Graph Exploration: to Linear Algebra
(and Beyond?)

Jonathan Berry
Michael Wolf
Dylan Stark

Sandia National Laboratories

GABB Workshop
May 19, 2014

T VAL =3
///th A‘ 9{:::3 LABORATORY DIRECTED RESEARCH & DEVELOPMENT

nal Nuclear Sec

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. National

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Sandia
Laboratories;

'
~,
3 /.\,' Talk Objectives
4

* Motivate the selection of graph primitives via social network
analysis

» Argue that there are different levels of graph primitives
(a better title aside: “To linear algebra and below”)

» Describe a sincere attempt to implement an analysis using linear
algebra from John Gilbert via CombinatorialBLAS

» Discuss lessons learned and implications for GABB design

Sandia
r“‘ National
Laboratories

%yple Public Graphs in “Big Data”

Analysis

« Twitter-2010 (as obtainable from LAW (http://law.di.unimi.it/))
— Edges: “Ais followed by B”
— 41M vertices, 1.4B edges

— Contains vast amounts of spam-like behavior (e.g., you can buy
500 “followers” for S5)

« LiveJournal-2008 (as obtainable from Stanford Network Analysis
Project (SNAP: http://snap.stanford.edu))

— Edges: “A declares friendship with B”
— 3.9M vertices, 34M edges

— Also contains strange, non-human-looking behavior (as we’ll
see)

Sandia
r“‘ National
Laboratories

X
Per-Degree Clustering Coefficients

» Metrics for characterizing the graph?

« Vertex v has: Ov
— Degree 6
— (6 choose 2)=15 wedges (pairs of neighbors)
— 2 triangles O O
— Clustering coefficient 2/15 O O
» Consider the average clustering coefficient of
all vertices of degree d (for all d) @ @O

— Call this the “per-degree clustering
coef” (pdcc)

 We’ll look at plots of degree vs. pdcc

Berry, Jonathan, Aaron Kearns, Cynthia A. Phillips, Jared Saia, "Finding a planted clique in a distributed social network," 'I" Sandia

SIAM Workshop on Network Science, July 2014. [gali?g%ﬁes

PDCC in LiveJournal and Twitter

Average Clustering Coefficient

0.8

0.6 +

04 r

0.2

LiveJournal

T

10 100 1000 10000

Dagrea

100000

Average Clustering Coefficient

0.8

0.6 +

04 r

0.2

Twitter

10 100 1000 10000

Dagres

Berry, Jonathan, Aaron Kearns, Cynthia A. Phillips, Jared Saia, "Finding a planted clique in a distributed social network,"
SIAM Workshop on Network Science, July 2014.

100000

Sandia
National
Laboratories

\

- PDCC in Livedournal and Twitter

Average Clustering Coefficient

0.8 -

0.6 +

04+

02 r

LiveJournal

10

100 1000

Dagraa

100000

Average Clustering Coefficient

0.8 -

0.6 +

04+

0.2 r

Twitter
'y
%
10 100 100 10000 100000
Dagraa

Sandia
r“‘ National
Laboratories

- 4 gethodology to Understand Anomalies

“

 Enumerate triangle (3-cycles) in the graphs
— We don’t just want to count triangles
— We’ll examine each triangle and operate on it individually
— Example:
» Pass 1: For each triangle T:
— Increment the triangle degree of each endpoint
» Pass 2: For each triangle T:

— If each endpoint has property X: (e.g. triangle degree >=
100)

» Call T an “X-triangle”
» Increment the “X-triangle degree” of each endpoint
« Pass 3: etc. - many variations

Sandia
r“‘ National
Laboratories

\

Anomalies Removed

Using a process like this, we can identify and remove such anomalies
(details beyond the scope of this talk)

LiveJournal Twitter
1 T T T T LA | 1 T T T T
E o8t E o8t
= =3
- -
ol @
S S os
> 067 > 06}
< <
Z z
5 04+ 5 04+
<@ <
< \g o -_-—_Jﬂhnﬂ-*
0) o) - :) . 0. + 4 b b
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Dagres Dagrae
Berry, Jonathan, Aaron Kearns, Cynthia A. Phillips, Jared Saia, "Finding a planted clique in a distributed social network," Sandia
SIAM Workshop on Network Science, July 2014. 'I‘ [‘Lal;%?gfcl,ﬁes

S~

Granularity

‘ GABB at Different Levels of

 Low-Level

graph (e.g. the PBGL, MTGL

— lteration, vertex & edge properties
— Maximum flexibility
— Relatively little help with algorithms

sizes
size_type

Descriptors
vertex_descriptor
edge_descriptor

Vector Iterators
vertex_iterator
edge_iterator
adjacency_iterator
in_adjacency_iterator
out_edge_iterator
in_edge_iterator

Thread Iterators
thread_vertex_iterator
thread_edge_iterator
thread_adjacency_iterator
thread_in_adjacency_iterator
thread_out_edge_iterator
thread_in_edge_iterator

Categories
directed_category
iterator_category

« High-Level graph (e.g. Combinatorial BLAS

The type that represents sizes associated with the graph such as the number of edges in the graph or the degree of a vertex.

The handle used to refer to a vertex.
The handle used to refer to a edge.

Iterator type that iterates over all the vertices in a graph.

Iterator type that iterates over all the edges in a graph.

Iterator type that iterates over the adjacent vertices of a given vertex.
Iterator type that iterates over the in adjacent vertices of a given vertex.
Iterator type that iterates over the outgoing adjacent edges of a given vertex.
Iterator type that iterates over the incoming adjacent edges of a given vertex.

Iterator type that iterates over all the vertices in a graph.

Iterator type that iterates over all the edges in a graph.

Iterator type that iterates over the adjacent vertices of a given vertex.
Iterator type that iterates over the in adjacent vertices of a given vertex.
Iterator type that iterates over the outgoing adjacent edges of a given vertex.
Iterator type that iterates over the incoming adjacent edges of a given vertex.

Indicates if the graph is undirected, directed, or bidirectional.
Indicates if the graph supports vector iterators, thread iterators, or both.

Edge Functions
The following functions must be defined for all graphs.

vertex_descriptor
source(const edge_descriptor& e, const Graph& g)
Returns the source vertex of e.

vertex_descriptor
target(const edge_descriptor& e, const Graph& g)
Retums the target vertex of e.

Vertex Functions
The following functions must be defined for all graphs.

size_type
out_degree(vertex_descriptor v, const Graph& g)
Returns the number of edges leaving v.

In addition, the following two functions must be defined for a bidirectional graph.

size_type
in_degree(vertex_descriptor v, const Graph& g)
Returns the number of edges entering v.

size_type
degree(vertex_descriptor v, const Graph& g)
Returns the sum of the number of edges leaving v and the number of edges entering v.

Filtering Functions
The following functions must be defined for all graphs. They are used when implementing filtering

vertex_descriptor
null_vertex(const Graph& g)
Retumns a special value for a vertex_descriptor that represents an invalid vertex.

edge_descriptor
null_edge(const Graph& g)
Returns a special value for an edge_descriptor that represents an invalid edge.

bool
is_valid(iterator_type& iter, size_type p, const Graph& g)
Returns if the vertex or edge descriptor pointed to by iter[p] is valid.

— Pre-selected solution method (linear algebra
— Customize that pre-selected method

Sandia
National
Laboratories

V '
}Some GABB for Triangle Enumeration

* MTGL triangle enumeration
— Bucket data structures
« GraphLab triangle numeration
— Hashtable operations (variants on “Cuckoo hashing”)
— Set intersection on these objects and arrays
« Combinatorial BLAS triangle enumeration
— Linear algebra semi-ring operations
— (the rest of this talk!)

Sandia
r“‘ National
Laboratories

Gilbert’s Algorithm for Triangle
Counting (Part 1)

Consider the graph in Figure 1. Its adjacency matrix, with rows and columns
sorted by vertex degree is:

0O 0 0 0 1
00 0 1 1
A=1 0 0 0 1 1
0O 1 1 0 1
1 1 1 1 0

Gilbert’s algorithm has us split A into lower and upper triangular portions:

(0 \ 3

0 0
L=]0 0 0 O 5
01 1 0
A=L+U \1 11 1 0) 4 O O—?
000 0 1 O
(0 0 1 1\ 2
U= 01 1 .
- Figure 1

Gilbert’s Algorithm for Triangle
Counting (Part 2)

The unmodified Gilbert’s algorithm then computes B = L = U

4
0 0000 1 00000 : :
0 0 0o 0 1 1 0o 0 0 0 0
B = 0O 0 0 * 0 1 1 = 0o 0 0 0 0
0O 1 1 0 0 1 0o o0 0 2 2
1 1 1 1 0 0 s\ 0 0 0 4
Finally, the unmodified algorithm computes A. = B:
4 4 5
0O 0 0 0 1 0o 0 0 0 0 0O 0 0 0 0
000 1 1 00000 000000 Indicates two unknown
C = 0O 0 0 1 1 ® 0 0 0 0 0 = 0 0 0 0 0 Wedges on edge (5’4)
0 1 1 0 1 o o0 0 2 2 0O 0 0 0 2
11110 00024/ s\ooo®@o

Summing the elements in the lower triangular portion of ', we count two tri-

3
sl O

1O 0O
CombBLAS supports this algorithm well Cz) '

numeration Version of Gilbert’s

5

Algorithm
2 3
(000 0 0
000 0 0
B=L“num”U= | 0 0 0 o0 0
0 0 0 {23} {2.3)
\ 0 0 023D {1.2.3.4) . c

Ex: builds a list of all wedges on edge (5,4); then A .* B filters to get triangles

Sandia
r“‘ National
Laboratories

;/.’ GABB for Gilbert Triangle Enumeration 1

* Problem: We cannot form matrix B; there are too many wedges

» Solution 1: There is no need to compute B; this can be expressed
as fused operation

— Use information in A[i,j] to determine whether to calculate
B[i,j]

« Solution 2: There is no need to form B; this can be expressed as a
streaming algorithm
— As soon as B[i,j] is generated, can (must) immediately begin
B[i,j] .* A[i,]j], then delete B[i,]j]

Sandia
r“‘ National
Laboratories

_
e, 4

Algorithm 2 for Triangle Enumeration
- UCSB (Part 1)

Consider graph G:

Os
40O~ O—-0
0O & !
2
(00001
000 1 1
A= 0 0 0 1 1
0110 1
\ 11 1 1 0

Each row of L implicitly holds wedges
for a given vertex
Wedges = pairwise combinations
of column ids, and row number
E.g, row 5
- Wedges: {1,2,5}, {1,3,5}, {1,4,5},
{2,3,5}, {2,4,5}, {3,4,5}

/

Adjacency matrix of G

[

o O O O
_ O O

0
1 0

\1 111 0

Lower triangular portion of A

Sandia
r“‘ National
Laboratories

_ '
4 ‘/\ Algorithm 2 for Triangle Enumeration
" ol

- UCSB (Part 2)

3 (1 0O 0 0 O O\
KO- 01 0 0 10
4O G O O B = O 0 1 1 0 O
N 1 o 0 0 1 1 1
O \1 1100 1)
3 Incidence matrix of G
C=LxB
0 1 0 0 0 0 O O 0 0 0 0 O
(0 0 \ (O 1 0 0 1 0\ O 0 0 0 O O\
C = 0O 0 O * O 0 1 1 0 O = O 0 0 0 O O
0O 1 1 O O 0 01 1 1 0O 1 1 1 1 O
\11110)\111001) \1 112 2 0)

* Matrix formed by multiplying L by incidence matrix
indicates triangles
* Elements in C of size 2 correspond to triangles) it

Laboratories

Algorithm 2 for Triangle Enumeration

- UCSB (Part 3)

1 0 0 [0][0] O
(0100120\
0 0 13{1] |0 O
0 0 04]1] 121
\1 1 1100 1/
/0000 0 0)
0000 0 0
0000 0 0
01 1 1 1 0
\1 1120 o)

5

3

Q s
4 Oﬁf O——~0
o 1

2

Triangles:
{2, 4, 5}

{3, 4, 5}

C and incidence matrix can be used to enumerate triangles

Cli,j]==2 indicates triangle
— Vertexiisin triangle

— Two vertices k, where B[k,j]==

1 are in triangle) it

Laboratories

;/-’ Algorithm 2 with Modification (Part 1)

Consider graph G:

10O

o O O O

\ 1

O
o
2

_—O O O

1

50
G 1
0O 0 1
0O 1 1
0O 1 1
1 0 1
1 1 O

/

Adjacency matrix of G

Each row of L implicitly holds wedges

for a given vertex
Wedges = pairwise combinations
of column ids + row number
E.g, row 5
- Wedges: {1,5,2}, {1,5,3}, {1,5,4},
{2,5,3}, {2,5,4}, {3,5,4}

0

/@@ \
o 0 0
o {1} {1} 0

\ {1} {1} {1}y {13 0

Lower triangular portion of A

Sandia
National
Laboratories

\

;/." Algorithm 2 with Modification (Part 2)
3 {it o o0 o 0 0
O s (0 {1} 0 0 {1} ¢ \
1Q—cO-OB=| 0 0 {1} {13 0 ¢
~ 1 o 0 0 {1} {1} {1}
O \ (10 0 {1y
Incidence matrix of G
C=LxB
0 b0 0 0 0 o0 0 0 0 9
/@@ \/{é}{l}ﬂﬂ{l}ﬂ\(ﬂ)@@ 0 @@\
o B T T O W R I I R O Y B B
0 {1 {13 0 o0 0 {1y {1} {1} 0 {2} (34 {3} {2} 0
\{1} {1 {1 {U @/ \{1} {1 {1 0 0 {1}) K{l} 20 {3 34 {24 0

 Multiplication by incidence matrix yields triangles

and BJk,j] are nonzero
* Elements of size 2 correspond to triangles

* Elements Cl[i,j] are formed by appending all k where L[i,k]

Sandia
National
Laboratories

)

0 0
0 0
o0 0 o0 1=10
0 0
0 0

o0 0)
o0 0)

ST =

2y 3 3y (%

\ 1} {2 3} B4 24 0) \

Final step

Remove all elements of size 1

Append row number to remaining entries
Triples represent triangles

SDSSeoe e =

SDSSeee e =

Triangles

Sandia
r“‘ National
Laboratories

V\ /

,-o’ GABB for Triangle Enumeration Method 2
w (Modified)

/

* Problem: We don’t want to form matrix C explicitly; there are too
many nonzeros that will be pruned in next step

« Solution 1: There is no need to store non-triangle indicators; this
can be expressed as fused operation

— Fuse function f() with matrix multiply

« Solution 2: There is no need to form C; this can be expressed as a
streaming algorithm

— As soon as C[i,j] is generated, we apply f to obtain DJ[i,j].
— If C[i,j] is size 1, D[i,j] is a zero
— If C[i,j] is size 2, D[l,j] contains a triangle

Sandia
r“‘ National
Laboratories

'

-
P CombBLAS Implementations Status

« CombBLAS implementation of triangle counting working

CombBLAS to be powerful and flexible (especially user defined semirings)
CombBLAS straight-forward to use

 CombBLAS implementation of triangle enumeration more challenging than
counting

Complex datatypes (e.g, STL vectors, lists) desirable for this kernel and
other graph computation; not well supported in CombBLAS

Not sure how fusing and/or streaming fit into CombBLAS

Concerned that CombBLAS implementation will not be performance
competitive with extensions

Future work: compare CombBLAS triangle enumeration implementation to
other graph implementations

 CombBLAS-like linear algebra Matevo-style proxy “app” of triangle
enumeration

Fused linear algebra operations considered crucial to performance
“Hand-coded” for our specific need but using a CombBLAS-like API

Takeaway: CombBLAS API sufficient to support triangle enumeration
algorithm

Sandia
r“‘ National
Laboratories

