'

—

-

Obtaining Parallelism on Multicore and
GPU Architectures in a Painless Manner

2010 Post-Convention Workshop
High Performance Implementation of Geophysical Applications

October 21, 2010

Michael Wolf, Mike Heroux, Chris Baker (ORNL)
Extreme-scale Algorithms and Software Institute (EASI)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned Sandia
/. bg&‘j subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration National
//{,’,VN”AS’PWT?\ under contract DE-AC04-94AL85000. Laboratories

V\//

——

EASI

* Work is part of Extreme-scale Algorithms and
Software Institute (EASI)

— DOE joint math/cs institute

— Focused on closing the architecture-application
performance gap

« Work primarily with Mike Heroux, Chris Baker
(ORNL)
 Additional contributors
— Erik Boman (SNL)
— Carter Edwards (SNL)
— Alan Williams (SNL)

Sandia
2 National
Laboratories

o> Trilinos Framework

 Object-oriented software framework to enable the
solution of large-scale, complex multi-physics
engineering and scientific problems

— Open source, implemented in C++

» Current work on new capabilities

— Templated C++ code
 Ordinal, scalar types
* Node type
— Better parallel abstraction
» Abstract inter-node communication
» Generic shared memory parallel node
» Template meta-programming for
write-once, run-anywhere kernel support

3

e €

.

> . .
Shift in High Performance Computing (HPC)

« HPC shift in architectures (programming models?)
* CPUs increasingly multicore

— Clock rates have peaked

— Processors are becoming more NUMA
 Impact of accelerators/GPUs

— #2 (Nebulae), #3 (Roadrunner) on Top500 list

— Will play a role in or at least impact future supercomputers
« Complications

— More diverse set of promising architectures

— Heterogeneous architectures

(e.g., multicore CPUs + GPUs)

Sandia
4 National
Laboratories

gy 4

e

=" Challenges in High Performance Computing (HPC)

« HPC shift in architectures (programming models?)
— CPUs increasingly multicore
— Impact of accelerators/GPUs
— Heterogenous architectures
« Complications
— More diverse set of promising architectures
— Heterogeneous architectures

 Challenges

— Obtaining good performance with our numerical kernels
on many different architectures (w/o rewriting code)

— Modifying current MPI-only codes

Sandia
5 National
Laboratories

Obtaining good performance with our
kernels on many different architectures

Sandia
National
Laboratories

A
API for Shared Memory Nodes

» Goal: minimize effort needed to write scientific codes for
a variety of architectures without sacrificing performance
— Focus on shared memory node (multicore/GPU)
— Abstract communication layer (e.g., MPI) between nodes

— Our focus: multicore/GPU support in Trilinos distributed linear
algebra library, Tpetra

Sandia
7 National
Laboratories

V

T~

\
> API for Shared Memory Nodes

* Find the correct level for programming the node architecture

— Too low: code numerical kernel for each node
* Too much work to move to a new platform

Num. Implementations
m kernels * n nodes = mn

— Too high: code once for all nodes
« Difficult to exploit hardware features
» APl is too big and always growing
« Somewhere in the middle (Trilinos package Kokkos):

— Implement small set of parallel constructs (parallel for, parallel
reduce) on each architecture

— Write kernels in terms of constructs

Num. Implementations
m kernels + ¢ constructs * n nodes = m + cn

Trilinos: ¢c=2

Sandia
8 National
Laboratories

~—

\
Kokkos Compute Model

* Trilinos package with API for programming to a generic
parallel node

— Goal: allow code, once written, to run on any parallel node,
regardless of architecture

« Kokkos compute model
— User describes kernels for parallel execution on a node
— Kokkos provides common parallel work constructs
 Parallel for loop, parallel reduction
* Different nodes for different architectures

Intel Thread Building Blocks | ¢ TBBNoOde * TPINode Pthread based

cupa (via Thrust) | * CUDANode | » SerialNode

« Support new platforms by implementing new node classes
— Same user code

Sandia
0 National
Laboratories

Kokkos Compute Model

» Kokkos node provides generic parallel constructs:
- Node::parallel for() and Node::parallel reduce()
— Currently implemented for several node architectures
e TBBNode, TPINode, CUDANode, SerialNode

» User develops kernels in terms of these parallel
constructs

* Template meta-programming does the rest
— Produces kernels tailored for the specific architecture

10 l{;laégdu I
na
Laboratories

Kokkos: axpy() with Parallel For

template <class WDP>

void Node::parallel_for(int beg, int end, WDP workdata); E(I)LCkK)S

struct AxpyOp {
const double *x;
double *y; Data needed for operation

double a;

void execute(int i)
{ y[i] = a*x[i] + y[i]; } Serial op for index 1
}s

WDP

void exampleFn(double *x, double *y, double a)

{
AxpyOp op1l;
opl.y =Yy;
opl.x = X;
opl.a = a;
node->parallel for<AxpyOp>(0,n,opl);

11

Sandia
National
Laboratories

. €

R

V=" Shared Memory Timings for Simple Iterations

SerialNode 101 330

TPINode(1) 116 375

TPINode(2) 229 ;35 | Physical node:

— One NVIDIA Tesla C1060
TPINode(4) 453 1,477
te(s c18) 090 — Four 2.3 GHz AMD
TPIN 1)
ode(8) Quad-core CPUs

TPINode(16) 667 2,203

CUDANode 2,584 8,178

Power method: one SpMV op, three vector operations
Conjugate gradient. one SpMV op, five vector operations

Matrix is a simple 3-point discrete Laplacian with 1M rows

Wrote kernels once in terms of constructs
— Got different architecture implementations for “free”

12 l{;laégdu I
na
Laboratories

Modifying Current MPI-Only Codes
(Bimodal MPI and MPI+Threads Programming)

13

Sandia
National
Laboratories

Percent Time

\
o= Motivation: Why Not Flat MPI?

100%
90%
80%

Charon minus solver

Solve time due to iter increase

20% Solve time due to iter cost # Linear Solver Iterations
60% Preconditioner setup per Newton Step
153
9 160
PR » 1%y 117 117 1257129
40% -8
30% -

20%

10%

0% 128 256 512 1024 2048 4096

128 256 512 1024 2048 4096 # Procs
Procs

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

» Multithreading can improve some numerical kernels
— E.g., domain decomposition preconditioning with incomplete factorizations

* For flat MPI, inflation in iteration count due to number of subdomains

By introducing multithreaded triangular solves on each node
— Solve triangular system on larger subdomains

— Reduce number of subdomains (MPI tasks), mitigate iteration inflation .
ndia

14 National
Laboratories

V

Bimodal MPI and MPI+Threads Programming

Node 0 Node 1
Memory Memory
Core O [Core n-1 Core O | Core n-1

Node m-1

Core n-1

 Parallel machine with p = m * n processors:
-m = number of nodes
-n = number of shared memory cores per node

« Two typical ways to program

-Way 1: p MPI processes (flat MPI)

—Massive software investment in this programming model

-Way 2: m MPI processes with n threads per MPI process
- Requires ubiquitous change when starting from “way 1”

15

Sandia
National
Laboratories

e
=" Bimodal MPI and MPI+Threads Programming

Node 0 Node 1
Memory Memory
Core O [Core n-1 Core O | Core n-1

Node m-1

Core n-1

Two typical ways to program

-Way 1: p MPI processes (flat MPI)

-Way 2: m MPI processes with n threads per MPI process

Third way (bimodal MPI and hybrid MPI+threads)

-“Way 1”7 in some parts of the execution (the app)
- “Way 2" in others (the solver)

Challenges for bimodal programming model
- Utilizing all cores (in Way 1 mode)
- Threads on node need access to data from all MPI tasks on node

Solution: MPI shared memory allocation

16

Sandia
National
Laboratories

- MPI Shared Memory Allocation
mtn=...;
|dea: double* values;

» Shared memory alloc/free functions:
— MPI_Comm_alloc_mem
— MPI_Comm_free_mem
 Architecture-aware communicators:
MPI_COMM_NODE - ranks on node
MPI_COMM_SOCKET — UMA ranks
MPI_COMM_NETWORK - inter node
 Status:

— Auvailable in current development
branch of OpenMPI

— Under development in MPICH

— Demonstrated usage with threaded
triangular solve

— Proposed to MPI-3 Forum

MPI_Comm_alloc_ mem(
MPI_COMM NODE, // comm (SOCKET works too)

n*sizeof(double), // size in bytes

MPI INFO NULL, //placeholder for now

&values); // Pointer to shared array (out)
// At this point:

// - All ranks on a node/socket have pointer to a shared bufter.

/I - Can continue in MPI mode (using shared memory algorithms)
// - or can quiet all but one rank:

int rank;

MPI_Comm_rank(MPI COMM_NODE, &rank);

// Start threaded code segment, only on rank 0 of the node
if (rank==0)
{

}
MPI Comm free mem(MPI_ COMM NODE, values);

Collaborators: B. Barrett, R. Brightwell - SNL; Vallee, Koenig - ORNL

Sandia
17 National
Laboratories

o> Simple MPI Program

double *x = new double|n];
double *y = new double|n];

MPIkernell (x,y);
MPTkernel2(x,y);

delete || x;
delete || y;

« Simple MPI application
— Two distributed memory/MPI kernels

* Want to replace an MPI kernel with more efficient
hybrid MPI/threaded kernel

— Threading on multicore node

Sandia
18 National
Laboratories

y
Simple Bimodal MPI + Hybrid Program

double *x = new double|[n];
double *y = new double|n];

MPTIkernell(x,y);
MPTIkernel2(x,y);

delete [| x;
delete [| y;

MPI_Comm_size(MPI_.COMM_NODE, &nodeSize);
MPI_Comm _rank(MPI.COMM_NODE, &nodeRank);

double *x, *y;

MPI_Comm _alloc_mem(MPI_COMM _NODE,n*nodeSize*sizeof(double),
MPIINFO_NULL, &x);

MPI _Comm_alloc_.mem(MPI_COMM NODE n*nodeSize*sizeof(double),
MPI_INFO_NULL, &y)

MPIkernell (&(x[nodeRank * n]),&(y[nodeRank * n]));

if(nodeRank==0)
{

}
MPI_Comm_free_mem(MPI_.COMM_NODE, &x);
MPI_Comm_free_mem(MPI_.COMM_NODE, &y);

hybridKernel2(x,y);

* Very minor changes to code
— MPIKernel1 does not change

* Hybrid MPI/Threaded kernel runs on rank 0 of each

node

— Threading on multicore node Sondin

National
19 labura"?aies

_— &
V=7 Iterative Approach to Hybrid Parallelism

* Many sections of parallel applications scale extremely
well using flat MPI

* Approach allows introduction of multithreaded kernels
In iterative fashion
— “Tune” how multithreaded an application is

* Focus on parts of application that don’t scale with
flat MPI

Sandia
20 National
Laboratories

T~

V= Iterative Approach to Hybrid Parallelism

MPI_Comm_size(MPI_.COMM_NODE, &nodeSize);
MPI_Comm _rank(MPI_.COMM_NODE, &nodeRank);

double *x, *y;

MPI_Comm_alloc.mem(MPI_COMM_NODE n*nodeSize*sizeof(double),
MPI_INFO_NULL, &X)

MPI Comm_alloc_mem(MPI_.COMM_NODE, n*nodeSize*sizeof(double),
MPIINFO_NULL, &y);

MPIkernell (& (x[nodeRank * n]),&(y[nodeRank * n)));

if(nodeRank==0)
{

}
MPI_Comm _free mem(MPI_COMM_NODE, &x);
MPI_Comm _free mem(MPI_COMM_NODE, &y);

hybridKernel2(x,y);

« Can use 1 hybrid kernel

Sandia
21 National
Laboratories

V

9% lterative Approach to Hybrid Parallelism

MPI_Comm_size(MPI_.COMM_NODE, &nodeSize);
MPI_Comm_rank(MPI_.COMM_NODE, &nodeRank);

double *x, *y;

MPI_Comm_alloc.mem(MPI_COMM_NODE n*nodeSize*sizeof(double),
MPI_INFO_NULL, &X)

MPI Comm_alloc_mem(MPI_.COMM NODE n*nodeSize*sizeof(double),
MPI_INFO_NULL, &y),

if(nodeRank==0)

hybridKernell(x,y);
hybridKernel2(x,y);

}
MPI_Comm_free_ mem(MPI_COMM_NODE, &x);
MPI_Comm_free_ mem(MPI_COMM_NODE, &y);

* Or use 2 hybrid kernels

Sandia
22 National
Laboratories

Work in Progress: PCG Algorithm

Mantevo miniapp: HPCPCG

T0 :b—ACEQ
20 :M_l’l“o
Po = <o

{

T+l = Tk + APk

ka1 = Te — A Apr
_oag—1

Z+1 = M ™ re

T
/Bk‘ _ "k4+1%k+1
r¥ 2k
Prki1 = Zk+1 + BrPk Use multithreading
} for precondtioning

23 National
Laboratories

PCG Algorithm

<0

Po

for (k = 0; k < maxit, ||rg|| < tol)

{

b—A.Q?O
M_l’ro

. Tk ?RE
Ak = pL Apg
Th+1 = Tk + QPk
kil = Tk — Qi Apg
_ 1
Zk_|_1 = M Tk_|_1
6 _ rg+1zk+1
k — rz

Pk+1 = Zk+1 + BrDPk

24

Shared memory
variables

Sandia
National
Laboratories

PCG Algorithm — MPI part

20 :M_l’l“o

Po = <0

{

T+l = Tk + APk
ki1 = e — O App

— —1
Zk+1 — M k41
T
6 _ "k4+1%k+1
k rT zk

Pk+1 = Zk+1 + BrDPk

Flat MPI operations

Sandia
Laboratories

,«..1‘»' PCG Algorithm — Threaded Part

o — b — ACEQ
20 = M_lTO
Po = <0
for (k = 0; k < maxit, | < tol)
{ rT o Multithreaded block
A = TkA preconditioning to reduce
Pi 4Pk number of subdomains

T+l = Tk + APk
ka1 = Te — A Apr

_ A7—1
21 = M rpq
T
6 _ "k4+1%k+1
k rT zk

Pk+1 = Zk+1 + BrPk

Sandia
26 National
Laboratories

Preliminary PCG Results

c120 - ¥ threads=1
-8138 - B threads=2
g 28] B threads=4
£ 90 - @ threads=8
0" L
FD16 FD32
Flat MPT PCG Threaded Preconditioning
15
v B threads=2
£ 1-
E B threads=4
20 W threads=8
0 -
FD16 FD32
Runtime relative to flat MPI PCG
27 Notiorel

Laboratories

V= Summary: Kokkos Package in Trilinos

* Goal: To help obtain good performance of numerical
kernels on different architectures (w/o rewriting code)

* API| for programming generic shared-memory nodes

— Allows write-once, run-anywhere portability
— Support new nodes by writing parallel constructs for new node

* Nodes implemented support
— Intel TBB, Pthreads, CUDA-capable GPUs (via Thrust), serial

 For more info about Kokkos, Trilinos:
— http://trilinos.sandia.gov/

Sandia
28 National
Laboratories

-~
=" Summary: Bimodal MPI and MPI+Threads Programming

* How to modify current MPIl-only codes
— Massive investment in MPI-only software

* MPI shared memory allocation will be important

— Allows seamless combination of traditional MPI
programming with multithreaded or hybrid kernels

* lterative approach to multithreading

* Work-in-progress: PCG implementation using
MPI| shared memory extensions

— Effective in reducing iterations
— Runtime did not decrease much

— Need more scalable multithreaded triangular solver
algorithm
Sandia

29 National
Laboratories

