A Survey of Mesh Partitioning Techniques for Irregular Grids

Michael M. Wolf
Overview

• **Static Global Mesh Partitioning**
 - Mesh Independent Partitioning
 • Random Partitioning
 • Scattered Decomposition
 • Regular Domain Partitioning
 - Geometric Partitioning Algorithms (1D/2D/3D)
 • Recursive Coordinate Bisection (RCB)
 • Recursive Inertial Bisection (RIB)
 • Hilbert Space-Filing Curve (HSFC)
 - Graph Partitioning Algorithms
 • Greedy Bisection
 • Recursive Layered (Graph) Bisection
 • ParMETIS
 - Problems with Standard Graph Partitioning Model
 • Hypergraph
• Local Refinement
 - Kernighan-Lin Algorithm
 - Helpful Sets
Global Static Partitioning Algorithms

- Partition entire mesh
- Partition once
- Not concerned with refining or evolving partition as the simulation progresses
- Algorithms may be applicable to dynamic partitioning schemes
Geometry Independent(?) Partitioning Algorithms

- Kind of geometry independent
- Based on the order on which the elements are operated
- Ignores x,y,z position of elements
- Ignores mesh connectivity
Random Partitioning (Geometry Independent)

- Each element is distributed to a randomly chosen processor
- On average, work is well balanced
- No grouping by mesh connectivity
- No grouping by mesh locality
- Communication is thus BAD!!!
Scattered Partitioning (Geometry Independent)

- Each element is distributed in order to the processor with the current smallest subdomain
- Work is well balanced
- Neighbor elements won’t be on the same processor.
- Communication is thus BAD!!!
Regular Domain Partitioning *(Geometry Independent?)*

- First \(\frac{n}{p}\) elements given to proc 0.
- Second \(\frac{n}{p}\) elements given to proc 1.
- ... etc.
- Data Locality if numbering supports.
- Communication is better but still possible problems
Geometric Partitioning Algorithms

- Elements grouped by geometric region
- Based on x, y, z position of elements
- Ignores element adjacency
- 1D, 2D, or 3D
- Fast
- Load Balance (at least in terms of elements) can be guaranteed
Recursive Coordinate Bisection (Geometric)
RCB-3D Partition

RCB -- 3D (8 procs)

Adj. Procs (Max/Sum): 5/26
Bound. Objs (Max/Sum): 1965/11961 Tau3P Run-time: 169.1
1D vs. 2D vs. 3D Partitioning

• The higher the dimension, the lower the surface/volume ratio.
 - Lower bandwidth

• The higher the dimension, the more neighboring subdomains each subdomain will bound.
 - More communications, more total latency.
RCB 1-D Scalability Leveling Off
Recursive Inertial Bisection (Geometric)

- RCB problem when mesh not aligned with XYZ axes
- RIB uses idea of inertia to improve upon RCB
Recursive Inertial Bisection (Geometric)
RIB-3D Partition

RIB - 3D (8 procs)

Adj. Procs (Max/Sum): 3/18
Bound. Objs (Max/Sum): 1570/7927

Tau3P Run-time: 154.6
Hilbert Space Filling Curve (Geometric)
Hilbert Space Filling Curve (Geometric)
RDDS (5 cell w/ couplers) HSFC-3D Partition

HSFC -- 3D (8 procs)

Adj. Procs (Max/Sum): 5/32
Bound. Obj's (Max/Sum): 2030/9038

Tau3P Run-time: 194.4
Graph Partitioning Algorithms

- Build graph out of mesh elements
- \(G = (V,E) \)
- Elements are graph vertices
- Graph vertices of adjacent elements connected by edges in graph
Graph Partitioning Properties

- Each Partition “should” be continuous.
- Uses element connectivity so partitions have little discontinuity.
- Slower than basic geometric methods
Greedy Bisection (Graph)

• Build graph
• Start at vertex of lowest degree
• Find neighboring layer.
• Repeat with vertices in that layer to find next layer, etc.
• Stop when n/p vertices are found
• Repeat process
Greedy Bisection (Graph)
Recursive Layered (Graph) Bisection

- Build graph
- Start from a seed vertex,
- Find neighboring layer.
- Repeat with vertices in that layer to find next layer, etc.
- Stop when number of vertices in layers reaches half.
- Now have 2 sets
- Recursively Repeat.
Recursive Layered (Graph) Bisection
Choosing Seed Points

- Choice of Seed Points are Important
- Boundary of domain can be good choice.
- 1 of 2 points maximum distance apart.
ParMETIS (graph)

- Uses a standard graph approach
- Partition the vertices of the graph
- Minimize the (weighted) edge cut
- NP-hard problem
- Uses heuristics to generate approximate solutions
ParMETIS (Graph)
ParMETIS

- Main ParMETIS initial partition algorithm called ParMETIS_PartKway.
- Multi-level k-way partitioning algorithm
- Step 1: Graph gradually coarsened down to graph of a few hundred vertices.
- Step 2: k-way partition of coarse graph computed
- Step 3: Graph projected back to original graph by periodically refining partition.
RDDS (5 cell w/ couplers) ParMETIS Partition

ParMETIS (8 procs)

Adj. Procs (Max/Sum): 3/14
Bound. Obj(s) (Max/Sum): 533/2778

Tau3P Run-time: 140.6
ParMETIS

- Multilevel makes k-way graph partitioning algorithm more acceptable.
- Does a great job of minimizing cut (i.e. bandwidth).
- However, pieces can be disconnected.
- Not as load balanced as geometric methods.
- More neighbors than 1D geometric methods (larger number of communications required).
Complications in Graph Partitioning

• Several potential shortcomings in standard graph partitioning model.
• Incorrect edge cut metric
• Limited in the scope of problems that can be naturally expressed (problem for other parallel partitioning problems)
Metrics

- Edge cuts not proportional to total volume
- Overcounting
Metrics

- Communication costs are dependent on latency (total number of messages sent) as well as bandwidth
- Slowest process often most important
- Limited in the scope of problems that can be naturally expressed
- May want to limit communication to nearby processors
- Want to minimize objective function based on all of these, weighted by importance
Hypergraphs

• Hypergraphs can be used to better minimize communication in standard graph problem.
• Minimizes number of boundary cuts
• Build graph out of mesh elements
• $G = (V, H)$
• Elements are graph vertices
• A hyperedge exists for each vertex
• Hyperedge H_1 contains V_1 and its neighboring vertices
Hypergraph Partitioning

- Standard Graph Model (Cut=4)
- Hypergraph Model (Cut=3)
Local Refinement

- After initial partition, make small local changes to improve partition quality
- Swap small number of elements across process boundaries
Kernighan-Lin Algorithm

- Swap pairs of nodes to decrease the cut
- Allow intermediate increases in the cut size to avoid local minima
- Loop
 - Logically exchange pair of nodes with largest gain from swapping
 - lock those nodes
 - until all nodes are locked
- If new partition is better than old, save.
- Perform the swaps for real to obtain final partition on the best partition found
- Different heuristics used to improve speed of algorithm.
Kernighan-Lin Algorithm
Kernighan-Lin Algorithm

- Does not partition poorly partitioned meshes well.
- Often used in conjunction with a very computationally “cheap” global partitioning method.
Helpful Sets

- A set of nodes is helpful if moving it from one processor to another (and rebalance) reduces the cut size.
- Step 1. Find a set of nodes in one partition and move it to the other partition to decrease the cut size.
- Step 2. Rebalance the load.
- Must be a net reduction in cut size after the two steps.
Helpful Sets

Overview

- Static Mesh Partitioning
 - Recursive Spectral Partitioning
 - Greedy Bisection
 - Recursive Spectral Bisection
 - Graph Partitioning Algorithms
 - Jostle
 - Geometric Partitioning Algorithms (1D/2D/3D)
 - Octree Partitioning (various traversal schemes including HSFC)
- Multi-level Hybrid Methods
- Dynamic Load Balancing/Data Migration
- Dynamic Load Balancing
 - Centralized
 - Decentralized
 - Fully Distributed
- Diffusion
- Dimension Exchange
- Advancing Front Algorithm
- Hypergraph
- Greedy algorithm
Hypergraph

• Kway graph partitioning?
• Understand Kernighan Lin Algorithm