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ABSTRACT
Scientific visualization is playing an increasingly important role

in the analysis and interpretation of massively parallel CFD simu-
lations due to the enormous volume of data that can be generated
on these machines. In this paper we will describe the development
of a visualization technique based on a parallel analogue to the
Marching Cubesalgorithm. The algorithm has been developed for
Multiple-Instruction, Multiple-Data (MIMD) massively parallel
computers and is designed to take advantage of the heterogeneous
programming capabilities of the MIMD architecture. We examine
several different configurations and conclude that for producing
animations the best one, in terms of both frame generation time
and disk usage, is to run the two applications heterogeneously and
send the resulting geometry description directly to a workstation
for rendering, thereby totally eliminating the use of files from the
animation process.

INTRODUCTION
Massively parallel supercomputers offer scientists and engi-

neers the ability to perform large-scale simulations at unprece-
dented speed. The termlarge-scale implies the solution of field
equations in computational domains exceeding several million
points of resolution. These simulations can be performedin-core
due to the large distributed memories which reside on each proces-
sor. In CFD applications, the storage of three-dimensional field
data may require several Gbytes of disk space. On massively par-
allel systems, these fields are stored on distributed file systems,
with subdomain data spread over an ensemble of parallel disks.
For visualization, these fields must be combined with respect to
some global coordinate system in order to reconstruct the global
computational domain. For distributed data sets on the order of
five million mesh points or more, several hours of post-processing
may be required for the reconstruction process to generate data
files compatible with commercial visualization software systems.

In many MIMD implementations the tendency is to ignore the
potential for running truly different application codes on the vari-
ous processors. Although in a typical MIMD application, different
instructions will be executing asynchronously on different proces-
sors, the same instruction set is loaded onto all the nodes allocated
in the partition. MIMD machines have the capability for conduct-
ing heterogeneousprogramming. That is, each subset of proces-
sors executes different program instructions, with message passing
providing the interface between the applications.We have imple-
mented a CFD application that both generates the volume (flow-
field) data and constructs an isosurface in parallel using different
programs on different subsets of nodes.

MIMD HARDWARE CONFIGURATION
The heterogeneous analysis was carried out on the Intel iPSC/

860, a 64 node hypercube configured with 32 Mbytes of memory
in each of the lower 16 nodes, and 8 Mbytes of memory in each of
the remaining nodes. The i860 has a 64-bit RISC processor, a
floating point adder, and a floating point multiplier. The data cache
for each node on the current machine is 8 Kbytes with a corre-
sponding instruction cache of 4 Kbytes. Processors on this
machine have a rated clock speed of 33 MHz for a peak perfor-
mance of 66 MFLOPS in 32-bit arithmetic and 50 MFLOPS for
64-bit operations. Nearest neighbor communication can occur at
2.8 Mbytes/sec each direction for a total bandwidth of 5.6 Mbytes/
sec in full duplex. Network latency is measured at 10 microsec-
onds for message start-up with an addition of 10 microseconds of
latency for each non-neighbor a message encounters along a given
communication path. The system also contains four I/O nodes,
each attached to two 760 Mbyte disks. These disks are the central
component of Intel’sConcurrent File System (CFS) which provide
for parallel mass storage.
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HYPERCUBE DECOMPOSITION
Our implementation does not typically use the entire machine,

but rather utilizes two subcubes of equal size which are allocated
as a single cube at runtime to enable message passing between the
two applications. Each subcube loads and runs an entirely different
executable. The heterogeneous configuration of the CFD code and
isosurface generator is depicted in Figure 1. The lower subcube
executes the CFD application that generates the field data, while
the upper subcube thresholds the field data and stores the geometry
files on the parallel disk system. Internode communication for
each application is illustrated by dark arrows between adjacent
processors. Subcube communication is denoted by the thin lines
which connect the two applications. Because of the hypercube
topology, processors in the two subcubes reside as nearest-neigh-
bors along the communication channels. Thus the sending of CFD
field sets to the isosurface generation code can be performed with
minimal communication overhead. This also avoids the bottleneck

inherent in a scheme which would use a front end to pass the vol-
ume data between the two applications.

After some number of time steps, each processor running the
CFD code passes its sub-volume of data to the corresponding node
in the upper half of the subcube along with a threshold value. The
upper half then uses the marching cubes algorithm [Lorenson &
Cline, 1987] to find the isosurface with that threshold within the
volume. Geometry files generated by the marching cubes algo-
rithm are then stored on the parallel disk system for subsequent
display on a graphics workstation. Having sent its data, the CFD
code continues execution on the lower subcube for the next time
step. Thus, a pipeline is formed between the generation of the vol-
ume data, the generation of the isosurface, and the parallel disk
system, thereby permitting concurrent operation. This capability is
especially useful when a large number of volumes need to be ren-
dered, such as when performing fluid flow animation. An alterna-
tive means of interfacing the two applications consists of having
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the CFD code write field data directly to the parallel disk for sub-
sequent post-processing by the isosurface generator.

There are a number of options for outputting the isosurfaces
produced. Note that the application interface selected (heteroge-
nous or file-based) is independent of the output option. There are
two file-based output options from the isosurface generator, one to
the CFS and one to the file system associated with the front end.
Although the processors can write to the CFS in parallel and hence
output the isosurface data more quickly, files on the CFS must be
moved off of the CFS for viewing, which is a very slow operation.
Consequently, writing to the CFS is best done only in those cir-
cumstances when the data can remain on the CFS, such as when
the CFD code outputs volume data while running in the non-heter-
ogeneous mode.

The geometry description created by the marching cubes algo-
rithm may also be directly rendered usingDistributed Graphics
Library (DGL) commands. DGL is a Silicon Graphics’ product
which is available for a number of hosts. Intel has ported DGL to
the iPSC/860. From a programming perspective, DGL commands
are essentially identical to Silicon Graphics Iris (SGI) Graphics
Library (GL) calls, except that lower level software sends the
commands via ethernet to the SGI for execution and display.
Using this approach, images may be directly displayed and
recorded for animation, bypassing file output and the parallel disk
system entirely.

Another configuration consists of replacing the DGL output
module with a module which creates a socket connection between
the Intel and a program running on the SGI. Triangle data is then
sent over the socket to the SGI where the local program renders it
using GL. Spaceball Technologies, Inc. produces an input device,
the Spaceball, which permits simultaneous manipulation of all six
degrees of freedom in a 3-dimensional space. The Spaceball con-
nected to our SGI is used to control the viewpoint as the simula-
tion progresses. One of the buttons on the Spaceball is used as a
toggle to start and stop the simulation. After each timestep’s isos-
urface is sent to the SGI, the Intel waits for a handshake before
proceeding to the next timestep. The button disables the hand-
shake, thereby permitting the researcher to fly around the isosur-
face and view interesting structures without fear of losing them in
the next frame update. Additionally, another button on the Space-
ball allows the researcher to take screen dumps of the simulation at
the current viewpoint and save them to AVS compatible image
files for later viewing.

The final output option uses the same output module on the Intel
as the Spaceball configuration, but the program on the SGI is
replaced with anApplication Visualization System (AVS) corou-
tine. AVS is a commercial software product for scientific visual-
ization which is supported on a number of workstation platforms.
The coroutine establishes a socket connection with the Intel,
receives the triangle lists, translates them into AVS’s geometry for-
mat, and passes that geometry data on to another AVS module
known as the geometry viewer. The geometry viewer then controls
the rendering and viewing of the isosurfaces. It also provides a
way to save geometry and scene files for later viewing. These files
contain 3-dimensional descriptions of each object as well as the
camera position, material characteristics, and lighting properties of

the scene.

MIMD MARCHING CUBES ALGORITHM
The marching cubes algorithm approximates the isosurface

with a set of triangles. Each neighborhood of 8 sample points,
forming the 8 vertices of a cube, are operated on as a unit. The iso-
surface within a cube is found by comparing the values at the ver-
tices with the surface value and using the results as an index into a
table of surface triangulations for each configuration. The vertices
of the triangles are then found by interpolation along the edges
between the cube vertices. The evaluation of the cube “marches”
through the volume, first by column, then by row, then by plane.

The adaptation of the algorithm to a MIMD environment is
fairly straightforward due to its inherent data parallelism. The
decomposition is accomplished by partitioning the volume into
approximately equal-sized sub-volumes, which are distributed to
the individual processors, each of which is asynchronously run-
ning an essentially serial version of marching cubes.

MIMD SOFTWARE ISSUES
The heterogenous implementation brings several software

issues to light: having one node operate differently from the oth-
ers, in effect as a host node; using global utilities that operate
across all of the nodes; and using a broadcast mode for communi-
cating information from one node to all of the other nodes. In the
first case, a typical implementation will designate node zero as
performing certain special functions (such as reading or writing to
the front end). All of these references must be changed to refer to
a base node which is assigned dynamically based on the cube size.
The second issue requires more work to resolve. The Intel parallel
libraries provide a number of global routines for functions such as
synchronization, minimum, maximum, sum, product, AND, OR,
and XOR. These routines require that all of the nodes in the allo-
cated cube participate. Since half of the nodes are working on a
separate problem, this is not possible. Therefore, these functions
must be rewritten by the programmer to operate within subsets of
the cube. The Intel does provide a mechanism for broadcasting to
a subset of nodes, so the last problem is resolved by simply replac-
ing the broadcast call with a call to the restricted broadcast rou-
tine.

EXAMPLE VISUALIZATIONS
As a first example of the visualization technique, we modified

the shock hydrodynamics code, PAGOSA/MIMD [Gardner, Cline,
and Vaughan, 1992; Gardner and Fang, 1992] to execute in a het-
erogeneous mode on the Intel iPSC/860. PAGOSA/MIMD is a
three-dimensional, combined Eulerian/Lagrangian explicit code
which models the advection of an ideal gas. PAGOSA/MIMD is
written in FORTRAN-77 and incorporates domain decomposition
and message-passing for MIMD, distributed memory parallel
computers.

The PAGOSA/MIMD test problem consisted of the 3-D propa-
gation of a spherical blast wave in the presence of an intervening
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obstacle. Figure 2 is an example of a typical isosurface construc-
tion, created using the non-heterogeneous configuration in con-
junction with the file-based rendering option, showing a blast
wave impinging on an obstacle after 64 time steps. Within each
application, each of which was run separately, the computational
domain was distributed over 16 processors, configured as a 4 x 2 x

2 array. The global domain consisted of 323 points uniformly dis-
tributed in 3 dimensions over the ensemble of processors. The
threshold value for the 3-D contour of the blast wave was 1.15 and
the threshold for the barrier was .0001.

As a second example of the visualization technique, the shock
hydrodynamic code PCTH [Gardner and Fang,1992; Robinson et
al., 1991] was executed heterogeneously on the INTEL iPSC/860.
PCTH is written in C++ for MIMD computers and is an explicit
Lagrangian/Eulerian code designed to study the extreme deforma-
tion of solid materials due to high velocity impact. The present
code models multiple materials, strong shocks, material strength
and fracture.

The PCTH test problem consisted of the 3-D hydrodynamic
deformation of a steel plate when impacted obliquely by a copper
ball traveling at 4.5 km/sec (Figure 3). The figure was created
using the heterogeneous configuration in conjunction with the
AVS-based rendering option. The computational domain of the
CFD application was distributed over 8 processors configured as a
2 x 2 x 2 array; the isosurface generator was similarly configured
within its 8 processor subcube. The global domain consisted of

323 points uniformly distributed over the ensemble of processors
within each subcube. Unlike the previous example, where a single
volume is thresholded twice using different values to distinguish
the two objects, the present example requires the construction of
isosurfaces for two sets of volume data corresponding to the vol-

ume fractions of each of the materials present in the domain. The
visualization also demonstrates the transportability of the present
methodology to other parallel application codes.

TIMING ANALYSIS OF VISUALIZATION OPTIONS
In order to evaluate the comparative resource usage of each of

our configurations, we performed an experiment wherein each
visualization option described above was timed using the same
volume data. In each case our timings represent the time necessary
to take the simulation from volume creation in the CFD analysis to
rendering the final image on the screen. As a test problem, we
used PAGOSA/MIMD to visualize the blast wave problem

depicted in Figure 2 on a computational domain of 323 grid cells.
 Sixteen processors of the Intel iPSC/860 were utilized as a

fixed resource. For heterogeneous visualization, 8 nodes were
assigned to the PAGOSA/MIMD application, while 8 nodes were
responsible for constructing the isosurfaces. In contrast, for file-
based options, all 16 processors participated in the blast wave sim-
ulation, with distributed files for the volume data written to the
CFS. Similarly, all 16 processors were utilized in the isosurface
construction, reading the previously saved volume data on the
CFS. Since the processors are treated as a fixed resource, pipelin-
ing of the two applications is not possible, and the two applica-
tions are timed sequentially. The timings were averaged over 10
timesteps of the simulation ranging from step 60 to step 70. Addi-
tionally we measured storage requirements for both the volume
data obtained from PAGOSA/MIMD and the triangle list pro-
duced by the isosurface application. The outputs from both appli-
cations are stored without compression in a binary file format. The
results of this study are summarized in Table 1.

FIGURE 2: PAGOSA/MIMD EXAMPLE VISUALIZATION -
BLAST WAVE WITH OBSTACLE USING 16 PROCESSORS

FIGURE 3: PCTH EXAMPLE VISUALIZATION - COPPER
BALL IMPACTING STEEL PLATE USING 32 PROCESSORS



TABLE 1: PERFORMANCE TIMINGS FOR RENDERING 323 FIELD DATA (SEC.)

Option
Description of
Measurement

Avg. Time per
Timestep

Total Time per
Timestep

Total Disk
Space Usage
per Step (MB)

Heterogeneous with 8
processors assigned to

each application

Time to render solution with
DGL 2.91 2.91 0

Heterogeneous with 8
processors assigned to

each application

Time to render solution with
GL using socket connection

and Spaceball
3.04 3.04 0

Heterogeneous with 8
processors assigned to

each application

Time to render solution with
socket connection and AVS 4.47 4.47 0

PAGOSA/MIMD with
CFS output, Marching
Cubes with CFS input,
file output to front end

with AVS (16 proc.)

Time for CFD code
Time for Isosurface code

AVS display time

2.20
6.13
3.00

11.33 0.47

PAGOSA/MIMD with
CFS output, Marching

Cubes with CFS input &
CFS output (16 proc.)

Time for CFD code
Time for Isosurface code

Copy to front end
AVS display time

2.20
3.56
10.40
3.00

19.16 0.47

PAGOSA/MIMD with
CFS output, Marching

Cubes with CFS input &
DGL output (16 proc.)

Time for CFD code
Time for Isosurface code,

rendering and display using
DGL

2.20

5.77
7.97 0.21
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The thicker line in Table 1 delineates the heterogenous options
from the file-based, post-processing options. The disk space usage
consists of two contributions. For each timestep. 0.21 MB are
required to store the field volumes created by the PAGOSA/
MIMD application. The isosurface reconstruction requires an
additional 0.27 MB each timestep to store the list of triangles
required to construct the isosurface.

The performance of the heterogeneous application options
clearly exceed the performance of the file-based options. This per-
formance can be measured both in terms of saving time as well as
disk space resources. In general, it can be seen that file based out-
put from the isosurface construction is poor and suffers from seri-
ous bottlenecks. Outputting to a single file on the front end creates
a bottleneck since all of the data must be serially channeled
through a single node which does the writing to the file. As a sec-
ond file-based alternative, geometry files may be written on the
parallel disk system by having each processor concurrently write
to separate sections of the same file. This eliminates the bottleneck
associated with local memory constraints. However, in order to
render the data contained in the geometry files, they must be first

copied to the front end. In Table 1, for the 323 domain, this process
took as long as 10.4 seconds per timestep. Compared to other tim-

ings in Table 1, this post-processing step isvery slow. If geometry
data is sent directly to the graphics workstation using a socket
connection, the overall performance in the post-processing mode
is the best of all procedures. Approximately 0.27 MB of disk
space are saved each timestep when the flowfield data are post-
processed using the socket connection.

CONCLUSIONS
Our principal result is a tremendous reduction in disk storage

costs and time savings. As an example of the magnitude of this
savings, consider just the size of the volume data files created by a
CFD application which creates a single volume per timestep for a

30 second animation of a 643 domain. For a 32 node decomposi-
tion, the number of bytes across all of the sub-volumes (including
overlapping points between processors and assuming 4-byte val-
ues) would be 32 x 18 x 18 x 34 x 4 = 1410048 bytes per frame.
Assuming a frame rate of 30 frames per second (standard NTSC
rate), the volume data for the entire animation would require 1.27
Gbytes to store the volume data alone. This is not a large volume

or a long animation sequence. A volume of 2563 would require
65.2 Gbytes of storage for the same sequence length. For CFD
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applications which use volume fractions, multiply the storage
costs by the number of materials.

Additional storage savings are possible if the images are ren-
dered directly to the screen. However, these savings are more diffi-
cult to calculate because the size of the geometry file depends on
the surface threshold selected and the data values present in the
volume. Conceivably, a threshold could be selected which would
not find a surface and the file would be of zero length. To provide
some sense of the size of a typical geometry file, the file used to
render Figure 2 is 0.26 Mbytes in length.

Each stage of the pipeline from volume creation to rendered
image can be viewed as a filter which reduces the amount of data.
For instance, once a volume is thresholded, unless the original vol-
ume data is saved, only the selected isosurface can be rendered.
Our work and our results have been geared towards doing anima-
tions quickly and efficiently, so the loss of the volume and isosur-
face data is not an issue. However, for those who need to preserve
intermediate results, our various options for the applications inter-
face and the isosurface output permit researchers to save the data
at each stage, assuming that they have sufficient disk space to do
so. The advantage of this filtering process is the potential to view
simulations which have been previously too large for conventional
workstations to visualize. As massively parallel computers
become more available, these type of large-scale simulations will
be even more routine, making the visualization procedures we
have outlined here increasingly important.

FUTURE WORK
There are a couple of enhancements we would like to make to

the current visualization system. First, we would like to improve
the load balance between the CFD code and the isosurface code by
removing the restriction that the CFD nodes be one-to-one with
the isosurface nodes. As the physics of the CFD applications
increase in complexity, the processor resources should be concen-
trated in the CFD portion of the code. Second, we would like to
move the rendering of the isosurface onto the parallel platform to
further reduce the volume of data being moved off of the parallel
machine. As the size of simulations increase, the data reduction
resulting from the isosurface filter will be insufficient to keep the
socket connection from creating a serious bottleneck. Further fil-
tering down to a pixel representation will be necessary

Also the present work raises the question of whether it is com-
putationally more efficient to visualize CFD applications using the
present heterogeneous scheme, or whether the computational
resources would be more effectively utilized by distributing the
application over twice the number of nodes, and calling the graph-
ics procedure as a subroutine. Many conflicting factors can tilt the
balance towards preferring one technique over the other. Compet-
ing memory requirements between the CFD application and the
graphics application may make the subroutine approach infeasible
due to the limited size of the local memories. On the other hand, in
the heterogenous approach, load imbalance results from the differ-
ences between the time required by the CFD application to gener-
ate a volume and the time spent by the isosurface application to
threshold it.In the timings presented in Table 1, the hydrodynamic

application code runs faster than the isosurface generation code.
Even though timings for the multi-material application were not
included in our experiment, we have observed in our use of that
application that this load imbalance is reversed and the isosurface
nodes are largely idle. This is due to the more extensive modelling
of the multiple materials in this application. Further experimenta-
tion and comparisons between the heterogenous approach and a
subroutine approach will be required in order to assess the trade-
offs.
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