
Case Study: Visual Debugging Of Cluster Hardware
Patricia Crossno1

Rena Haynes2

Sandia National Laboratories3

Abstract
This paper presents a novel use of visualization applied to
debugging the Cplant™ cluster hardware at Sandia National
Laboratories. As commodity cluster systems grow in popularity
and grow in size, tracking component failures within the hardware
will become more and more difficult. We have developed a tool
that facilitates visual debugging of errors within the switches and
cables connecting the processors. Combining an abstract system
model with color-coding for both error and job information
enables failing components to be identified.

CR Categories and Subject Descriptors: I.3.8 [Computer
Graphics]: Applications; J.2 [Physical Sciences and Engineering]
Electronics; C.4 [Performance of Systems] Modeling techniques –
Performance attributes.
Additional Keywords: visual debugging, hardware modeling,
design analysis, and performance optimization.

1 INTRODUCTION
The motivation for this work stemmed from our inability to
diagnose hardware errors based on lists of error counts, such as
for bad packets or bad routes, for each port of each switch in our
system over a period of time. Trying to map error information to
system schematics by hand was tedious and slow, plus it lacked
the ability to dynamically portray error propagation over time.
Without being able to correlate errors with our system topology, it
was unclear whether the errors occurred at random or if they were
concentrated around particular switches or network cables.

Applying some of the ideas from our previous work in
debugging particle systems [3], we developed a tool for visually
debugging our cluster hardware. The central concept is that the
human visual system’s pattern recognition skills can be employed
to see relationships between error counts and hardware
components when they are combined in a visual abstraction of the
system.

The tool allows us to visualize a model of the switch
hardware and network connections combined with error counts
for each port, the jobs running on each processor, and the routes
used in the communications between processors. With this tool
we have been able to see patterns of error propagation along
routes originating at processor ports. We have also been able to
go back and detect a faulty cable that was initially diagnosed
through other means.

2 RELATED WORK
Although we have not found any previous work that uses
visualization to debug cluster hardware, using visualization to

debug or do performance analysis of parallel programs is relevant.
The Rivet system performs analysis and visualization of parallel
applications in a shared memory environment [1]. Browne et al
created a directed graph representation for parallel programs to
simplify parallel programming [2]. The Interactive Visualization
Debugger integrates debugging, performance analysis, and data
visualization for message passing parallel applications [4]. Devise
is a generic integrated performance analysis and visualization
system that has been coupled with the Paradyn Parallel
Performance Tool [5]. The MAD environment is a toolset for
parallel program debugging [6]. Zhang, Hintz, and Ma use graph
formalisms and notation to visualize parallel programs and their
execution [8].

3 IMPLEMENTATION
The tool is implemented in C using OpenGL as the graphics API.
The user interface is implemented using GLUI version 2.0, a
GLUT-Based User Interface Library written by Paul Rademacher
that is freely available from UNC [7]. The tool is platform
independent and runs on IRIX, LINUX and NT systems. A
snapshot of the tool showing the user interface is shown in Figure
6 on the color plate.

3.1 Model
Schematics describing the switch topology form the basis of the
mental model used by people debugging the cluster hardware. So
the core of the system is a representation of this model. However,
the model is not static. We already have a number of different
Cplant™ system configurations of various sizes within Sandia,
plus, we want the tool to migrate to newer systems as they come
online.

Figure 1: This is the upper left section of a planar switch
layout where each switch (black box) has eight network ports
(spheres on the box faces), each of which is colored by a total
error count. Network links are drawn between ports. Since
the topology of the network is really a torus, long links are
drawn behind the plane of switches connecting the first and
last switches in each row and column. At this angle from the
front, the wrap-around links appear to be a second link
between each pair of ports.

So model information is input to the tool at runtime.
Common to all models is the idea of a switch. Each switch has

--

1pjcross@sandia.gov, 2rahayne@sandia.gov
3P.O. Box 5800, Albuquerque NM 87185-0822

mailto:*pjcross@sandia.gov
mailto:rahayne@sandia.gov

sixteen ports, with some of the ports connected to processors and
some of the ports connected to the network. To reduce visual
clutter, all of the ports are not displayed simultaneously. Radio
buttons select a port display mode, switching between processor
and network ports. The network connections between ports serve
as a visual cue as to which type of port is currently being
displayed. Although only the ports are color coded, it is important
to show the switches to provide context.

Switches are laid out in a planar fashion, as is shown in
Figure 1. Network connections wrap at the tops and bottoms of
both rows and columns. Given that the connections actually form
a torus, we provide an alternate display mode that reflects this
topology, as is shown in Figure 2. However, the users prefer the
planar layout with wrap-around links drawn behind the switch
plane. Probably this is because it more closely matches their
mental model from the schematics.

Figure 2: Torus layout showing true network connection
topology. The thick, red line is a route between 2 ports.

In larger systems, multiple planes are stacked, as is show in
Figure 3. Although on smaller systems the ports are evenly
divided between processor and network ports, in multi-plane
systems more ports must service the network connections to
enable communication between planes. This means that there are
twelve network ports (two per switch face) and only four
processor ports. Additionally, large models have an additional
hierarchical grouping of pairs of switch rows into a meta-switch
called an XBAR. The display provides a reference to this structure
by drawing a yellow wire-frame box around each XBAR. Note
there is no communication wrap-around in the Z direction.

Given the density of the switches in Figure 3, it is difficult to
see the ports on interior switches. To reduce the visual
complexity, we have removed all switches whose ports do not
have any errors. The top two rows of switches in the last plane,
along with two individual switches in the first plane, and the
second and third rows of the second plane have all been removed.
But this is still too cluttered to see significant detail, so we
provide checkboxes to turn individual planes on and off.
Additionally, providing interactive rotation, translation, and zoom
enables the user to manipulate the model to focus on areas of
interest.

Figure 3: Large system model showing multiple planes of
switches with twelve network ports per switch. Pairs of switch
rows are grouped into XBAR meta-switches.

The numbers of process versus network ports and the
connectivity and labeling of the ports and the switches are all
contained in the model file. The colors of the switches and the
network connections may be specified through an initialization
file, or default colors (dark gray and black, respectively) will be
used. The labels for both switches and ports are then used to
identify model components. When objects in the model are
picked, the objects are highlighted with a bright green wire frame
overlay and the corresponding labels are displayed. Inversely,
labels can be typed in to locate components, which are then
highlighted.

When reading job or error information, labels in the input
files are parsed and used to find the corresponding data structures
for those ports. By using the labels as the identification
mechanism linking the model and the input files, we avoid any
implicit assumptions about model component naming conventions
and we allow the users to operate using their own name space.

3.2 Errors
Once the model has been read into the tool, error information can
be added to the data structures for each port. Error data is input
through a file consisting of a list of port labels, each of which is
followed by a series of error counts for each time interval. The
initial value in the file provides the number of time samples for
each port.

The error files are generated by software that periodically
polls counters for each port on each switch. The counters contain
the number of occurrences for events such as bad packets, good
packets, timeouts, bad routes, dead routes and uptime. The
difference between the current count and the previous count is
then recorded as the error value for this time step. Typically, the
switches are polled at frequencies ranging between once an hour
and twice a day.

The error counts are displayed in the model by coloring the
ports. The error counts can either be viewed either statically or
dynamically through animation. Statically, the error displayed for
each port is the accumulated total over all of the time steps. In

animation mode, the port color represents either a running total of
the error counts over all of the previous time steps, or just the
error count for the current time step.

Since the range of values that error counts can assume
depends upon the type of errors being viewed and the frequency
and duration of the polling, the color mappings depend upon a
user-defined range of values. The user controls the color-to-value
mapping through selection of a minimum value and a maximum
value. Values below the minimum are not of interest, so they are
mapped to black to blend into the switch. Values above the
maximum are of high interest, so they are mapped to yellow to
stand out. If black and yellow do not suit the user, different
colors for displaying values below or above the range can be
specified in the initialization file. Values within the range are
mapped to the range of colors between blue, the minimum value,
and red, the maximum value. Since colors do not have implicit
meanings, the blue to red continuum was chosen because blue can
be thought of as a cool, or low, value, and red can be thought of as
a hot, or high, value.

3.3 Jobs
In order to understand which processors are likely to be
communicating with one another, it is necessary to have a
snapshot of the job identifiers for each of the processor ports
coinciding with the times that error counts were polled. The jobs
file has a similar format to that of the error file. The file consists
of a list of processor port labels, each followed by a list of job
identifiers for the job running at each polling time. If no job is
running, an identifier of zero is used as a flag. Idle ports are
colored black when the port display mode is set to color ports by
job identifier. All other job identifiers are assigned a random
color.

Figure 4: Total cumulative error is displayed in the color of
the process ports. Job id is shown in the color of the shallow
box around the base of each port. Idle processors do not have
a colored box.

Initially, we tried to use shape to encode the job information
so as to avoid overloading color. However, the number of
different distinguishable shapes was insufficient to encode more
than a handful of different jobs. And even using a small set of
unique shapes, the job processor groupings could not be seen at a
glance, but required some concentration. So we tried coloring the
ports by job and toggling back and forth between displaying the
errors and displaying the jobs. The groups of processors running
the same job could be easily identified, but the toggling was
distracting and confusing.

The job identifiers needed to be displayed concurrently with
the error information. Rather than replacing the two earlier
display modes, errors or jobs, we added a third option of both. In
this mode we draw a colored, shallow box around the base of each
processor port’s sphere to display the job color. The three-

dimensionality of the box allows the job color to be visible from a
variety of viewpoints, yet it does not block the visibility of the
port color. Idle ports do not have any box.

3.4 Routing
As we began to suspect that errors were passed from switch to
switch along a communication route, we needed to include route
information into our visualization. We expanded our picking
capability to select a start and an end for the route. Either ports or
switches can be selected as either sources or destinations. A radio
button designates the picking function: select, start route, or end
route. Just as with normal picking, a bright green wire frame
overlay is used to highlight the selection. Typed in labels can
replace picking to select endpoints.

A draw route checkbox enables the route to be drawn as a
thick red line along the corresponding network links. A different
route color can be specified through the initialization file. Figure
6 presents a view from the backside of the switches to show a
route that uses a wraparound link between a single port and all the
ports on a switch (on the top row with the green X on its face).
The same route is shown in Figure 2 using the torus layout. This
layout presents a clearer picture since the switches in the wrap
around link are actually adjacent in the network topology.

Routing information is contained in a set of files. Given the
starting port, a corresponding file is opened and a line
corresponding to the destination is read. This line encodes a
series of hops, in terms of ports, between the source and
destination. If a switch is selected for either the source or the
destination, routes are drawn between each of the switch’s ports
and the other end of the route. Naming conventions and directory
information for the route files are contained in the model file.

3.5 Animation
The animation functions are rewind, back step, forward step, and
play, which are accessed as buttons in the GUI and are modeled
on a VCR interface. Random access to individual time steps is
available through a type-in window, which also displays the
current time step when the button functions are used. When play
is selected, the animation starts from the current time step and
stops with the last time step. The speed of the animation is
controlled by the spinner update pause, which is in seconds.

The error data, the job data, or both can be viewed
dynamically. The color-coding of the error data depends on the
range selected and whether running or slice is selected for the
error display (see 3.2). If the error display is set to total when
animation is started, it is automatically reset to running.

Although stepping forward and backward through a time
sequence has proved to be useful, we have found that the play
function is almost never used since the users prefer precise
control.

4 RESULTS
Our first test of the tool was to go back and see if we could detect
a known hardware error from data that had been gathered during a
failure. We had had a faulty cable that was discovered only after
replacing a switch failed to resolve the problem. Looking back at
our logs and stepping through the error data, we can see the
origins of the error in a single network port, shown in yellow in
the first frame of the time series in Figure 7. In successive
frames, the error propagates along the routes connecting the two
highlighted switches at the bottom (source) and top (destination)
of the column of switches. The errors originate in the link prior to

the yellow port, though they are only seen in the error counts on
ports downstream from the source. With each successive time
step the downstream error counts grow as bad packets continue to
flow from the bad cable.

In our next example, we had a situation where the entire
cluster was dying and we did not know why. We were able to
track down the source of the problem using our tool. It turned out
that four switches from the cluster had been designated a 32 node
virtual machine, though the switches and nodes remained
physically connected to the larger cluster. The people working on
the virtual machine decided to reboot their part of the system
when a node became hung. Rebooting caused high error counts
on the processor ports of the switches involved as shown in Figure
5. These errors were then propagated along the route shown in
Figure 6 back to the highlighted switch in the top row. Amongst
the nodes on this switch is a central node which does the
scheduling of jobs. The corrupted messages reaching this node
led to the failure of the scheduler for the entire cluster, thereby
causing a cluster-wide failure. Correlating the error counts, the
route, and the switches associated with the virtual machine
enabled us to discover the cause.

Further testing outside of our tool has found that the source
of the problem comes from how the nodes are powered down. An
unload must be done to quiet the state of line drivers on the switch
adapter, thereby minimizing any spurious activity that they would
subsequently transmit. However, since the node is hung, this
unload cannot be initiated. We expect to file a problem report
with the network vendor in the near future.

Figure 5: Errors on processor ports in virtual machine.

5 CONCLUSIONS
Although we initially created this tool to help us debug hardware
errors on our cluster, we have discovered that this tool provides a
powerful way to view all sorts of data and has provided insight
into a number of unanticipated areas. Therefore, we have

expanded our view of the tool’s utility to include performance
optimization and design analysis.

As an example of performance analysis, visualizing the job
distribution of the nodes has led us to change how our scheduler
works. Now nodes in the same job will be allocated near each
other physically, rather than just being logically contiguous.
Seeing the spatial correlation between the switches and switch
labels has also led to changes in system configuration design.

Another unexpected insight came from some testing we did
where we took the entire cluster and simultaneously started a
number of jobs. Their exclusive task was to divide the nodes in
the job between senders and receivers and to send a large number
of messages between them. All the jobs were essentially
identical, yet some had high message throughputs, while others
did not. Looking at the routing, we could see that certain
switches were common to multiple routes and acted as a
bottleneck. Now we are examining how we design our routes to
eliminate this problem.

6 ACKNOWLEDGMENTS
We would like to thank Eric Russell for providing the error data.
The DOE Mathematics, Information, and Computer Science
Office funded part of this research. The work was performed at
Sandia National Laboratories. Sandia is a multi-program
laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under
Contract DE-AC04-94AL85000.

References
[1] Robert Bosch, Chris Stolte, Gordon Stoll, Mendel

Rosenblum, and Pat Hanrahan. Performance Analysis and
Visualization of Parallel Systems Using SimOS and Rivet: A
Case Study. In Proceedings of the Sixth International
Symposium on High-Performance Computer Architecture,
pages 360-371, January 2000.

[2] James C. Browne, Syed I. Hyder, Jack Dongarra, Keith
Moore, and Peter Newton. Visual Programming and
Debugging for Parallel Computing. IEEE Parallel &
Distributed Technology: Systems & Applications, Vol. 3,
Issue 1, pages 75-83, 1995.

[3] Patricia Crossno and Edward Angel. Visual Debugging of
Visualization Software: A Case Study for Particle Systems.
In Proceedings of Visualization ’99, pages. 417-420, October
1999.

[4] Ming C. Hao, Alan H. Karp, Milon Mackey, Vineet Singh,
and Jane Chien. On-the-Fly Visualization and Debugging of
Parallel Programs. In Proceedings International Workshop
on Modeling, Analysis, and Simulation of Computer
Telecommunication Systems, pages 386-391, 1994.

[5] Karen L. Karavanic, Jussi Myllymaki, Miron Livny, and
Barton P. Miller. Integrated Visualization of Parallel
Performance Data. Parallel Computing, Vol. 23, pages 181-
198, 1997.

[6] D. Kranzlmüller, S. Grabner, and J. Volkert. Debugging
with the MAD Environment. Journal of Parallel
Computing, Vol. 23, No. 1-2, pages 199-217, April 1997.

[7] Paul Rademacher. GLUI: A GLUT-Based User Interface
Library. http://www.cs.unc.edu/~rademach/glui, June 1999.

[8] Kang Zhang, Tom Hintz, and Xianwu Ma. The Role of
Graphics in Parallel Program Development. Journal of
Visual Languages and Computing, Vol. 10, No. 3, pages
215-243, June 1999.

http://www.cs.unc.edu/~rademach/glui

Figure 6: User interface for the tool. Model viewed from behind to show wrap-around links. Display shows the network ports with
the same route as in Figure 5 to visualize the error propagation along the route due to the reboot of the virtual machine.

Figure 7: Five time steps showing error propagation due to a faulty cable (link below lower left yellow port) along routes

connecting switch at bottom of column to switch at top of column.

	INTRODUCTION
	RELATED WORK
	IMPLEMENTATION
	Model
	Errors
	Jobs
	Routing
	Animation

	RESULTS
	CONCLUSIONS
	ACKNOWLEDGMENTS

