools display system
behavior through charts and graphs and do not show
relationships between processors. A tool for workload
characterizations is described in [4]. Analyzing system
performance by visualizing a simulated system, described
in [1], allows interactive layout of Gantt charts to display
performance data. Our approach maps performance data
onto a three-dimensional system configuration and allows
interaction to query and manage information content.

3. Cluster Visualization Model

The cluster visualization model abstracts basic
physical components of a system into objects used for
display. Since our model presents a network-centered
visualization of performance data, the system is defined in
terms of network components. The model details the
network components based on the system topology and

describes the relationships between components.
Significant objects are labeled and given identifiers.

The basic unit of the system is a network switch,
which contains 16 ports. Ports connected to compute
nodes are defined to be processor ports. Ports connected
to ports on other switches are called network ports. A
model is composed of one or more independent 16-port
switches, or of multiple groups of 16-port switches, such
as Myrinet-2000 switch networks.

The model describes a system in three dimensions
by specifying the physical switch layout in rows,

columns, and planes. In addition to specifying the
number of rows, columns, and planes in the system, the
model defines the number of processor and the number
of network ports per switch. Port definitions, which
describe the visual ordering of ports in a switch, support
different configurations. No restriction is placed on the
number of port definitions included in a model.

Each switch in the system has a label that is used in
mapping data values to objects in the display. Additional
hardware and software identifiers are also specified in
the model. A starting node identifier, which corresponds

to the identifier of the first processor port, is associated
with each switch. The model assumes that the remaining
processors connected to the switch are numbered
consecutively.

Node identifiers are used together with routing files to
determine valid paths between compute nodes. Route files
contain a line of bytes for every node in the system. Route
bytes specify the next port to traverse in the current switch.
When a route byte indicates a network port, the
corresponding port on the next switch is automatically
traversed and another route byte is processed until the
destination node is reached. The display tool expects a
route file for every compute node in the system. Directory
path and file name extension information is included in the
model to specify location and naming of route files.

To provide a coherent display, switches may require a
rotation or transformation from the physical orientation.
Row definitions provide a mechanism to allow switch
rotation and to group switches into logical rows. A logical
row is one or more physical rows of switches. The row
definition specifies switch orientation in a row by listing
the port definition label for each row.

The visual analysis tool inputs a text file with key-
word parameters to describe the system model. Figure 1
shows a simple four-switch model specification and the
resulting processor and network model displays. This
model describes a 48-node system. The switches,
represented by cubes, are laid out along a single row. Each
switch contains twelve processor ports and four network
ports, two that are connected on the east, and two that are
connected on the west side of each switch. Ports are shown
as approximated spherical objects on the faces of the
switches. The processor display shows only processor
ports. The network display shows network ports and lines
between switches that are connected. The switches on
either end of the single row in this model are connected to
form a torus.

The model specification allows the display software to
operate on many different cluster configurations without
modifying the visualization control software.

4. Performance Data

The visualization tool makes few requirements on the
format of performance data. Currently, performance data
are input to the display tool through a text file. The initial
text on each line matches a port label defined by the
system model. The port label is followed by a row of
values that is interpreted as a time series of values. The nth

value in each line is assumed to occur at the same time.
Parameter values are integers, which are mapped to

the corresponding port object in the display. The port is
colored to reflect the value associated with that time step.

Figure 1: Example model file with resulting
network and processor displays.

A specific port label may only occur once in a file. If a
port is not listed in the performance data, its value is
assumed to be zero for each time step. This data format
allows input of many types of performance data, from
error counts to packet counts to percentage values.
Parameter values may be generated from instrumented
software or from hardware counters.

For the system visualization to be meaningful in any
analysis, data collection and processing must ensure that
the temporal relationships of the values are correct. This
means that the first value for each port occurs at the same
relative time, that the second value for each port occurs
after the first value, and so forth. Once data values are
collected, they must be mapped to the appropriate port in
the analysis model.

Switch performance data for the Cplant clusters are
collected out-of-band so that the monitoring does not
impact user jobs. This data consists of error and
throughput counts for each compute and network port on
each switch. Raw data are periodically accumulated into
"snapshots", which are reduced for ease of manipulation
and stored offline. Several analysis programs provide
comparisons between the data snapshots for various data
types and time periods. Results from these analysis
programs are saved in files, which are input to the visual
analysis tool.

In many instances, performance analysis of a system
depends on the context of what is executing on the
system. For example, users may complain of inconsistent
performance of their parallel applications. Unless the
applications are embarrassingly parallel, execution times
can be greatly impacted based by how and where the
application is loaded on the cluster. Network resource
contention can also impact job performance if multiple
jobs, or multiple nodes in a single job, are using the same
route or components in a route.

The visualization tool supports job context based
analysis by providing input for a job file. The format for
a job file is the same as the performance data format.
Jobs are identified by integral values, which are
associated with processor port identifiers. A job file used
in conjunction with a parameter file must be consistent
with the time steps in the parameter file. Job files for our
tool have been generated from time-stamped log files as
well as from querying compute nodes at the same time
the performance data were gathered.

5. Visualization Capabilities

The visualization tool is implemented in C using
OpenGL as the graphics API. The user interface is
implemented using GLUI version 2.0, a GLUT-Based
User Interface Library written by Paul Rademacher that

is freely available from UNC [11]. The tool is platform
independent and runs on IRIX, LINUX and NT systems.

Performance data display and interaction are
controlled by software that reads files containing the
system model, parameter data, and job data. Default values
for the model file directory, performance data file
directory, range of interest, and colors for data values
above the maximum, data values below the minimum,
background, switch, route, and network links are read from
an initialization file in the working directory. A range of
interest is specified by integral minimum and maximum
data values. Default colors are specified by fractional red,
green, and blue values.

Until a parameter file and parameter ranges have been
specified, the display shows the switch configuration in the
planar network view. The planar network view displays
switches, network ports, and links between switches
arranged in planes of rows and columns. The ports are
colored white.

Performance data are input from the parameter file
and colors mapped to specified ports based on the relative
position of the data value in the range of interest. Values
less than the minimum are given the below minimum
color. Values equal to the minimum are colored blue.
Values equal to the maximum are colored red, and values
between the minimum and maximum range from bluish
purple to reddish purple. Values greater than the maximum
are given the above maximum color. Switches, whose
ports have no values in the parameter file, are not
displayed, but their locations in the model are held as
blank spaces.

A graphical user interface (GUI), shown in Figure 2,
provides several interaction capabilities. The GUI allows
dynamic specification of the model, parameter, and job
files. Other interaction capabilities include change of view,
change of port-type display and layout, data and object
query, addition of contextual information, and animation.

Different views of performance data can provide
insight better than static displays. The model view can be
changed from network to processor ports, and from a
planar to a toroidal layout. In the latter view, each plane is
shown as a complete torus. In multi-plane models, the first
plane forms an inner torus. Each consecutive plane forms
another layer radiating outward from the center. With a
single torus, each row of switches forms a ring. Ports
obscured in one view become visible when the display is
rotated, transformed, or zoomed. Likewise, for systems
composed of several planes, the display of a plane may be
turned off to enable viewing data hidden by overlapping
planes.
Data values can be queried by changing the minimum
and/or maximum values until a change occurs in the

colors. Switches and ports can be selected, which causes
the object to be highlighted and the corresponding label
information to be displayed. Inversely, the labels can be
typed in which causes the corresponding object to be
highlighted.

Contextual information can be displayed by adding
job and route information to a system view. Job
information is not automatically displayed. If a job file
has been specified, selecting job as the processor display
mode causes the processor ports to be color encoded

according to their job identifier. This color encoding
changes as the job changes over time, though it is
initialized to the values at the first time step. When both
job and parameter data are displayed simultaneously, a
shallow box colored by job id is drawn around the base of
the port. This job information can be displayed in both the
network and processor display modes so that job
assignment can be viewed and integrated with the
performance data. Job colors are randomly selected.

Figure 2: GUI and processor port display showing job distribution. The processor ports on the third
row, and most of the eighth row, belong to the same job, shown in blue. Note the distance between
nodes assigned to this job.

Adding routing information to a performance data
display shows actual communication context for objects
in the display. The visualization tool allows display of
one or more routes between two switches. Once the route
source and destination have been selected, the
corresponding routing information is shown as thick line
segments that are colored based on the route color
parameter in the initialization file. Route segments will
overlay the link lines between switches. Route segments
that connect switches whose links wrap around on either

end of rows or columns in the planar view will be shown
behind the switch row or column.

Animation capabilities display performance data
values as they change over time. The visualization
software supports automatic animation, where displays are
updated with parameter and/or job values from the next
time step in the parameter and job files. The update pause
field in the GUI controls the rate of the animation by
specifying the interval between display updates in seconds.
Selecting the forward step or backward step icons, or

typing in the specific time step, allows manual control of
the animation.

Three parameter display modes are supported. The
total mode displays the sum of all time steps. The
running total mode displays the cumulative total of the
data from the start of the animation to the current time
step. The slice mode displays the value of the data at the
current time step.

Interaction by rotating, transforming, and zooming
the display provides multiple views of the data.
Animation capabilities allow viewing series data.
Adjusting parameter minimum and maximum settings
allow control of the color of data values. Available
routes between processors of interest in the analysis can
be selected and displayed.

6. Analysis Examples

Two examples demonstrate the effectiveness of
using visual techniques to analyze cluster performance.
The first example shows how using visualization can
reduce the time to diagnose hardware problems in a large
system. The second example demonstrates that
visualization can provide insight for understanding
system and job performance.

In the first case, the performance of a 624-node
cluster had degraded to such an extent that jobs could no
longer be started. Attempts to reboot the system failed to
correct the problem. A scan of the data collected from
the switches showed that one port in the system was
detecting thousands of bad packets, while several other
ports were detecting significantly lessor amounts. The
bad packet count for a port is incremented whenever a
corrupted packet comes into the switch from that port.
Because packets are routed as soon as valid route fields
are detected, corrupted packets can be propagated to
adjacent switch ports, which will also report the bad
packets. Analysts could not rule out the possibility of
having several bad ports because the error data did not
identify any topological relationships between ports
detecting errors. Replacing the switch that contained the
port reporting the largest bad packet count did not correct
the problem. Finally, a diagnostic program was run to
test paths by communicating between nodes on the
system. This test reported that one connection between
two switches was failing consistently. The cable used for
this connection was replaced and the problem was
resolved. Several hours were required to diagnose and
correct this problem.

A visualization of the error data, as shown in Figure
3, clearly indicates that bad packets were isolated around
a small number of switches directly connected to each
other. In this analysis, errors below the minimum are

colored gray, and errors above the maximum are colored
yellow. Viewing timesteps of the error data shows that all
but one bad packet count originate from the path linking
the bottom left port (colored yellow) on the middle switch
in the last row of Figure 3. Consequently, the error was in
the cable, switch, or port directly connected to the yellow
port. Since no other errors originate from the switch below
the switch containing the yellow port, the error is in the
cable or the port linked to the yellow port. We can
identify the failing components easily by selecting the
corresponding switches and ports. Visualizing the errors
within the context of the system would have avoided the
extra steps used to isolate the problem.

Figure 3: Subsection of a 624-node cluster showing
bad packet propagation in switches.

The second example shows how visualization can be
used to understand more complex system behavior. In this
case, six multi-node jobs, ranging from 50 nodes to 128
nodes, were started on an empty system. The job allocation
is shown in Figures 2 and 4. Figure 2 just shows job
information while Figure 4 also includes processor traffic.
In this analysis, data values greater than 100000 are
colored yellow and values less than 15000 are colored
black.

The first job (colored green) was allocated on nodes
connected to switches on the top row and the middle
switch on the bottom row. The second job (colored brown)
was allocated to nodes on switches in the second and ninth
rows. The third job (colored blue) was allocated nodes on
switches in the third, eighth, and ninth rows. The fourth
job (colored pink) was allocated on nodes connected to
switches on the fourth and fifth rows. The fifth job
(colored tan) had most of its nodes connected to switches
the seventh row, but also had nodes connected to switches
in the fourth, sixth, and eighth rows. The sixth job (colored
orange) was mostly located on nodes connected to
switches in the last row, but also had nodes connected to
two switches in the second row.

The software for each job partitions nodes into
sender/receiver pairs. A sender sends a message to its
receiver that returns the same message to its sender.
While all six jobs were started within seconds of each
other, the blue job stalled and the tan job ran very slowly,
while others progressed normally.

The visualization tool was used to examine traffic
data that occurred while these jobs were executing.
Figure 4 displays the number of packets sent through
processor ports for a single time step. As can be seen in
Figure 4, the blue job has transmitted much less data than
other jobs. In this case, ports associated with the blue job
had transmitted less than 15000 packets while ports
colored yellow have transmitted more than 100000
packets.

One observation from the visualization in Figure 4 is
that node allocation is not assigning jobs to contiguous

compute nodes. Since the jobs were started on an empty
system, one would expect minimal job fragmentation.
Because multi-node applications rely on the message
passing rank order to determine the nearest neighboring
node, allocating contiguous processors is very important
for job performance.

The job fragmentation in this instance was due to the
fact that the physical node configuration of the cluster
separated some processors that were seen as being
logically contiguous by the node allocator. As a result of
this analysis, our new clusters are being configured so
those logically contiguous processors are co-located as
much as possible. The node allocation algorithm will also
be enhanced to include configuration information in
making node assignment decisions.

Figure 4: Traffic analysis showing job distribution. Note the processor ports on the sixth and fourth switches in the
third and eighth row, respectively, have been selected for route display.

Additional insight can be gained by viewing the
packet traffic on the network ports. Figure 5 shows the
network port traffic that corresponds to the processor
port traffic in Figure 4. This view reinforces the analysis
that jobs running on a contiguous block of nodes will

perform better than jobs that are fragmented. However, it
also shows that fragmented jobs can perform well if they
are not competing for communication paths with other
jobs. In this case, the pink job, located on rows four and
five, was communicating as effectively as either the green
or the orange job. The routes for communicating between

nodes for the pink job used switches that contained
unallocated processors and were not being used for other
routes.

Communication paths between processors in the
blue job traversed switches that were also used for
communication by other jobs. This is verified by
displaying the route between two processors that were
assigned to the blue job. The processor associated with
the processor port highlighted in green on the third row
of Figure 4 was selected as the source and the processor
port on the eighth row was selected as the destination.
The route taken, as shown in Figure 5, takes seven hops,
passing through switches that are also used for
communication by three other jobs. This route is also

displayed in Figure 6, which shows a better view of the six
intermediate switches, all of which were heavily utilized.

A final observation to be made with respect to the
traffic analysis is to note the horizontal nature of the traffic
in the system. This is caused primarily by the fact that
processors in this cluster configuration are ordered left to
right along a row which can contain up to 64 nodes. The
allocator assigns available nodes in their numerical order.
Since the jobs were started on an empty system and all of
the jobs could be placed on one or two rows, horizontal
traffic has dominated vertical traffic. This information
could be helpful in generating better routes for systems
with similar characteristics and workloads.

Figure 5: Port display showing route between nodes highlighted in previous figure.

7. Conclusions

We have demonstrated that visualization of various
types of performance information combined with a
network system model provides a powerful tool for the
debugging and analysis of large-scale cluster systems.
By allowing analysts to construct their own system
models using a small number of abstract objects, such as
switches, ports, and links, we have created a tool that can
handle many different cluster sizes and configurations
without modification. Additionally, the flexibility of the
performance data input format permits the tool to be used
for a number of different analysis tasks. Using color to
encode performance information, then displaying it
within the model permits the analyst to use their inherent
visual pattern recognition skills to extract meaning that
would be virtually impossible to recognize in a text-
based representation of the same data. Adding routing

Figure 6 : Torus layout showing route in traffic
analysis example.

and job information increases understanding of the
complex relationships, both in space and time.
Animation allows the analyst to dynamically see the
behaviors that only evolve over time. All of these
functions contribute to provide insight into how large
clusters operate.

We have presented two examples that demonstrate
how this tool has been used to solve problems that have
occurred on our cluster systems. Results from visual
analysis have impacted future cluster configurations and
allocation software. We are also researching different
routing algorithms to develop a better match between our
cluster configuration and the job mix.

Future work on visual cluster analysis will be
focused on automating model file generation, enhancing
data collection and analysis software, and collecting
additional data from software components. We expect
the visual analysis tool to continue to provide insights
into cluster behavior as our clusters grow from 600 to
greater than 1000 nodes.

8. Acknowledgments

The work was performed at Sandia National
Laboratories. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000.

9. References
[1] Bosch, R., Stolte, C., Stoll, G., Rosenblum, M., and

Hanrahan, P. Performance Analysis and Visualization of
Parallel Systems Using SimOS and Rivet: A Case Study.
Proceedings of the Sixth International Symposium on
High-Performance Computer Architecture, IEEE
Computer Society, 1998.

[2] Buyya, R., Koshy, B, and Mudlapur, R. GARDMON: A
Java-based Monitoring Tool for Gardens Non-dedicated
Cluster Computing System. The International Conference
on Parallel and Distributed Processing Techniques and
Applications, June 1999, pp. 2774-2780.

[3] Buyya, R., Mohan, K., and Gopal, B. PARMON: A
Comprehensive Cluster Monitoring System. The Australian
Users Group for UNIX and OpenSystems Conference and
Exhibition, August 1998.

[4] Calzarossa, M., et al., Medea: A Tool for Workload
Characterization of Parallel Systems. IEEE Parallel and
Distributed Technology, Vol. 3, No. 4, Winter 1995, pp. 72-
80.

[5] Crossno, P. and Angel, E. Visual Debugging of
Visualization Software: A Case Study for Particle
Systems. In Proceedings of Visualization ’99, October
1999.

[6] Heath, M., Malony, A., and Rover, D. Parallel Performance
Visualization: From Practice to Theory. IEEE Parallel and
Distributed Technology, Vol. 3, No. 4, 1995, pp. 44-60.

[7] Kim, B., Park, Chan-Ik, Park, Chan-Mo, and Chi, D. An
Integrated Visualization Framework for Interprocessor
Communication using 3-D Virtual Space. Proceedings of
the High-Performance Computing Conference on the
Information Superhighway, HPC-Asia, 1997, pp. 383-388.

[8] Karavanic, K., Myllymaki, J, Livny, M., and Miller, B.
Integrated Visualization of Parallel Performance Data.
Parallel Computing, Vol. 23, 1997, pp. 181-198.

[9] Kranzlmüller, D., Grabner, S., and Volkert, J. Debugging
with the MAD Environment. Journal of Parallel
Computing, Vol. 23, No. 1-2, pages 199-217, April 1997.

[10] Miller, B., Callaghan, M., et al. The Paradyn Parallel
Performance Measurement Tool. IEEE Computer, Vol. 28,
No. 11, November 1995, pp. 37-46/

[11] Rademacher, P. GLUI: A GLUT-Based User Interface
Library. http://www.cs.unc.edu/~rademach/glui, June 1999.

[12] Reed, D., et al. Scalable Performance Analysis: The Pablo
Performance Analysis Environment. Proceedings of the
IEEE Scalable Parallel Libraries Conference, IEEE
Computer Society, 1993, pp. 104-113.

[13] Sandia National Laboratories. Computational Plant.
http://www.cs.sandia.gov/cplant, January 1999.

