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Preface

NECIS is The Nanoscience, Engineering, and Computation Institute at Sandia that
was established as a project within the 2006 Sandia Engineering Excellence late start
Laboratory Directed Research and Development (LDRD) program. NECIS conducted
48 coordinated research collaborations, from May through September of 2006, focused
on the integration of nanoscale physical and biological science with computational
science. In collaboration with key university partners, NECIS was designed to inspire
and expedite breakthroughs in nanotechnology that lay the foundation for discovery
institutes in the spirit of the President’s “American Competitiveness Initiative.” In
this capacity, NECIS has addressed these challenges by enabling:

1. Collaborations between nanoengineering and computational science;
2. Students to conduct research, on-site, with Sandians to train a new generation

of researchers skilled in experimental, modeling, and simulation aspects of
nanotechnology;

3. Domain experts from academia to work on-site at Sandia to perform cutting-
edge research that will impact new curricula for nanotechnology;

4. Workshops and short courses to facilitate innovative research that combines
experimental and computational approaches to nanoengineering.

This proceedings is a collection of research articles documenting NECIS collabo-
rative research in the technical focus areas of: Nanoscale Defects in Materials, Nano
and Micro Fluidics, the Nano-to-Micro Interface, the Nano/Bio Synergy, and En-
abling Computational Nanoscience. Articles are organized into these technical areas
with an overview for each contributed by the focus-area technical leads. As part of
the research and research training goals of NECIS, it was the intent that these arti-
cles serve as precursors-to or first-drafts-of articles that could be submitted to peer
reviewed archival journals. As such, each article has been reviewed by a Sandia staff
member knowledgeable in that technical area with feedback provided to the authors.
Several articles have or are in the process of being submitted to peer-reviewed confer-
ences or journals and we anticipate that additional submissions will be forthcoming.
NECIS’ overall accomplishments including faculty visits, seminars, short-courses, and
the NECIS Workshop will be documented in a separate internal Sandia report.

We would like to thank all NECIS participants who have contributed to the
outstanding technical accomplishments of this project as documented by the high
quality articles in this proceedings. The success of NECIS hinged on the hard work
of 48 enthusiastic student collaborators, 54 dedicated Sandia technical staff, and 14
visiting faculty participants. We think that readers will be duly impressed when
they realize that the research described herein occurred primarily over a three month
period of intensive collaboration.

NECIS benefited from the administrative help of Deanna Ceballos, Bernadette
Watts, Eilene Cross, Mel Loran, Dee Cadena, Jennifer Bamberger, Colleen Loretto,
Kelly Doty, and Martha Campiotti. The success of NECIS is, in large part, due to
their dedication and care and it is much appreciated. Finally, we would like to thank
David Womble for his advice, guidance and overall project management.

S. Scott Collis
Jean Lee, and

Jonathan Zimmerman

October 30, 2006
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Nanoscale Defects in Materials

The role of nanoscale defects in a macroscopic materials system is analogous to the
role of David in the proverbial David and Goliath story: these tiny defects can dra-
matically change the properties and performance of a macroscopic materials system.
The presence of nanoscale defects in materials is often the reason why there is a
mismatch between the ideal, theoretical behavior of a material and its actual, real
behavior. Frequently the presence of nanoscale defects in materials is inescapable,
and it behooves us to understand and account for them if we seek to tailor materials
behavior.

The articles in this section of the Proceedings describe NECIS research conducted
by Sandia staff and student collaborators that investigate how nanoscale defects and
features in nanoscale materials influence materials properties and performance. For
example, Weissman and Vance studied the use of nanomaterial fillers to strengthen
TufFoam without causing any chemical incompatibility between the nanomaterial
filler and TufFoam. Hoy, Plimpton, and Grest investigated the effects of brush chain
length and brush coverage on the adhesive behavior of materials containing nanoscale
polymer brush adhesion promoters. The insertion of fluorescent linker molecules into
a Zn-O matrix by Liu, Bauer, Allendorf, and Simmons moves forward the potential
for these metal-organic frameworks to be used for gas storage or sensing. The creative
and original research presented in this section support Sandias programs in nuclear
weapons; homeland security; and energy, resources, and non-proliferation. The re-
search described here fills knowledge gaps and helps seed future Sandia research in
the important area of nanoscale defects in materials.

Jean Lee

October 30, 2006
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AB INITIO SIMULATIONS OF
COMPOUND SEMICONDUCTOR ALLOYS

J.E. BICKEL∗, N.A. MODINE† , AND J. MIRECKI-MILLUNCHICK‡

Abstract. The atomic surface structure of compound semiconductors plays a large role in the
growth of semiconductor films and the final microstructure of the film. During growth of InxGa1−xAs
films, a mixed-termination surface consisting of a (4x3) reconstruction with common binary InAs or
GaAs reconstructions, such as the α2(2x4), has been observed. We have used Density Functional
Theory (DFT) to determine the effects of strain and alloying on the α2(2x4) reconstruction and com-
bined DFT calculations and simulated Scanning Tunneling Microscopy (STM) images to determine
the structure of the (4x3) reconstruction.

1. Introduction. The atomic surface structure of compound semiconductors
plays an important role in the growth of thin films and devices made of these alloys,
influencing the compositional uniformity and the morphology of the grown material.
It also influences ordering and surface segregation of individual atoms [1]. It is impor-
tant to understand the surface structure in order to control the growth of electronic
and optoelectronic devices made of III-V semiconductors where planar and compo-
sitionally abrupt interfaces are required to obtain optimal device properties. A lot
of work has been aimed at understanding binary compound semiconductors such as
GaAs [2] InAs [3] and GaSb [4], however, less is known about ternary alloys such as
InGaAs.

Experimental work on InGaAs shows that, under most growth conditions, a (4x3)
reconstruction dominates the surface with some mixed surfaces containing regions of
α2(2x4), β2(2x4), and c(4x4) reconstructions, which are common reconstructions of
binary InAs and GaAs. An example of this mixed surface reconstruction can be
seen in Figure 1.1. Two models for the atomic structure of the (4x3) reconstruction

Fig. 1.1. STM image of In0.27Ga0.73As grown on GaAs(100) showing a mixed reconstruction
of α2(2x4) (between lines) and (4x3) (in the circle). Image taken at -2.3V, 100pA.

have been proposed, one by our group [5] and one by the Jones group [6] which is a
variation on a model proposed by Sauvage-Simkin [7]. We have used density functional

∗The University of Michigan, jebickel@umich.edu
†Sandia National Laboratories, namodin@sandia.gov
‡The University of Michigan, joannamm@umich.edu
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theory (DFT) to calculate the energies of the (2x4) and (4x3) reconstructions and to
simulate scanning tunneling microscope (STM) images of both in order to compare
experimental and simulated results directly.

2. DFT calculations and STM simulations. Each reconstruction was stud-
ied using a slab consisting of 4 bilayers of bulk III-V material terminated on top
by the desired reconstruction and on the bottom with pseudo-hydrogen. The charge
of the pseudo-hydrogen was chosen to make the bottom surface electrically passive
(i.e., able to neither accept electrons from nor donate electrons to the top surface
reconstruction). Each slab had a sufficient amount of vacuum separating it from its
periodic images, 14Å for most slabs and 11Å for 5 layer slabs used for bulk energy
calculations. Calculations were performed while keeping the bottom bilayer and the
pseudo-hydrogen atoms fixed at positions found during an initial relaxation.

All energy calculations were performed using the Vienna Ab Initio Simulation
Package, VASP, which is a plane wave pseudopotential code that solves for the elec-
tronic structure of solids and surfaces using DFT [8]. Ultrasoft pseudopotentials [9,10]
and the local density approximation (LDA) [11] were used. A k -point convergence
test was performed and led to the use of 3x4 k-point sampling for (4X3) unit cells,
6x3 k-point sampling for (2x4) unit cells, and 3x3 k-point sampling for (4x4) unit cells
(the zigzag-α2(2x4) cell is a (4x4) cell due to its change in periodicity). An energy
cut-off of 203.1 eV was used for all calculations, and the calculations were relaxed
until the total energy was converged to better than 0.1 meV.

Lattice parameters were determined using volume relaxation of bulk crystals with
an energy cut-off of 350eV. This higher energy cut-off avoids errors inherent to volume
relaxations in VASP. In general, LDA lattice parameters are smaller than experimental
values. A chart of LDA lattice parameters used, and experimental lattice parameters
is shown in Table 2.1.

Table 2.1
Lattice parameters determined by LDA and Experiment

Experimental (Å) LDA (Å)
GaAs 5.653 5.592
InP 5.869 5.828
mid-lp N/A 5.900
InAs 6.058 6.018

Simulated STM images were generated after the method described by Tersoff and
Hamann [12]. Tersoff and Hamann used the Bardeen formalism [13] to show

I ∝
∫ Ef +eV

Ef

ρ(r, E)dE (2.1)

where

ρ(r, E) = Σ|Ψi(r)|2δ(E − Ei) (2.2)

In these equations, I is the tunneling current, Ef is the Fermi Energy, e is the charge
of an electron, V is the bias voltage, and ρ(r, E) is the local density of states (LDOS)
of the surface, which is calculated by summing over the wave functions Ψi with energy
Ei at the tip position r. VASP can be used to calculate the integral in equation 2.1
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and will output the integrated LDOS for a given bias voltage. This output consists of
the current density at each (x,y,z) grid point calculated. Filled state LDOS grids were
computed by using a bias voltage of -1V, and empty state grids were computed at a
bias voltage of +1V. Constant current images were then generated by computing the
height of a a particular isosurface. Since equation 2.1 does not allow the calculation
of the actual current, but only a value proportional to it, the LDOS value used to
generate the isosurface was varied until the simulated images resembled experimental
images for the well understood α2(2x4) structure. The images were generated by
cycling through each (x,y) grid point from z=max to z=min until the LDOS at point
(x,y,z) was greater than the desired isosurface value. The z-value was then exported
and plotted to generate the constant current image. This method of generation is
exactly like an experimental STM tip slowly approaching the surface until the desired
tunneling current is reached.

3. Zigzag-α2(2x4) reconstruction. It has been seen experimentally that 20
monolayer (ML) films of In0.27Ga0.73As grown at 475◦C have a surface reconstruc-
tion that is a combination of (4x3) and α2(2x4) with the α2(2x4) appearing in small
domains. Interestingly, the bright dots of the surface dimers in the α2(2x4) recon-
struction form a regular zigzag pattern rather than the line with occasional stochastic
kinks that is generally seen in binary GaAs and InAs. This zigzag pattern is high-
lighted by the lines in Figure 1.1, where the In0.27Ga0.73As alloy was grown on a
GaAs(100) substrate with a misfit strain of 1.9%.

The α2(2x4) reconstruction is a surface reconstruction that consists of an anion,
or Group V, dimer which can sit in 2 places above 6 surface cations, or Group III
atoms. A regular straight-row-α2(2x4) reconstruction can be seen in Figure 3.1(a).
This shows two unit cells next to each other, with the dimer sitting above cations
1-4. The dimer can also sit above cations 3-6. In two neighboring cells, the dimer
can either sit in the same position, or swap positions as it does in the zigzag-α2(2x4)
shown in Figure 3.1(b).

In order to determine whether strain is responsible for stabilizing the zigzag-
α2(2x4) relative to the straight-row-α2(2x4), we performed DFT calculations for GaAs
and InAs slabs with the zigzag-α2(2x4) and straight-row-α2(2x4) reconstructions at
the GaAs, InP, mid-lp, and InAs lattice parameters given in Table 2.1. By comparing
the total energies of these calculations, we found that the zigzag structure is more
stable than the straight-row structure under these binary conditions, and becomes
relatively more stable with tensile strain and less stable with compressive strain. The
energy difference of the straight-row-α2(2x4) and zigzag-α2(2x4) is given in Figure
3.2, where it can be seen that the largest energy difference (for a purely GaAs slab at
an InAs lattice parameter) is only 21 meV. Temperature effects should randomize the
occupations of structures whose energies differ by less than kB ∗ T , where kB is the
Boltzmann constant and T is the temperature in Kelvin. At room temperature, kB ∗T
is 25meV, and this results in a stochastic switching of the α2(2x4) dimer positions
with no long range order. This explains why an ordered zigzag pattern is not seen
in binary GaAs and InAs even though it is energetically favored. Therefore, strain
does not explain the zigzag-α2(2x4) seen in the compressively strained In0.27Ga0.73As
system.

In an effort to understand the effects of alloying on the relative stability of the
zigzag and straight-row α2(2x4) reconstructions, different combinations of cations
were studied: (1) an InAs slab with a Ga atom beneath the surface dimer at the
position marked d in Figure 3.1, (2) a GaAs slab with In atoms in the top six positions
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(a) Straight-row-α2(2x4) (b) Zigzag-α2(2x4)

Fig. 3.1. Surface reconstruction of straight-row and zigzag α2(2x4). The blue box shows a
single α2(2x4) unit cell. Purple = Anion (As), Green = Cation (Ga or In)

Fig. 3.2. Stability of zigzag-α2(2x4) vs. straight-row-α2(2x4) as a function of lattice parameter.
A positive value means the zigzag formation is more stable.

marked 1-6 on Figure 3.1, (3) a GaAs slab with 4 In atoms in positions 3-6 of Figure
3.1, and (4) a GaAs slab with 2 In atoms in positions 5 and 6 of Figure 3.1. The
difference in energy between the zigzag and straight-row structures is shown in Figure
3.2. In all cases the zigzag structure becomes more stable as the slab is strained
in tension. Configuration (1) did not allow the dimer bond to contract sufficiently
to induce the dimer to alternate in the zigzag pattern even at room temperature.
Configuration (2) actually resulted in the straight-row structure being more stable
or equally stable at both the GaAs and InP lattice parameter. Configurations (3)
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and (4), however, resulted in a large stabilization of the zigzag-α2(2x4) relative to
the straight-row structure. Both variants allow the In atoms, which are large relative
to the Ga atoms, to segregate to the surface to relieve strain. Furthermore, the
stretched cation-cation bonds between atoms 3 and 5 and atoms 4 and 6 become
more stable with the larger In atoms. Indium atoms in positions 5 and 6 also would
like to expand in the [11̄0] direction. This expansion can be accommodated easily in
the zigzag structure, where they are next to Ga atoms, but not in the straight-row
structure, where they are next to more In atoms. As a result, the zigzag structure
becomes much more stable than the straight-row with both configurations (3) and (4)
showing a stabilization of the zigzag structure by over 100 meV for both the GaAs and
InP lattice parameters. This difference in energies is large enough to be significant
even at growth temperatures of 475◦C where kB ∗ T is 64meV.

4. (4x3) Reconstruction. Experimentalists have suggested two different mod-
els to account for the (4x3) reconstruction seen in the InGaAs system. The first was
proposed by the Mirecki-Millunchick group [5] which can be seen in Figure 4.1(a), and
the second is a model by Sauvage-Simkin [7] that was modified by the Jones group [6]
so that it obeys the electron counting rule and is shown in Figure 4.1(b). There are
a few important differences between these models. The MM model has heterodimers
(cation-anion) on the surface as well as cation homodimers, whereas the SSJ model
only has anion dimers. Because of the cation terminated surface, the MM model has
been criticized as not having enough As, though it should be noted that the surface
stoichiometry of the MM(4x3) is the same as for the α2(2x4) and as such is not anion
deficient but simply cation-capped. The SSJ model, on the other hand, is very anion
rich. Another notable difference between the two models is the movement of the het-
erodimer over one position in the MM-model, compared to the straight dimer row in
the SSJ-model.

(a) MM-Model (b) SSJ-Model

Fig. 4.1. Two models for the (4x3) InGaAs surface reconstruction. Purple = Anion (As),
Green = Cation (Ga or In). Note, some lower layer atoms excluded for image clarity.

Both the Mirecki-Millunchick and the Jones groups have STM images of the (4x3)
reconstruction that show ”raised dot features” [6] as seen in Figure 4.2. We used DFT
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Fig. 4.2. Filled state STM images from the Mirecki-Millunchick [14] and the Jones group [6]
showing the dot-like (4x3) reconstruction.

to simulate STM images for both the MM and SSJ models so that comparison of the
simulated and experimental STM could be used to help determine the correct model.
Both empty state and filled state simulated STM images can be seen in Figure 4.3.
The atomic structure of these figures matches that of Figure 4.1 repeated twice in
both the x and y directions. The anion dimers of the SSJ-model show a row of

(a) Filled State MM-model (b) Empty State MM-model

(c) Filled State SSJ-model (d) Empty State SSJ-model

Fig. 4.3. Simulated STM images at ±1V bias voltage for empty and filled state images respec-
tively.



J.E. Bickel, N.A. Modine, and J. Mirecki-Millunchick 9

broad oval shapes commonly seen in STM of anion dimers; the anion dimer in the
α2(2x4) is usually described as a dumbbell. The heterodimer in the MM-model, on
the other hand, appears as a bright dot, with the faded cation-dimers forming a chain
between heterodimers. Given the limitations in resolution of experimental STM to
resolve lower height features, the MM-model could appear as a bright dot with a
faint connecting line similar to that seen in the experimental STM in Figure 4.2. The
one drawback of this model is the calculated energy. The MM-model has the same
stoichiometry as the α2(2x4) reconstruction, which allows the direct comparison of
DFT-calculated total energies. The MM (4x3) model has a considerably higher surface
energy than the α2(2x4) suggesting that it is not stable. However, it is possible that
the effects of strain or alloying may explain this difference. As was seen with the
zigzag-α2(2x4), small changes in alloying or strain may cause a reconstruction to
become more or less stable. Some variations to try include adding a surface hetero
or homodimer above the cation dimers which may lower the surface energy and may
also result in simulated STM images that match even better with experimental STM.

5. Conclusions. DFT has been used to explore the effects of strain and alloying
on the stability of surface reconstructions, and we have been able to show that the
stability of the zigzag-α2(2x4) reconstruction is due to the effects of alloying rather
than the strain in the system. We have also been able to successfully simulate filled
and empty state STM images to address different models of the (4x3) reconstruction
proposed for the InGaAs system and show that the MM model is the best fit thus far
between simulated and experimental STM. However, energy calculations suggest that
additional variations of the MM model should be explored.
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CURRENT-VOLTAGE CHARACTERIZATION OF MOLECULAR
SPECIES ON AU NANOSPHERES

J. FUNAMURA∗ AND D. ROBINSON†

Abstract. We present a new approach for a flexible, low-cost, high-yield device for the current-
voltage (IV) characterization of molecular species. Using a close-packed array of gold nanospheres
over patterned electrodes, we coat the nanospheres with an organic molecule and measure the IV
relationship through the particle array. Adsorption of different molecules on the gold particles results
in reliably distinct IV relationships, leading us to believe that we are measuring the resistance of a
network of molecules bridging the gold nanospheres. Surface-enhanced Raman spectroscopy, made
possible by the scale of our device and the optical properties of the gold nanospheres, is used to
verify the presence and identity of an adsorbed molecule.

1. Introduction. Twenty-two years ago, Aviram and Ratner [1] proposed the
usage of individual organic molecules as electronic devices. Since then, the field of
molecular electronics has grown, with researchers choosing candidate molecules for
devices, developing computational models to predict and better understand electron
transport, and creating experimental platforms to test the models. Today, the big
challenge in molecular electronics is still developing reliable devices for characterizing
the electrical properties of candidate molecules for molecular wires and other devices.
Previous efforts involve elaborate setups of with small length scales on the order of
30 nm or smaller [2]. A larger length scale would allow the usage of other forms of
spectroscopy that may help further understand the fundamentals of molecular-level
charge transfer. Here we present an innovative approach to creating a test platform
that is low-cost, easy to produce, and allows characterization methods that require
this larger length scale.

2. Experimentation. We start with a silicon wafer of evaporated gold inter-
digitated electrode arrays that enable electrical measurements using a probe station.
They have nominal gap widths of 1-2 microns. The wafer is primed with a monolayer
of hexamethyldisilizane (HMDS) to promote adhesion of the gold nanospheres. Wafer
pieces are then individually dipped in a toluene suspension of 20nm Au nanospheres
with 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as a surface stabilizer.
Retracting the wafer at a rate of 2mm/min consistently produced a relatively uniform
single monolayer of close-packed nanospheres.

Current-voltage (IV) measurements were taken using a probe station across ad-
jacent electrodes to determine a baseline IV curve from -4V to 4V. Most results were
undetectable (sub-nanoamp) or showed a symmetric sub-microamp current.

After baseline IV characterization, we soak the wafer piece in an ethanol solution
containing the candidate molecule for 12 or more hours to allow the DOPE to go
into solution and be replaced by the other molecules in the solution. After removal
and a gentle ethanol rinse, IV measurements are taken again throughout the same
voltage range and compared to the baseline set. The candidate molecules we tested
were 1,4-benzendithiol, 1,4-benzenedimethanethiol (xylyl dithiol), benzyl mercaptan,
and thiophenol.

3. Results. In our experiments, we found consistent changes in total resistivity
after replacing the DOPE with a candidate molecule. Furthermore, we found trends

∗University of California at Berkeley
†Sandia National Laboratories, drobins@sandia.gov
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Fig. 2.1. Field emission scanning electron microscope images of close-packed Au particles
deposited between gold-patterned electrodes.

that distinguished between the resistivity changes of different candidate molecules.
On a normal electode array, a total of 16 measurements were taken: a set of four for
each nomial gap size. The results were generally consistent within each set of four
measurements, with each set generally showing increased resistivity with an increase
in gap size.

Fig. 3.1. Characteristic pre/post-soak current-voltage data. The lower grouping is a set of
electrode baseline IV data. The upper grouping is the same set after benzenedimethanethiol molecules
has replaced the DOPE on the Au surface.

The overall resistivity measurement averages were calculated from the difference
between the final IV measurements of the candidate molecule and the baseline IV
measurements of the DOPE-coated particles. The following data shows resistivity
changes for the various gap sizes. The control, soaking in an ethanol + DOPE solution,
resulted in no measurable difference in IV characteristics.

The nanoscale geometry of the gold nanospheres lends itself well to the use of
surface-enhanced Raman spectroscopy (SERS) to determine molecular species ad-
sorbed to the gold. The size and accessibility of the test platform allows the laser
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Fig. 3.2. The current increase observed when comparing the IV measurements of the candidate
molecules to the baseline IV observed with DOPE-coated particles. Note that the order of resisitivities
of the four molecules is consistent for different gap sizes as expected.

beam required by SERS to see the molecules. Raman spectroscopy performed on these
samples confirms that the DOPE molecules were actually replaced by the intended
molecule. Here, we show the presence of benzenedimethanethiol (xylyl dithiol) after
soaking.

Fig. 3.3. Raman spectroscopy data showing the presence of DOPE before soaking and the
presence of xylyl dithiol after soaking.

4. Discussion. This system achieves our current goals. It is relatively easy
to fabricate, requires no prohibitively expensive equipment, has the geometry and
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device size to accommodate different characterization methods, and has a high yield of
productive electrode pairs. The results show clear increases in current from switching
the ligand to different candidate molecules, and the optical data corroborates the
existence of the newly adsorbed molecule. The results also demonstrate that, unlike
some other device geometries, characterization is possible at every step of the process.

Future work on this platform might expand to measuring the properties of other
interesting aromatic thiols and further characterization of adsorbed molecules using
additional methods besides just SERS and IV. In this work, SERS was used primarily
as a method for identification and verification of the ligand swap for the IV data.
Additional methods such as infrared reflectance spectroscopy and X-ray photoelectron
spectroscopy will be employed to further characterize the adsorbed molecules. The
device geometry allows the possibility of using multiple characterization techniques
simultaneously.

Molecular electronics shows promise as the future of our electronic devices. The
more we know about the electrical transport properties of molecules, the more we
can utilize them. Thus it is imperative for us to continue to develop devices and
techniques with which we may discover and explore this exciting and emerging field.
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INVESTIGATION OF A COHESIVE ZONE MODEL FOR
SIMULATING VOID NUCLEATION AND ITS CONNECTION TO

NUCLEAR SAFETY ASSESSMENT

S. GOFF∗ AND J. DIKE†

Abstract. Nuclear safety assessments have been the focus of abnormal mechanical environment
modeling efforts for multiple weapons systems over the last few years (i.e., W80-3, W76 and W87).
The modeling efforts are aimed at predicting metal failure of common engineering materials such as
steel and aluminum in order to determine if exclusion regions within the weapon are breeched during
abnormal mechanical events such as a drop during handling or a crash during transport. Simulations
of the W80-3 subjected to drops have been performed using the Sandia-developed EMMI (Evolving
Microstructure Model of Inelasticity) plasticity and failure model. EMMI accounts for void nucleation
and growth in an elastic-plastic material with failure parameters derived from calibration with tensile
and shear material characterization tests. It was observed during determination of these failure
parameters that it was difficult to obtain a single set of material parameters that maintained good
correlation across the entire suite of material characterization test geometries. Also, it is not well
understood how well the model captures the portion of damage due to nucleation. Therefore, to better
understand the mechanisms associated with ductile failure (void nucleation, growth, and coalescence)
and their relative importance, micromechanical models of these phenomena are investigated. For void
nucleation specifically, the decohesion of a metal matrix from an elastic particle in varying tensile
loading conditions is modeled with the use of a cohesive zone model based on a traction-displacement
relation. The responses obtained from the cohesive zone model are then qualitatively compared with
those from a simpler critical stress model to help direct future work on this topic.

1. Introduction. Abnormal mechanical environments for weapons systems are
characterized by the unexpected application of mechanical energy. Such events in-
clude, for example, drops during handling and crashes during transport. Efforts to
model these events for various weapons systems over the last few years (i.e., W80-3,
W76 and W87) have been a critical part of nuclear safety assessment. The models are
aimed at predicting metal failure of common engineering materials such as steel and
aluminum and the subsequent consequences of these failures when applied to screw
failures, weld failures, and tearing of component walls. Of particular interest is the
possible breech of exclusion regions within the weapon. To this end, extensive ex-
perimental data has been collected at both the material and subsystem levels, which
has then been simulated using the Sandia-developed EMMI (Evolving Microstruc-
ture Model of Inelasticity) plasticity and failure model in the explicit dynamics code
LS-DYNA.

Based on the BCJ model [3,4], EMMI [8] is a mechanism-based dislocation model.
For its use in nuclear safety assessment, the model is incorporated into continuum
finite element models in which entire weapon systems are modeled. It has been
developed for a thermo-elasto-viscoplastic polycrystalline metal subjected to isotropic
damage and allowing for anisotropic plasticity. It is strain rate, temperature, and
load path dependant with normalizing physical constants in order to cast it into
a dimensionless form. EMMI contains three definitive internal state variables: a
scalar representing statistically stored dislocations, a tensor representing geometrically
necessary dislocations, and a scalar for damage. My focus has been on the damage
variable, which encompasses void nucleation and growth, and on investigating the
uncertainties obtained in the damage parameters across the spectrum of material
characterization tests.

∗Stanford University
†Sandia National Laboratories, jjdike@sandia.gov
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The low-level material characterization tests were used for determining the EMMI
parameters. The plasticity model was calibrated for each material based on data from
smooth tension tests while the failure model was calibrated using notched tension and
double-notched shear tests for void growth and void nucleation parameters respec-
tively. At this point, it was observed that it was difficult to obtain a single set of
failure parameters for a given material that correlated with all of the characterization
test geometries. Due to this, and due to the desire to better understand the individ-
ual mechanisms (void nucleation, growth, and coalescence) at work, micromechanical
models of these phenomena are studied. Given the additional uncertainty concerning
void nucleation derived from experimental-numerical comparisons and determining
that a change was needed in the nucleation damage equation itself, my focus has been
this specific phase of the ductile failure process. The decohesion of a metal matrix
from an elastic particle in varying tensile loading conditions is modeled with the use
of a cohesive zone model and a simpler tied interface critical stress model in order
to qualitatively compare the two methods and help direct future work on this topic.
Also, a new form of the nucleation damage equation is proposed with initial results
reported.

2. The Model. Three materials within the scope of materials being investigated
were identified as the most troublesome having the largest variance in their damage
parameters for the different test geometries. These were the stainless steels 304L and
A286 and the aluminum alloy 7075-T7351. For these materials, information regarding
their microstructures, dominant failure mechanisms, and interface properties was col-
lected in an attempt to ascertain any causes for this variance. Along with determining
the basic microstructure of each material, specific information regarding the inclusions
present and their shape, size, and spacing was desired. Identifying the dominant fail-
ure mechanisms includes pinpointing perhaps a dominant phase of the ductile failure
process or categorizing the void nucleation as either intergranular or intragranular,
which could then lead to the necessity of obtaining the properties of the interface
between the bulk material and the inclusions. Useful interface information includes
values for fracture energy as well as values for normal and shear critical stresses. Basic
microstructure findings are summarized in Table 2.1. Only general bounds for the in-

Table 2.1
Material microstructure properties

Crystal Failure InclusionsMaterial
lattice mechanism Particles Diameter Volume

(mm) fraction
(%)

304L [6] FCC silica (SiO2), 0.63 0.031
chromite
(MnOCrO3)

A286 [5] FCC Ni3(Al,Ti)
(Fe,Mn,Cu)Al6, 5.7 2.6
Mg, Si, CuAl2

7075 [7] FCC
interganular

Al12Mg2Cr 0.05 0.03decohesion
MgZn2 0.025

terface properties of intermetallics are currently available and SEM-aided experiments
are recommended for further characterization of the particular materials of interest.
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From these researched values, and choosing to focus on just one material, a repre-
sentative micromechanical model is constructed for a spherical inclusion in a cube of
aluminum 7075. The intent of this model is to be investigated in tension, compression,
and torsion, although this study currently only covers varying stress states of tension.
Since stress state has been noted to have a large effect on damage progression, the
model is subjected to uniaxial, biaxial, and triaxial tensile loading conditions while
also varying the input parameters for each of the interface modeling methods (tied
interface versus cohesive zone elements) and briefly investigating the possibility of
mesh dependency with two separate meshes (see Figure 2.1).

Fig. 2.1. Mesh

A simulation matrix of completed results is presented in Table 2.2.

Table 2.2
Simulation matrix

Tied interface model Cohesize zone model
Max/yield Fracture Mesh Max/yield Mesh

stress energy stress
(J/m2)

Uniaxial 2:2 0.5 coarse 2:1 coarse
loading (normal:shear) (normal:shear)

2:2 1 coarse 2:1 fine
2:2 1 fine 3:3/2 coarse
3:3 0.5 coarse 2:2 coarse
3:3 1 coarse

Biaxial 2:2 0.5 coarse 2:1 coarse
loading 2:2 1 coarse 2:1 fine

2:2 1 fine 3:3/2 coarse
3:3 0.5 coarse 2:2 coarse
3:3 1 coarse

Triaxial 2:2 0.5 coarse 2:1 coarse
loading 2:2 0.5 fine 2:1 fine

2:2 1 coarse 3:3/2 coarse
3:3 0.5 coarse 3:3/2 fine
3:3 1 coarse 2:2 coarse

Without experimental data, there is no way to know the accurateness of these
chosen values, however this study is an attempt at beginning to bound the constitutive
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behavior of void nucleation. Several earlier simulations were performed at varying val-
ues with spurious results in order to narrow these parameters down to these reported
values.

The tied interface model employs the tied surface-to-surface failure algorithm in
LS-DYNA [2] in which one ties the facesets of the two parts at the interface together
and then specifies the normal and tangential critical stresses. Failure is then deter-
mined by when the condition[

max (0, σnormal)
FS

]2
+
[σshear

FD

]2
− 1 > 0 (2.1)

is met (where FS and FD are the normal and shear failure stresses respectively), the
tie breaks, and a void is nucleated. Based on previous work in this area, the range
of critical normal stress is taken as two to three times the yield stress of the bulk
material and the critical tangential stress is taken as half that of normal. Further
discussion of the consequences of this decision is included with the results.

The cohesive zone model used is a traction-displacement relationship developed
by Tvergaard and Hutchinson [9] and implemented into Tahoe [1] by Klein in 2001.
It was added to LS-DYNA as material 185 in 2005. For this method, a layer of initial
zero volume solid elements is created between the inclusion and surrounding matrix
merging each respective side with the appropriate part. Similarly, one then specifies
the normal and tangential critical stresses and then also inputs a length scale for
each of these stresses, which is the distance these elements can grow before failing
and nucleating a void. From this information, this algorithm determines the fracture
energy of the cohesive elements based on the area under the potential density function
shown in Figure 2.2 and given by

φ (λ) =


σmax

λ
Λ1

λ < Λ1

σmax Λ1 < λ < Λ2

σmax
1−λ
1−Λ2

Λ2 < λ < Λfail

(2.2)

This function is further simplified into a bilinear form by setting Λ1 and Λ2 equal

Fig. 2.2. CZM potential density function

to each other. The normal and tangential critical stresses in this case are initially
set equal. Again, the consequences of this decision as compared with the normal
to tangential ratio chosen for the tied interface will be further elaborated on in the
results.

Both methods were validated using simple geometries before applying them to
this more complicated problem. The tied interface was tested to ensure that it did
indeed fail at the appropriate stress combinations while the cohesive zone model was
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run with a double cantilever beam problem in order to analytically verify the results.
Both methods were deemed as implemented correctly. After moving on to the void
nucleation model, the stress progression was studied in order to verify the length of
the cohesive zone to ensure proper mesh refinement.

3. Results. The simulations run using a tied interface exhibited a very abrupt
failure of all tied contacts at once even in the heavily biased uniaxial loading condition.
This is credited to the highly mixed mode response due to the governing equation
and the 2:1 ratio of the normal:tangential critical stresses. Quick failure was obtained
in all three loading conditions for this ratio, while nucleation was not observed for
the uniaxial condition when using a 2:2 ratio. This directly corresponded with the
behavior shown by the cohesive zone in this loading condition, which also did not fail.
Even with an extremely low fracture energy and extremely high strains, the critical
stress of two times yield was too high to reach due to the lack of hardening in this
particular material (see Figure 3.1). Unfortunately, changing the ratio for the uniaxial

Fig. 3.1. Stress-strain curve for 7075-T7351

cohesive zone model to 2:1 does not maintain a correlation between the two methods
and more investigation is needed to determine if there is an ideal ratio and how the
two methods would compare at that particular ratio.

Additional unresolved problems were discovered with the tied interface algorithm
including its necessity to be run on a single processor since it currently lacks parallel
processing implementation and its failure to function at the micron scale required for
this model. LSTC has plans to fix the former problem in the near future. The latter
problem, however, requires further investigation as to the cause and the affect it has
had on the results since the tied interface models were run at a different scale than
the cohesive zone models. A brief investigation of this affect has yielded a significant
difference that will require further study.

The biaxial and triaxial loading conditions were more comparable between the
two methods although the cohesive zone model failed later in every case. The cohesive
zone model failure was also more systematic demonstrating a “peeling” away behavior
as opposed to the “snapping” away behavior of the tied interface. Appropriate be-
havior was again verified with the potential density function outputs that identically
resembled the input.

The existing rate of nucleation equation is directly proportional to the void volume
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fraction, φtotal:

φnucleation =ν0 ‖Din‖
d1/2

KICf1/3
φtotal x{

a

(
4
27
− J2

3

J3
2

)
+ b

J3

J
3/2
2

+ c

∥∥∥∥∥ I1

J
1/2
2

∥∥∥∥∥
}

exp
(
−CηT

T

) (3.1)

Given a fully dense material (no initial voids), this equation indicates that voids will
never nucleate and, subsequently, failure will never occur.

The new proposed rate of nucleation equation is

φnucleation =ν0 ‖Din‖
d1/2

KICf1/3

[
1

(1− φtotal)
n

]
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,

(3.2)

which maintains the nonlinear behavior of the original form as per experimental ob-
servation, but eliminates the problem of having no void nucleation when the initial
void volume fraction is zero. This is, of course, a guess at a possible modification and
is still subject to further understanding of the micromechanical model.

Several simple tension and shear simulations were run with both the old and
the new implementations to verify that the appropriate correction was made. Next,
the new implementation will be run at the subsystem level in order to identify any
improvements or deteriorations in the results.

4. Conclusions. A micromechanical model has been developed for modeling the
decohesion of a metal matrix from an elastic particle under varying tensile loading
conditions using both a tied interface and a cohesive zone. Both were run using
similarly defined parameters in order to qualitatively compare the two. It would be
beneficial to use a tied interface model for future work since it is easy to define and
does not require any additional elements. However, there are two key issues to resolve
before this is a possibility: its inability to function at the micron scale and its failure
of the entire interface at once, rather than a growing detachment from the particle,
and whether or not this relates to the normal:tangential stress ratio. In comparison,
the cohesive zone model is much more difficult to define requiring some knowledge
of realistic values of the fracture energy in order to properly distribute the energy
dissipation given the phenomenological nature of cohesive zone models in general. It
also requires extra elements and a certain amount of mesh refinement to resolve the
cohesive zone itself. Otherwise, it has been verified to be mesh-independent, have a
more intuitive failure response, and work at any scale. Experimental data would be
very valuable in determining appropriate values for this cohesive zone model, which
could then perhaps be represented via a simpler tied interface model.

Determining the appropriate model to use on this relatively simple problem is
critical to improving the nucleation equation and in developing more complicated mi-
cromechanical models that would include void nucleation, growth, and coalescence.
These would obviously require multiple inclusions in order to observe the interaction
that takes place and would ideally include inclusions of varying sizes, shapes, ori-
entations, and spacing. From there, the gained knowledge is to be applied to the
subsystem and system level models so that simulations can accurately replace more
expensive physical testing for nuclear safety assessments.
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THERMAL CONDUCTIVITY OF CARBON NANOTUBES
USING MOLECULAR DYNAMICS SIMULATIONS

A. HENRY∗ AND S. PLIMPTON†

Abstract. Carbon nanotubes (CNTs) are known to exhibit excellent mechanical and transport
properties. In particular the thermal conductivity of individual CNTs may be higher than that of
any known material. Although there has been considerable study devoted to measurement and pre-
diction of CNT thermal conductivity, many questions remain. In this study we implemented a new
interatomic potential in the large-scale atomic/molecular massively parallel simulator (LAMMPS),
that will allow for the study of multi-walled nanotubes. We intend to use equilibrium molecular
dynamics simulations to determine reliable (converged) thermal conductivity values for a wide va-
riety of CNTs. This work is intended to address the temperature, chirality, diameter and length
dependencies that have been debated in the literature.

1. Introduction. As some of the most promising nanostructures, carbon nan-
otubes (CNTs) have stimulated significant scientific interest because of their attrac-
tive material properties. Their unique symmetries give CNTs excellent electrical and
thermal conductivities, which generally depend on diameter and chirality of the tube.
Because of their high bonding strength and one-dimensional character, CNTs are
thought to have the highest thermal conductivity of all known materials. This possi-
bility has generated strong interest within the heat transfer community, where CNTs
could be used in synthesizing new materials to enhance heat conduction. This is
particularly important for industries, such as microelectronics, where heat dissipation
has become a bottleneck to continued miniaturization of processor components.

We are aware of eight [1, 3, 7–9, 12–14] simulation studies and four [4–6, 11] ex-
perimental studies in the literature that have addressed the topic of CNT thermal
conductivity. Of the four experimental studies, two have measured the thermal con-
ductivity of an individual tubes (2000 - 3000 W/m-K). The variety of experimental
techniques and specimens employed in other studies have generated estimates for the
thermal conductivity of individual tubes between 200 and 3000 W/m-K. The lack of
quantitative agreement amongst the different studies has rendered the thermal con-
ductivity of an individual CNT unresolved. Eight different modeling studies used
molecular dynamics (MD) simulations to calculate thermal conductivity, but in all
cases the approaches and results show little quantitative agreement. Some results
show diverging thermal conductivity with increasing tube length, while others show
the opposite. One study indicates that the thermal conductivity also diverges with
increasing temperature, while another study shows a peak suggesting that umklapp
scattering begins to dominate above room temperature. One study showed strong
dependence on tube chirality, while another showed no dependence on chirality. As a
result, questions surrounding the geometric dependencies and dominating mechanisms
in CNT thermal transport are unresolved, while the lack of quantitative agreement
leads to estimates between 1700 and 6600 W/m-K.

One common thread throughout all the modeling studies [1,3,7–9,12–14] has been
the study of single walled nanotubes (SWCNTs). Multi-walled nanotubes (MWCNTs)
have not been addressed, partly due to computational constraints and the lack of
suitable potentials that can describe the interactions between walls. As a result none of
the previous simulation studies have been able to compare directly to the experimental

∗Massachusetts Institute of Technology, ase@mit.edu
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measurement of an individual tube’s thermal conductivity.
Two main approaches have been used in simulating the thermal conductivity of

CNTs. The first uses velocity rescaling to induce a kinetic energy or temperature
gradient and calculates thermal conductivity in accordance with Fourier’s law. It has
been argued that this approach, however, introduces artificial phonon scattering where
the rescaling conditions are applied and would lead to a reduced thermal conductivity.
The second approach uses the formula developed by Green and Kubo, which is based
on the system’s linear response to an external perturbation:

κα,β =
V

kBT 2

∫ ∞

0

〈Qα(t)Qβ(0)〉dt (1.1)

κα,β is the thermal conductivity tensor, 〈Qα(t)Qβ(0)〉 is the heat flux autocorrelation
function, V is the system volume, kB is Boltzmann’s constant and T is the system
temperature. This method has proved accurate for a variety of materials, but has
the drawback of requiring long simulation times for convergence. One possible reason
for lack of quantitative agreement amongst the simulation studies, is that each study
used a different simulation length. In applying the Green-Kubo method, the resulting
thermal conductivity can vary by 100% before converging to the value obtained at
longer times. One study developed a hybrid method, based on the Green-Kubo for-
mulation, which adds a driving force to further disturb the system, resulting in faster
convergence.

2. Actual Content. In this study we intend to produce a wide variety of results
for both SWCNTs and MWCNTs using LAMMPS, to provide reliable quantitative
calculations and explanation of the mechanisms involved in CNT thermal transport.
One of the most common potentials used in the various MD studies was developed by
Brenner [2], which has shown good agreement with experiments. Although Brenner’s
potential is well suited for short range carbon bonds within a single nanotube, the cut
off function would not allow for interactions between walls of a MWCNT. Recently,
this constraint has been overcome by Stuart [10], who has adapted Brenner’s potential
to include longer range Van der Waals interactions with the AIREBO potential. Using
AIREBO [10] we can simulate SWCNTs as well as MWCNTs to compare thermal
conductivities and test length, temperature and chirality dependence. The advantage
of adding the potential to LAMMPS is that larger simulations can be done in parallel,
allowing us to better test the convergence with CNT length, diameter as well as
the number of walls. To further discuss the various implementation issues involved
with adding the AIREBO potential to LAMMPS, we first provide an overview of the
AIREBO potential to highlight its features.

AIREBO consists of three terms and contains parameters to describe energy E
of a hydrocarbon system.

E =
1
2

∑
i,j

(REBO + LJ + TORS) (2.1)

The term labeled REBO has the same structure as Brenner’s revised potential, with
exponentials for the repulsive and attractive components.

REBO = V R + bijV
A (2.2)

where

V R = wij [1 +
Qij

rij
]Aije

−αijrij (2.3)
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V A = −wij

3∑
n=1

B
(n)
ij e−βij(n)rij (2.4)

The strength of the bond between a pair of atoms is dictated by the bond order. The
bond order expression contains four terms with many-body dependence.

bij =
1
2
(pij + pji) + πRC + πDH (2.5)

Other than explicit use of the interatomic distances, the terms of the bond order
depend on five intermediate variables with many-body dependence.

Nij =
∑

k

wik − wij (2.6)

Nji =
∑

l

wjl − wij (2.7)

N conj
ij = 1 + (

∑
k

δkCwikSp(Nki))2 + (
∑

l

δlCwjlSp(Nlj))2 (2.8)

cos θjik =
r̃ji · r̃ki

|̃rji||̃rki|
(2.9)

cosωkijl =
r̃ji × r̃ik
|̃rji × r̃ik|

· r̃ij × r̃jl
|̃rij × r̃jl|

(2.10)

wik is the cut off function which terminates interactions between carbon atoms further
than 2 Å (subscripted indices indicate the interatomic distance involved), which is
written in terms of a more general cut-off function S′.

wij = S′(trij
) (2.11)

where

trij
=

rij − rmin

rmax − rmin
(2.12)

S′ is a cut off function written in terms of a generic nondimensional variable t, such
that S′ = 1 for t <= 0, S′ = 0 for t >= 1 and transitions smoothly in between for
0 < t < 1. The quantity t is defined using a minimum and maximum value for the
argument of the S′ cut off function. The minimum and maximum values for each
variables used in S′ were treated as parameters when the potential was fit. A second
cut-off function S(t) is also used in AIREBO and only differs from S′(t) in the way
it transitions from 1 to 0 on the interval 0 < t < 1.

The quantities pij and pji contain three body summations over triplet angles,
which are then used to evaluate a fifth order spline g.

pij = (
∑

k

wikg(cos θjik, Nij)eλjik + Pij(NC
ij , N

H
ij ))−1/2 (2.13)
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Pij is a two dimensional correction spline that modifies pij and/or pji for specific
hydrocarbon configurations. The corresponding angular function pji is defined by
reversing the indicies and summing over the neighbors of the atom labeled j.

The AIREBO potential was particularly designed as a reactive potential. As a
result a few different splines with many-body dependence are used in specific locations
to reproduce interactions for a wide variety of hydrocarbon configurations. AIREBO is
written in a symmetric form, so that any interaction between two atoms is equivalent
to the interaction when the ij indicies are reversed. The second term in the bond
order is πRC , which is a tricubic spline that depends on the coordination numbers
Nij and Nji and N conj

ij . The last term πDH depends uses another tricubic spline
Tij to determine whether the four-body summation over dihedral angles should be
included. The dihedral term is written as

πDH = Tij

∑
k

∑
l 6=k

(1− cos2 ωkijl)wikwjl (2.14)

These four terms define the bond order between any two atoms and can induce
forces on atoms two bonds away from the ij bond. This extensive many-body depen-
dence creates efficiency issues when evaluating the potential in parallel.

The major advancement of AIREBO is the inclusion of long-range interactions
through the adaptive LJ potential. The LJ potential was chosen over other long-
range forms, because of its simplicity and established accuracy in describing a variety
of systems. The LJ potential does not include a long range cut off function, because
it is designed for intramolecular interactions and is suitable for describing interactions
between a wide variety of hydrocarbon molecules. The drawback to the LJ potential
however is that it uses a complicated set of short range cut off functions, to shield the
atoms involved in bonds described by the REBO term, from experiencing the steep
r12 repulsion. To screen this repulsion AIREBO uses a combination of three switching
functions.

Str = S(rij) (2.15)

Stb = S(b∗ij) (2.16)

Cij = 1−max[wij , wikwkj(∀k), wikwklwlj(∀k,∀l)] (2.17)

The adaptive LJ potential is then written as

LJ = StrStbCijV
LJ + [1− Str]CijV

LJ (2.18)

where,

V LJ = 4εij [(
σij

rij
)12 − (

σij

rij
)6] (2.19)

so that the LJ potential is fully ”on” for large separations and is modified at shorter
distances using the three switching functions. The major computational expense
comes from evaluating b∗ij for pairs in the switching region. b∗ij is the same as the
REBO bond order except that the distance rij is adjusted to the inner cut off of the
REBO potential.
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The last term of the AIREBO potential is an explicit torsional term, which sums
over all combinations of four atoms.

TORS =
∑

k

∑
l 6=k

(
256
405

εkijl(cos10
ωkijl

2
)− 1

10
εkijl)wikwijwjl (2.20)

This term uses the same cut off as the REBO potential and is designed to provide
rotational barriers for hydrocarbon molecules. For most condensed matter systems,
the torsional and LJ contributions are heavily outweighed by the REBO potential,
yet they are needed to describe hydrocarbon intermolecular forces and reactions.

To implement the AIREBO potential, we were very fortunate to receive a copy of
Stuart’s energy and force routines, which were written in Fortran. LAMMPS however
is written in C++ and a new/translated routine was needed. The AIREBO potential
form can be written explicitly, however the splines require numerical interpolation
when atoms are partially coordinated. This presented serious issues when debugging
because the spline knots are provided, but the spline coefficients have to be generated
from many interpolation points.

To implement AIREBO in parallel, information about atoms that are owned on
neighboring processors must be exchanged. The extensive many-body dependence
through the conjugated coordination number implies that atoms up to 8 Å can ex-
perience forces as part of the LJ term due to many-body effects. This requires that
the positions of atoms within a buffer region of either 8 Å or a user specified LJ
long-range cut off (depending upon which is larger), be communicated within the
LAMMPS framework. This requires that positions and forces for atoms within the
buffering region be updated after every time step.

Our current status is that we have a preliminary implementation of the AIREBO
potential in LAMMPS and are testing various configurations to check energies and
forces. The remaining steps are to include the calculation of the heat flux vector
(needed to evaluate the Green-Kubo expression), generation of CNT geometries as
input files and to find ways to reduce the computational expense. Existing code
written for TOWHEE can be used to generate the atom coordinates for any size and
chirality of CNT. However a few scripts will be needed to reorganize the coordinate
outputs as LAMMPS input files.

The many-body dependence in the LJ switching function Stb makes the LJ term
of the AIREBO potential the most computationally expensive. One approach to in-
creasing the speed would be to trade-off computation for increased memory usage.
Explicit evaluation of the various splines contained in the bond order function is very
expensive. This could be alleviated by storing spline values for particular pairs of
atoms between time steps. Saving the information until the next time step would
require additional book keeping procedures, but could cut the computational cost.
After the heat flux vector is incorporated into the force routines, a simple set of
analysis routines can be written to determine the heat flux autocorrelation function.
The heat flux autocorrelation function can then be integrated to determine the ther-
mal conductivity. Following these steps we can begin testing a variety of systems to
understand thermal transport in CNTs.

3. Conclusions. Several additional steps are required to begin simulating MD
trajectories for CNTs, however the largest challenge of implementing the potential
has been overcome. The remaining challenges are related to analysis routines, input
file generation and increasing efficiency. We expect the remaining tasks to be straight
forward and hope to begin testing various types of CNTs within the coming weeks.
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COUPLING MOLECULAR DYNAMICS WITH FINITE ELEMENTS
AND THE ENTAGLEMENT IN POLYMER BRUSHES

ROBERT S. HOY∗, STEVEN J. PLIMPTON† , AND GARY S. GREST‡

Abstract. Our research foxed on two separate projects. The “major” project, mentored by Steve
Plimpton, was to implement a scheme devised by Mark Robbins for coupling molecular dynamics
(MD) and finite element (FE) calculations. The MD code used was the Sandia LAMMPS code. The
question of how to implement the finite element part of the project was initially open, and coming
to a decision took up much of the summer. We finally decided to write a simple FE code of our
own. Currently, we have implemented almost all of the coupling algorithm for the MD “end” of the
code, but the FE end is far from complete. The “minor” project, mentored by Gary Grest, was to
investigate entanglement in polymer brushes and melt-brush systems. This investigation was carried
out using LAMMPS MD simulations on Sandia’s institutional clusters. Currently we have finished
the first round of simulations, have performed preliminary data analysis, and are planning additional
simulations. These simulations are “exploratory” in that the results will be used to identify the
physical questions we wish to answer. This project will be continued after I return to Johns Hopkins
and will form part of my dissertation work.

1. Molecular Dynamics — Finite Element Coupling. Many problems in
the sciences and engineering involve coupling of phenomena with a wide range of
characteristic length and time scales. It is often difficult or impossible to treat these
problems with a single simulation technique. For example, molecular dynamics is an
excellent tool for studying the behavior of systems at the atomic level. However, the
largest volumes which can be simulated with atomistic MD on modern-day super-
computers are of order .01µm3, and such large volumes can only be simulated over a
time of order 1 nanosecond. This maximum volume is less than the volume of even
medium-sized nanostructures, and the time scale is far less than that of many physical
processes of interest.

The finite element method is the standard tool for simulating larger systems and
longer time scales. It is capable of treating essentially infinitely large systems and
long time scales on the “high end”. However, FE approaches usually break down on
the “low end” when the length scales of interest (the scale over which the fields vary
“significantly”) approach atomic dimensions, or in other words the scale at which
matter can no longer be regarded as a continuum.

In many cases, problems involve phenomena on atomic length scales but also on
length scales too large to be treated with MD. An example is shown in Figure 1.1;
the contact of a flat surface with a rough surface [4]. As the flat surface (represented
by the green row of atoms) is lowered onto the rough surface, the region near the top
of the rough surface deforms plastically. Atomic bonds are broken and rearrangement
of neighbors occurs. This phenomenon is very difficult to capture with FE and so a
MD solution is desirable. At the same time, however, long-range elastic fields extend
hundreds of atomic diameters below the rough surface. The problem shown is 2-
dimensional, so it is possible to treat these long-range fields atomistically, but it is
also wasteful, and would be very expensive in 3 dimensions. The FE method, on the
other hand, can treat the elastic fields both accurately and efficiently.

In this and other cases it is therefore advantageous to couple MD and FE simu-
lations. However, there are many difficulties in doing so, and so MD-FE coupling is
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an active field of research. A MD-FE coupling scheme must satisfy the following:
1. The MD must provide a boundary condition for the FE.
2. The FE must provide a boundary condition for the MD.

Satisfaction of these is challenging due to the fundamentally different nature of the
methods. MD is a tool for time integration of Newton’s equations of motion for mobile
particles, while FE is a tool for the solution of partial differential equations on a (in
the simplest form of the method) fixed grid. Boundary conditions are often quite
complicated in FE, but are usually simple in MD.

One promising MD-FE coupling scheme, known as the “hybrid method”, was
developed by others in the group of my academic adviser, Mark Robbins [4]. The
coupling scheme is illustrated in Fig. 1.1. The boundary condition for the FE solution
(at the red nodes) is obtained from the displacements of MD atoms. Displacements
of atoms within the pink circle are time- and space-averaged to set the displacement
of the enclosed red node. Then the positions of the other nodes are solved for, and
this provides a boundary condition for the (purple) MD atoms. Displacements of the
purple atoms are fixed affinely by the time-extrapolated displacements of the yellow
nodes. The procedure is described in detail in Ref. [4].

Fig. 1.1. The molecular dynamics - finite element coupling scheme developed in Ref. [4].
Standard MD atoms are blue, while boundary MD atoms are purple. Boundary FE nodes are red,
while affine-coupling FE nodes are yellow. The overlap region lies between a line just above the red
nodes (coincident with the top of the pink circle) and the bottom row of yellow nodes.

The hybrid method has been implemented [4] in two dimensions using a simple
FORTRAN public domain FE code known as Flagshyp (for “Finite element Large
Strain Hyperelasticity”), and the older, FORTRAN version of the LAMMPS MD code.
My goal for this summer was to implement the hybrid method in three dimensions
using the newer, C++ version of LAMMPS.

Implementing the coupling scheme with an artificial FE “solution” proved to be
relatively easy once I had gained sufficient knowledge of the LAMMPS code. However,
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implementing a real FE solver has proven to be quite difficult. Our initial plan was
to interface LAMMPS with Sandia’s TAHOE FE code. TAHOE is a parallel code
with a wide variety of constitutive models and FE solvers. Consulting with TAHOE
developers, we discovered that creating a fully functional LAMMPS-TAHOE interface
was too ambitious an effort for the scope of this summer project. Instead, we decided
to implement a simple subset of FE functionality directly in LAMMPS: a C0 piecewise-
linear Lagrangian formulation for triangle- and tet-elements with explicit Newmark
time integration.

We also implemented a constitutive model present in Flagshyp and used in the
FE regions of systems as depicted in Figures 1.1 and 1.2, which is the orthotropic
nonlinear (quadratic) elasticity (ONE) model. Choice of this model is dictated by
the following: we do not require a plastic model, because the regions where plastic
deformation occurs are best treated with MD. This is also a time savings for coupled
MD/FE formulations, since the linear elastic model typically used in FE deformation
codes would require the atomistic region to be too large.

Fig. 1.2. Schematic of another problem treated in Ref. [4]. A cylindrical punch (green) was
brought into contact with a flat atomistic surface (blue). Stress fields were measured along various
vertical and horizontal profiles, e.g. the dash-dotted black lines, and compared to predictions from
continuum mechanics. The area of the atomistic region was approximately 100σ × 50σ, while the
area of the region including FE nodes was 400σ × 200σ. The overlap region is indicated by purple
atoms and by red and yellow nodes. Periodic boundary conditions were applied in the horizontal
direction. For this problem the computational cost of the hybrid method was less than 10% of the
cost of a fully atomistic solution.

Our current status is that we hope to have a 2D FE solver working by the end
of the summer. We still need to add functions for evaluating the strains on the
elements, converting these to stresses using the ONE constitutive model, converting
the stresses into forces on the nodes, and performing Newmark integration to obtain
nodal displacements. Remaining tasks on the “LAMMPS side” of the project include
coding in the weights of the yellow nodes on the displacements of the purple atoms
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in 3 dimensions, and building in the capability to write restart files.

2. Entanglement in Polymer Brushes. A polymer brush is formed by poly-
mer chains grafted at one end to a substrate. These brushes are often used as adhesion
promoters. Adhesive bonds are often formed using a layer of entangled polymer con-
fined between the adhered surfaces. When a brush is attached to one or both of these
surfaces prior to the introduction of the adhesive, adhesion is enhanced. This is due to
“entanglement” of the brush with the adhesive. Entanglements are topological con-
straints on chain motion arising from the connectivity and random-walk-like structure
of polymer chains.

Adhesive failure in a brush-enhanced system typically occurs through one or more
of three mechanisms; brush chain pullout, brush chain scission, and crazing. The latter
two are depicted in Figures 2.2–2.4. Which method of failure occurs is a function of
the degree to which brush and adhesive are entangled. This in turn is a function
of the length of the brush chains and the “coverage” density Σ with which they are
attached to the adherend surface.

Figure 2.1 schematically depicts how brush chain length and coverage affect the
failure mode and work of adhesion. If the brush chains are not sufficiently long to
be entangled with the adhesive, they simply pull out under load. Longer chains are
broken (via “scission” of backbone covalent bonds) if the brush coverage is low, or, at
moderate coverages, when adhesion strength is greatest and the brush and adhesive are
most entangled, form “crazes.” At still higher coverages, polymer melts and brushes
phase-separate for entropic reasons; entanglement and adhesion strength decline.

the interpenetration of the tethered chains into the poly-
mer melt decreases with increasing ¥, and as a result, W*
decreases. At sufficiently high areal densities, the poly-
mer melt is expelled from the tethered chains, thereby
causing the work of adhesion to fall off to the value due
to dispersion forces only. This nonmonotonic behavior
has been observed by Léger and coworkers5,11 in poly-
dimethylsiloxane.

For glassy polymers the effects of crazing12 compli-
cate the dependence of W* on ¥,13–17 as one has com-
petition of chain pullout, scission, and crazing. Much of
our understanding comes from experiments on block
copolymers at the interface between lamellar phases of
immiscible polymers.6,15 The block copolymers form
two strands of the tethered polymer, with the tethering
point being the bond between the two blocks. A diagram
of the fracture mechanisms as a function of the applied
stress and the areal density has been given.18 For N
! Ne, the failure mechanism at low ¥ is chain pullout
with a transition to craze failure at ¥† " !craze/fmNt,
where !craze is the crazing stress, fm is the monomer
friction force, and Ne is the bulk entanglement length.15

For N # Ne, chain scission occurs at low ¥ with the
transition to crazing at ¥* " !craze/fb, where fb is the
force to break a bond.

A schematic diagram (Nt, ¥) is shown in Figure 1,
illustrating the expected dependence of the different fail-
ure mechanisms on surface coverage and tethered chain
length. The different regimes in Figure 1 are also labeled
in parenthesis as either “mushroom” or “overlap,” based
on scaling arguments.9 In our earlier19,20 studies of ad-
hesion we investigated the effects of Nt, temperature T,
chain stiffness k", and pull velocity v on these failure
mechanisms in the mushroom regime, particularly the
interplay between the microscopic failure mechanisms of
pullout and/or scission of the tethered chains. In the low
coverage, mushroom regime we observed a crossover
from pure chain pullout to chain scission as Nt is in-
creased (indicated by the dotted, horizontal line in Fig.
1), without any evidence of a crossover from adhesive to
cohesive failure and hence crazing. The value of Nt for
which this crossover was observed to occur approached
the bulk entanglement length Ne for temperatures below
the glass transition temperature (Tg) of the polymer melt.
Here, we vary the coverage into the overlap regime, i.e.,
move along the dashed, vertical line in Figure 1 for Nt

$ 7Ne, where we observe the anticipated crossover from
chain scission to crazing.

A problem present in simulating many polymeric
systems, especially polymers at surfaces, is how to con-
struct the initial state without spending all one’s avail-
able computational resources. The system studied here is
a good example where, unless one has an efficient
method to generate equilibrated initial states, the simu-

lation is not possible. In our earlier studies of this system,
we were limited to the nonoverlapping, low-coverage
mushroom regime, because we were unable to construct
equilibrated starting states at high density. Other exam-
ples where this issue arises is the dynamics of diblock
copolymers below the order–disorder transition and
polymer membranes. In the former, simulations are lim-
ited to the lamellar regime where it is possible to con-
struct equilibrated initial states.21

In some cases such as the one studied here, it is
possible to construct initial starting states through the use
of the new double bridging algorithm of Karayiannis et
al.22,23 The algorithm has close analogies to the pivot
algorithm,24–27 which has been extremely useful for
studying polymers in an implicit, continuum solvent.
Using this algorithm we can now equilibrate initial con-
figurations of long tethered chains in contact with a
polymer melt. In this algorithm, new bonds are formed
across a pair of monomers equidistant from their respec-
tive free ends. This generates new chains that are sub-
stantially different from the original chains such that the
system can be equilibrated in times orders of magnitude
faster than by brute force molecular dynamics (MD)
simulations. The advantage of this method is that sec-
tions of brush and melt chains can be exchanged; hence,
little prior knowledge of the final equilibrated system is
needed to carry out the simulation.

With this new method we are no longer limited to low
coverages, and we have been able to explore the cross-
over from chain scission to crazing as a function of the
surface coverage ¥. This method, while effective for this

Figure 1. Schematic (¥, Nt) phase diagram for Nm # Nt and
temperatures below the glass transition temperature Tg of the
polymer melt. The solid line separating the pullout and scission
regimes is located near Nt " Ne, where Ne is the bulk entan-
glement length for this model. The dashed line indicates the
parameters used in the present simulations for which the cross-
over from scission to crazing is observed. The horizontal dotted
line indicates the parameters used in previous studies19,20 for
which the crossover from pullout to scission was observed. The
dry brush regime, which occurs at larger coverages, is not
shown in this diagram.
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ABSTRACT: The adhesion between a polymer melt and subst ra te is studied in the presence of chemically
a t tached cha ins on the subst ra te sur face. Extensive molecula r dynamics simula t ions have been car r ied
out to study the effect of tempera ture, tethered cha in area l density (Σ), t ethered cha in length (N t), cha in
bending energy (k θ), and tensile pull velocity (v) on the adhesive fa ilu re mechanisms of pullou t and/or
scission of the tethered cha ins. We observe a crossover from pure cha in pullou t to cha in scission as N t is
increased. Below the glass t ransit ion , the va lue of N t for which th is crossover begins approaches the bulk
entanglement length N e. For the va lues of N t and Σ used here, no crossover to crazing is observed.

I. In troduction

Adhesion a t polymer in ter faces is impor tan t in many
diverse applica t ions such as colloida l stabiliza t ion ,1,2
filler modifica t ion of polymer ic mater ia ls and lubr ica-
t ion ,3 and enhancing mechanica l proper t ies of polymer
blends.4,5 The in ter face of in terest can be either (i)
between two homopolymer melts (A + B) or (ii) between
a homopolymer melt and a hard surface (A+ substra te).
Most polymer blends do not mix, because even a weak
repulsive in teract ion causes the system to phase sepa-
ra te as the cha in length increases. This phase separa-
t ion reduces en tanglements a t the in ter face, and the
adhesive st rength is then due to rela t ively weak van
der Waals forces a lone. For case ii, the in ter facia l
st rength depends on the number of chemica l bonds
between monomers of the polymer and sites on the
subst ra te. In the absence of st rong chemica l bonding,
the adhesive st rength is aga in domina ted by weak van
der Waals a t t ract ions. For both cases cer ta in addit ives
or compat ibilizers can increase the adhesive st rength
of the in ter faces. For case i, the addit ive can be an AB
diblock copolymer . The A(B) block of the copolymer can
form entanglements with the A(B) melt side. In case ii,
the addit ive is a cha in of the A species with a funct ion-
a lized end group able to react with the subst ra te,
thereby forming a st rong chemica l bond. The tethered
cha in of the A species can then become entangled with
the melt . In both cases, la rger numbers of polymer
entanglements resu lt in increased in ter facia l st rength .
The systems simulated in this paper consist of substrate-
tethered chains in contact with a polymer melt (i.e., case
ii), bu t the resu lt s can easily be genera lized to polymer /
polymer in ter faces.
Two key parameters govern the amount of in ter facia l

entanglement , the length (N t), and the area l density (Σ)
of the tethered cha ins. Adhesion enhancement due to a
tethered polymer layer shows a surpr ising nonmono-
tonic behavior as a funct ion of N t and Σ due to the phase
behavior for the tethered cha in layer .6-9 The increased
work of adhesion W* for an elastomer ic system vs area l
density of grafted cha ins Σ is shown schemat ica lly in

Figure 1. W* is defined as the ext ra work needed to
separa te two sur faces in addit ion to the work exer ted
aga inst dispersion forces a lone. In region I where each
tethered cha in is isola ted from its neighbors, the work
of adhesion increases as Σ increases. However , as Σ
cont inues to increase, the tethered cha ins begin to
over lap and phase separa te from the melt (region II).
In th is regime, the in terpenet ra t ion of the tethered
cha ins in to the polymer melt decreases with increasing
Σ, and as a resu lt W* decreases. At sufficien t ly h igh
area l densit ies, the polymer melt is completely expelled
from the tethered cha ins, thereby causing the work of
adhesion to fa ll off to the bare va lue due to dispersion
forces only (region III). W* has a simila r dependence
on N t . Th is nonmonotonic behavior has been observed
by Léger and co-workers9,10 in elastomer ic mater ia ls.
Kramer and co-workers11-15 have studied the effect s of
tethered cha ins in glassy polymer systems where the
effects of crazing could complicate the dependence ofW*
on Σ. While Figure 1 rela tes the macroscopic work of
adhesion to tethered-cha in parameters, it does not
address the m icroscopic processes involved in adhesion
fa ilure a t the melt /t ethered-cha in in ter face. This paper
invest iga tes the effect s of N t , Σ, T , kθ, and v on these
fa ilu re mechanisms.
The in terplay between the microscopic fa ilu re mech-

anisms of tethered chain pullout and scission (including
their possible rela t ionsh ip to crazing) is not fu lly
understood, par t ly due to the difficu lty of direct exper i-
menta l observa t ion of these phenomena . Molecula r

† Sandia is a mult iprogram labora tory opera ted by Sandia
Corpora t ion , a Lockheed Mar t in Company, for the United Sta tes
Depar tment of Energy under Cont ract DE-AC04-94AL85000.

Figure 1. Schemat ic of the increased work of adhesion W*
for an elastomer ic system vs area l density of tethered cha ins
Σ: (region I) mushroom regime; (region II) par t ia lly overlapped
(wet brush) regime; (region III) phase-separa ted regime. W*
shows a simila r dependence on N t .
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Fig. 2.1. (Left) Schematic “phase” diagram for breaking of an adhesive brush-melt system.
The horizontal axis is chain length N . The transition from pullout to scission or crazing takes place
at N = Ne. The vertical axis indicates brush coverage (increasing tether density going upwards).
Figure is taken from Ref. [6]. (Right) Schematic of work of adhesion W ∗ for a brush-melt system.
(I) mushroom regime (II) partially overlapped regime (III) phase-separated regime. Σ indicates brush
coverage. Figure is taken from Ref. [5].

While this is qualitatively known, little is known quantitatively about the de-
tails of entanglement in brushes and brush-adhesive systems. For this reason Gary
Grest and I have been studying entanglement in model systems this summer using
a new simulation technique [1]. We employ a coarse-grained bead-spring polymer
model [3] that incorporates key physical features of linear homopolymers such as
covalent backbone bonds, excluded-volume and adhesive interactions, and the topo-
logical restriction that chains may not cross. All monomers interact via the truncated
Lennard-Jones potential:

ULJ(r) = 4u0

((
(σ

σ )12 − ( σ
rc

)12
)
−
(
(σ

r )6 − ( σ
rc

)6
))

, (2.1)
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where rc is the potential cutoff radius, ULJ(r) = 0 for r > rc, u0 is the binding energy,
and σ is the effective atomic diameter.

Covalent bonds between adjacent monomers on a chain are modeled using the
finitely extensible nonlinear elastic (FENE) potential

UFENE(r) = −kR
2
0

2
ln(1− (r/R0)2), (2.2)

with the canonical parameter choices [3] R0 = 1.5a and k = 30kBT/σ
2. The equilib-

rium bond length l0 ' 0.96a. Nt monomers are bound together to make linear brush
chains, while Nm monomers similarly form the melt chains.

while the results for Nm ! 200 are from a hybrid
double-bridging/MD run. Figure 3(b) shows the brush
monomer density for five of the systems used in the
adhesion study. For the largest coverage shown, ¥
! 0.10!"2, the density oscillations indicate that the
system is not completely equilibrated even after a run of
over 3.5 # 107 time steps. At this coverage, the equili-
bration is limited by diffusion of melt chains away from
the surface, which for chain lengths of Nm ! 1000 is
quite slow. Clearly, application of the double pivot al-
gorithm alone is not sufficient to completely equilibrate
this system. As the crossover to crazing occurs for lower
coverages, our main results regarding the adhesion me-
chanics as a function of coverage discussed below are
unchanged.

Figures 4–6 show chain configurations at different
times from tensile pull simulations for areal chain den-
sities ¥ ! 0.02, 0.05, and 0.10!"2, respectively (see also
Table 1). The simulation results in these three figures are
all performed for the slowest pull velocity v
! 0.0167!""1. For each chain configuration shown,
the red chains are tethered, blue chains represent the
melt, and green chains were initially tethered and have
broken sometime during the tensile pull. Together, these
three sets of simulated chain configurations illustrate the
crossover from chain scission to bulk crazing as the
surface coverage of tethered chains increases.

For ¥ ! 0.02!"2 the tethered chains are close to the
mushroom regime so that at most a few tethered chains
are entangled among themselves as well as with the melt.
As a consequence, the tensile pull acts on the chains
individually. In the initial stage of the tensile pull shown
in Figure 4(a) the part of the tethered chains near the
surface are pulled out of the melt with relative ease. This
occurs because the monomers of the tethered chains near
the surface are weakly mixed with melt as shown in the
density profile (Fig. 3). However, the chains are suffi-
ciently long to be entangled with the melt chains, and
beyond the initial part of the tethered chain, the remain-
ing segment is entangled within the melt. Consequently,

Figure 3. Brush monomer density #( z) as a function of the
distance z from the grafting surface. (a) Effect of varying melt
chain length Nm ! 1, 10, and 200 for Nt ! 100 for ¥
! 0.03!"2. (b) Effect of varying areal chain density for Nt

! 500 for five values of the surface coverage. The brush is
immersed in a melt of chain length Nm ! 1000.

Figure 4. Chain scission example. Chain configurations at
three times during a tensile pull simulation for pull velocity v
! 0.0167!""1 and areal chain density of ¥ ! 0.02!"2 for T
! 0.3$/kB. For each chain configuration shown, the red chains
are tethered, blue chains represent the melt, and green chains
were initially tethered and have broken sometime during the
tensile pull. The dimensions of the simulation box perpendic-
ular to the pull direction are Lx ! Ly ! 50!. The times shown
are (a) 2220" (Lz ! 165!), (b) 9300" (Lz ! 283!), and (c)
14100" (Lz ! 363!).

Figure 5. Example of combination of chain scission and
crazing. Chain configurations at three times during a tensile
pull simulation for pull velocity v ! 0.0167!"-1 and areal
chain density of ¥ ! 0.05!"2. The dimensions of the simula-
tion box perpendicular to the pull direction are Lx ! Ly

! 32!. The chain coloring and times shown are the same as in
Figure 4, (a) (Lz ! 164!), (b) (Lz ! 282!), and (c) (Lz

! 362!).
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Fig. 2.2. Breakdown of a glassy adhesive system by scission of the brush chains. The glass
(formed from the untethered chains) is blue, portions of brushes still attached to the tether surface
are red, and brush chains which have broken off into the glass are green. The coverage is Σ = .02/σ2.
Figure is taken from Ref. [6].

We study the entanglement structure using primitive path analysis (PPA) [1]. A
primitive path is the shortest path a chain fixed at its ends can take without crossing
any other chains. In PPA, all chain ends are fixed in space and several changes
are made to the interaction potential. Intrachain excluded-volume interactions are
deactivated, while interchain excluded-volume interactions are retained. The system is
coupled to a heat bath at T = 0.001u0/kB so that thermal fluctuations are negligible,
and the equations of motion are integrated until the chains minimize their length.
Turning off intrachain interactions means that self-entanglements are not preserved.
We believe their number is negligibly small for the systems considered here, but need
to verify this.

Excluded volume appears nowhere in Edwards’ standard concept of primitive
paths - the paths are envisioned as a network of infinitely thin line segments between
entanglement points (EPs). At the conclusion of a typical PPA run, however, ex-
cluded volume remains important because of the finite thickness of the chains. The
percentage of beads with interchain contacts remains high, and not all of the in-
terchain contacts are EPs. To identify individual entanglements along a chain, an
addition must be made to the standard PPA procedure. At the conclusion of the
standard PPA, we insert ndec − 1 beads between each bead of the existing chains,
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the subsequent fracture dynamics (pullout vs scission) of
the tensile pull depends primarily on the entanglement
dynamics. At ¥ ! 0.02!"2, almost every tethered chain
breaks as shown in the Figure 4(c) (see also Fig. 7 and its
discussion below). The time required for pullout is
longer than allowed by this strain rate, resulting in chain
scission. As shown in our earlier work,20 the time to pull
out shorter chains particularly for Nt # Ne is shorter and
the interface failure is dominated by chain pullout.

Increasing the areal density to ¥ ! 0.05 (Fig. 5) and
0.10!"2 (Fig. 6) clearly shows a new mechanism of
failure, crazing in the melt chain bulk. For large ¥, the
tethered chains form a brush and are stretched in a
direction perpendicular to the substrate. This stretching
also tends to orient the chain segments prior to pulling.
The tensile pull then has a tendency to act on groups of
chains, further aligning them to form fibrils.

The tensile stress is now less localized, as it is spread
among the multiple chains in a fibril. Chain scission
would require a tensile stress strong enough to break all
the chains in the fibril simultaneously. Instead, a craze
forms. For ¥ ! 0.05!"2 and 0.07!"2 the tethered chains
initiate a bulk craze that persists to $z % 800!, at which
point the craze fails in the melt. For ¥ " 0.10!"2 the
tethered chains initiate a bulk craze as well. In these
cases, the simulations were stopped due to computational
limitations. However, we expect that the bulk craze
should fail in a similar manner to the simulations run
with ¥ ! 0.05!"2 and 0.07!"2. This study focuses on
the crossover to crazing due to chains attached at the
wall. For the details of failure mechanisms and micro-
structure in bulk crazing see the work of Robbins and
coworkers,32,34–36 whose simulations use a model simi-
lar to ours. For the crossover to crazing at ¥ ! 0.07!"2

and v ! 0.04167!#"1, the steady-state crazing stress is
&2.0$!"3. For the crossover to crazing at ¥ ! 0.07!"2

and v ! 0.0167!#"1, the steady-state crazing stress is
&1.5$!"3. Both of these values are comparable to those
found by Robbins.32,36

During the simulation we measure the total work
exerted and the number of bonds broken. The total inte-
grated work at t is

!'t( % !
0

t

Fw't)(vdt), (3)

where Fw is the force on the wall and v is the pull
velocity. To quantify the degree of scission the remain-
ing length of the tethered chains is averaged at the end of
a pull simulation. The average fractional length of the
remaining chains is

*F+ %
1
nt

"
i

nt Nt,i
f

Nt
(4)

where Nt,i
f is defined to be length of the ith tethered chain

at the end of a pull simulation and nt is the number of
chains tethered to the pulling wall. The value of *F+
quantifies the amount of scission in the tethered chains at
the end of a pull. *F+ ! 1 corresponds to pure chain

Figure 6. Example of pure crazing. Chain configurations at
three times during a tensile pull simulation for pull velocity v
! 0.0167!#"1 and areal chain density of ¥ ! 0.10!"2. The
dimensions of the simulation box perpendicular to the pull
direction are Lx ! Ly ! 32!. The chain coloring and times
shown are the same as in Figure 4, (a) (Lz ! 199!), (b) (Lz

! 317!), and (c) (Lz ! 397!). Due to image size restrictions,
the final chain configurations at large extensions cannot be
shown.

Figure 7. Total integrated work !(t) vs time at different
areal chain densities ¥ for (a) v ! 0.167!#"1 and (b) v
! 0.0167!#"1.
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Fig. 2.3. Crazing of a glassy adhesive system. Colors are as above. The coverage is Σ = .10/σ2.
Figure is taken from Ref. [6].

while the results for Nm ! 200 are from a hybrid
double-bridging/MD run. Figure 3(b) shows the brush
monomer density for five of the systems used in the
adhesion study. For the largest coverage shown, ¥
! 0.10!"2, the density oscillations indicate that the
system is not completely equilibrated even after a run of
over 3.5 # 107 time steps. At this coverage, the equili-
bration is limited by diffusion of melt chains away from
the surface, which for chain lengths of Nm ! 1000 is
quite slow. Clearly, application of the double pivot al-
gorithm alone is not sufficient to completely equilibrate
this system. As the crossover to crazing occurs for lower
coverages, our main results regarding the adhesion me-
chanics as a function of coverage discussed below are
unchanged.

Figures 4–6 show chain configurations at different
times from tensile pull simulations for areal chain den-
sities ¥ ! 0.02, 0.05, and 0.10!"2, respectively (see also
Table 1). The simulation results in these three figures are
all performed for the slowest pull velocity v
! 0.0167!""1. For each chain configuration shown,
the red chains are tethered, blue chains represent the
melt, and green chains were initially tethered and have
broken sometime during the tensile pull. Together, these
three sets of simulated chain configurations illustrate the
crossover from chain scission to bulk crazing as the
surface coverage of tethered chains increases.

For ¥ ! 0.02!"2 the tethered chains are close to the
mushroom regime so that at most a few tethered chains
are entangled among themselves as well as with the melt.
As a consequence, the tensile pull acts on the chains
individually. In the initial stage of the tensile pull shown
in Figure 4(a) the part of the tethered chains near the
surface are pulled out of the melt with relative ease. This
occurs because the monomers of the tethered chains near
the surface are weakly mixed with melt as shown in the
density profile (Fig. 3). However, the chains are suffi-
ciently long to be entangled with the melt chains, and
beyond the initial part of the tethered chain, the remain-
ing segment is entangled within the melt. Consequently,

Figure 3. Brush monomer density #( z) as a function of the
distance z from the grafting surface. (a) Effect of varying melt
chain length Nm ! 1, 10, and 200 for Nt ! 100 for ¥
! 0.03!"2. (b) Effect of varying areal chain density for Nt

! 500 for five values of the surface coverage. The brush is
immersed in a melt of chain length Nm ! 1000.

Figure 4. Chain scission example. Chain configurations at
three times during a tensile pull simulation for pull velocity v
! 0.0167!""1 and areal chain density of ¥ ! 0.02!"2 for T
! 0.3$/kB. For each chain configuration shown, the red chains
are tethered, blue chains represent the melt, and green chains
were initially tethered and have broken sometime during the
tensile pull. The dimensions of the simulation box perpendic-
ular to the pull direction are Lx ! Ly ! 50!. The times shown
are (a) 2220" (Lz ! 165!), (b) 9300" (Lz ! 283!), and (c)
14100" (Lz ! 363!).

Figure 5. Example of combination of chain scission and
crazing. Chain configurations at three times during a tensile
pull simulation for pull velocity v ! 0.0167!"-1 and areal
chain density of ¥ ! 0.05!"2. The dimensions of the simula-
tion box perpendicular to the pull direction are Lx ! Ly

! 32!. The chain coloring and times shown are the same as in
Figure 4, (a) (Lz ! 164!), (b) (Lz ! 282!), and (c) (Lz

! 362!).
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Fig. 2.4. Mixed scission and crazing. Colors are as above. The coverage is Σ = .05/σ2. Figure
is taken from Ref. [6].

reduce the bead diameter by a factor of ndec, and allow the chains to minimize their
length once again. This reduces the fraction of beads having interchain contacts by a
factor of roughly ndec, allowing us to identify interchain contacts as EPs.

I now discuss some preliminary results of our PPA analysis of the brush-melt
systems. Figure 2.5 depicts the number of brush-brush, brush-melt, and melt-melt
interchain contacts for the thin-chain, Σ = .03/σ2 system. The horizontal axis in
Figures 2.2-2.4 is the z-direction, and the initial length of the simulation cell is L. At
this moderate coverage, the brush is considerably entangled with itself at values of z/L
of up to about .15. The brush extends considerably further into the melt, however,
and brush-melt entanglements exist for z/L of up to about .35. At low values of z,
the number of brush-brush and brush-melt entanglements are comparable, indicating
thorough overlapping between melt and brush. However, the finite coverage density
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is manifest in the low number of melt-melt entanglements for z/L below about .2.
At moderate values of z/L, the number of brush-melt and melt-melt entanglements
are similar. This behavior is indicative of the crossover between the low and high
coverage regimes. At low coverages, the brush is negligibly entangled with itself,
but more strongly entangled with the melt. At high coverages, towards the phase-
separated regime, the brush is more entangled with itself and less entangled with the
melt.

Another finding is that the number of entanglements of type X-Y (where X and
Y = brush or melt) at given value of z is proportional to ρX(z)ρY (z), the product of
the relevant densities, and that the proportionality constant is the same for all three
types of entanglements. This suggests that brushes and melts entangle in essentially
the same way. This is surprising given the different structure of brushes and melts.
While the squared end-end distance < R2 > scales as N for the random-walk- like
melt chains chains, it scales as N2 for the directed brushes.

0.050.10.150.20.250.30.350.4

10000

20000

30000

40000

Fig. 2.5. Entanglement of a melt-brush system for coverage .03/σ2. The horizontal axis indi-
cates the distance from the tethering surface and the vertical axis indicates the number of interchain
contacts. The solid green line indicates brush-brush contacts, the dashed red line indicates brush-melt
contacts, and the dot-dashed blue line indicates melt-melt contacts.

While the data in Figure 2.5 is fairly clear and easy to interpret, it is less clear
for some of the other systems we have examined. Fortunately we have a large number
of initial states at the various coverages, and will continue running PPA analyses to
get better statistics for the distributions of entanglement densities.

To gain a better understanding of the entanglement structure of brush-melt sys-
tems, we have also simulated “dry” brushes with no melt present. The goal is to see
how much the brushes are entangled with each other. We have simulated dry brushes
under two fundamentally different physical conditions. The first is “good-solvent”
(GS), with purely repulsive interactions (rc = 21/6σ) and T = 1.0u0/kB . The second
is “θ-point” (TP), with relatively long-range attractive interactions (rc = 2.5σ) and
T = 3.18u0/kB . Although the interactions of real polymers are fixed, both GS and
TP conditions occur in real systems.

MD Configurations from my simulations of dry GS and TP brushes are shown in
Figure 2.6. The GS brush extends to a greater height and is more dispersed, while
the TP brush is more condensed [2]. For this reason, as our PPA simulations have
verified, the TP brushes are much more entangled. Thin-chain PPA simulations have
shown that significant entanglement is not present in the GS brushes below coverage
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Fig. 2.6. Images from MD simulations of brushes under good-solvent (left) and θ-solvent (right)
conditions for ρa = .05/σ2. Note that the brush in good solvent is more dispersed, and has the greater
height. Bottom portions of brushes not shown.

.03/σ2, while for TP brushes it is present at coverages as low as .01/σ2. This result
is interesting in itself and is worth further investigation. We may want to simulate
larger dry-brush systems (of order 1 million atoms), because statistics for the current
systems are rather poor.

I am currently in the process of learning more about dry brushes, and we are
hoping to determine a small set of specific physical questions to address. I will be
continuing the study of entanglement in brushes after returning to Johns Hopkins.
We hope to write a journal paper addressing issues in the physics of both wet and dry
brushes sometime during the coming academic year. This paper will constitute part
of my thesis work.
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ADSORPTION OF NUCLEOTIDE MONOPHOSPHATES ON
CARBON NANOTUBES

T. IACONIS∗ AND D. ROBINSON†

Abstract. Carbon nanotubes (CNT) are produced as a mixture with varying diameters, helici-
ties, and electronic properties. Tubes purified with respect to these properties would be much more
useful. DNA can disperse nanotubes into an aqueous medium, facilitating liquid-phase separation
techniques for the purification process. It has been claimed that DNA-CNT interaction is depen-
dent on the DNA’s primary structure, suggesting specific interactions between individual nucleotides
and the nanotubes. We are studying the strength of monomeric nucleotide-CNT interactions as a
function of nucleotide identity, and weight ratio. After equilibrating carbon nanotubes with a given
nucleotide in salt solution, we observe the depletion of nucleotides in solution due to adsorption onto
the tubes by UV spectroscopy. We have found that nucleotides with larger, more electron-rich bases
have a greater affinity for carbon nanotubes.

1. Introduction. Since their discovery in 1991, there has been great interest in
using carbon nanotubes for a wide variety of applications. Commercially synthesized
carbon nanotubes exhibit environment-sensitive electrical properties that range from
metallic to semiconducting, depending on tube diameter and helicity. Their electrical
properties are quite sensitive to adsorbed molecules, making them attractive as sensors
and as components in molecular electronic devices. However, nanotubes are difficult
to use due to their wide dispersion of geometries and conductivities, as well as a
tendency to aggregate. Two critical steps to using these materials are to solubilize
and disperse the tubes, and to sort them according to their properties. Recently,
Zheng and coworkers [1] discovered that single-stranded DNA binds strongly to single-
walled carbon nanotubes (SWNTs) and that the ssDNA effectively disperses bundled
SWNTs into solution. They found that certain sequences of ssDNA are more effective
than others, and that it is possible to use anion exchange chromatography to sort
the SWNTs by tube diameter. The team proposed that the structure of a ssDNA
/ SWNT hybrid depends on the electronic character of the nanotube, which in turn
depends on its diameter and whether the tube is metallic or semiconducting.

To better understand the interactions between ssDNA and SWNTs, we have stud-
ied the interactions of monomeric nucleotide monophosphates (NMPs) and SWNTs.
Our goal was to determine the affinities of different NMPs for SWNTs, and explain
what leads to any observed variation.

2. Methods. We began by weighing out carbon nanotubes into 4mL vials at 2-3
mg per sample, and preparing a 150 mM stock of salt solution. The salt solution con-
sisted of 175 mg NaCl and 20mL DI water. Next we weighed out a chosen nucleotide
monophosphate and added the salt solution to a 10 mg/mL nucleotide concentration.
This was the stock nucleotide solution. We determined a set of weight fractions (mass
nucleotides / mass CNT) to test; these values ranged approximately 0-2.5. We la-
beled a nanotube-containing vial for each fraction we intended to test. Dividing each
weight fraction by the concentration of the nucleotide (“NMP”) solution (10 mg/mL),
we calculated the amount of NMP solution to add last into our samples. 0.5mL of
salt solution was added to each tube vial per mg of tubes, but the volume of NMP so-
lution to eventually add was subtracted from this amount. After the salt solution and
nanotubes were combined, the calculated volumes of NMP solution were added. All
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vials were vortexed and the lids secured with parafilm. Samples were then sonicated
in ice for three hours to equilibrate the components. The ice ensured that the samples
did not heat up over the incubation period. We followed by centrifuging the vials for
5 minutes at 2000 rpm in order to settle the nanotubes with adsorbed nucleotides. To
measure the amount of free nucleotides remaining in solution, 0.1mL was removed to
a cuvette without redispersing the nanotubes from the sample. The remainder of the
1.5mL cuvette was filled with DI water and the UV spectrum taken from 200-400 nm
using UV-Probe software. The process was repeated for all samples. A set of controls
was run identically through the process with absence of CNT.

3. Results. By comparing the spectra of the controls with the spectra of the
samples (Figures 3.1(a) and 3.1(b)), we see that there is a significant decrease in the
absorbance levels when carbon nanotubes are present. This verifies that the nanotubes
are in fact taking up a portion of the nucleotides, leaving less free in solution, and
less to absorb the UV light. Also, the spectrum lines increase with increasing weight
fraction for both the tubes and controls. This simply indicates that in both cases,
when more nucleotides are added to the sample, more are present in solution.

(a) (b)

Fig. 3.1. Guanosine Spectra

More importantly, we compared the adsorbance patterns between nucleotides.
We measured this in two ways (Figures 3.2(a)-3.4(b)). Both methods compare the
UV absorbance of a sample (with nanotubes) to the UV absorbance of a control (no
nanotubes) for a given wavelength and weight fraction. The first measure compares
these quantities as a ratio of the sample to the control. This ratio increases as we
increase the weight fraction, but eventually levels off close to 1. This happens as
the nanotube surfaces become full and saturated with the nucleotides. The second
measure is the difference between the aforementioned quantities. This is a direct
measure of the amount of nucleotides that stuck to the tubes. This quantity also
increases with weight fraction because more nucleotides can adsorb when more are
present. However as before, the surfaces of the nanotubes reach saturation and the
curve levels off. The data is fit with curves according to the Langmuir adsorption
model, as discussed below.

Comparing the difference curves and ratio curves, it is clear that guanosine and
adenosine differ greatly from thymidine, uridine, cytosine, and inosine. The ratio
curves are low, and the difference curves high for these two nucleotides. The latter
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(a) (b)

Fig. 3.2. Adsorbance patterns between nucleotides.

(a) (b)

Fig. 3.3. Adsorbance patterns between nucleotides.

four exhibit the opposite, with considerable difference between the curves. Adenosine
and guanosine must therefore adsorb much better to the tubes

4. Discussion and Conclusions. We found that the tubes take up NMP in-
creasingly with concentration, and begin to saturate at a level unique to the NMP. As
shown above, guanosine and adenosine take higher concentrations to saturate. These
nucleotides are adsorbing to the tubes much more strongly than uridine, thymidine,
cytosine or inosine. Comparing the molecular structures of the NMPs, guanosine and
adenosine are more aromatic and contain more electron donating groups than the
others. Specifically they contain donating amines, and fewer withdrawing oxygens.
These properties therefore cause stronger adsorption onto the carbon nanotubes.

The curves are fit to our data from the Langmuir adsorption model. However,
the difference in degree is different between the nucleotides. The discrepancies with
our data lead us to believe that our system has significant differences from Langmuir.
The basis of the Langmuir model is coverage of a surface by a monomolecular layer,
including parameters for saturation and affinity. In our situation the NMP molecules
are covering the carbon nanotube surface, but the Langmuir model is not completely
applicable here because it assumes a constant surface area for adsorption. It is pos-
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(a) (b)

Fig. 3.4. Adsorbance patterns between nucleotides.

sible that with the adsorption of the NMP to the tubes, the bundles of tubes are
more dispersed and expose more surface area. Nucleotides that adsorb better may
also disperse better. This may account for the differing patterns we have observed.
Since adenosine and guanosine continue to exhibit adsorption into higher weight frac-
tions, they must be dispersing the nanotubes well in order to open up surface area to
accommodate the molecules.

Further work could include studying the effect of temperature on the adsorption
process. We will also look at oligomers and other artificial polymers that may optimize
the adsorption and dispersion mechanism. Ultimately, we hope to fully understand
the way that DNA-like molecules interact with carbon nanotubes, and be able to use
this process to effectively separate and sort nanotubes with high yield and purity.
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FUNCTIONAL METAL-ORGANIC FRAMEWORKS: SYNTHESIS OF
NEW FLUORESCENT MOFS AND GROWTH OF MOF5 THIN

FILMS ON SAMS

V. LIU∗, C. BAUER† , M. ALLENDORF† , AND R. SIMMONS†

Abstract. Metal-Organic Frameworks (MOFs) have recently attracted interest due to their
regular porosity, high surface area, and potential for application in gas and vapor storage, separation,
and sensing. In our experiments, we utilized the rigidity and well-defined geometries inherent in
MOFs to provide a low-density matrix for the incorporation of fluorescent linkers with potential for
vapor sensing. In this paper, synthesis strategies for various MOFs, their characterization, and their
fluorescence properties are discussed. Ultimately, we intend to use these materials to perform vapor
sensing and to incorporate them into thin film devices.

1. Introduction. MOFs have attracted attention as a new class of nanoporous
materials, with applications ranging from gas storage to sensing and separation. One
of the advantages of MOFs is that the products of their synthesis can be reasonably
predicted from the starting materials [1]. This synthetic methodology has allowed
the use of a variety of organic molecules as linkers in the MOF crystals, and we
will discuss the growth strategies of these MOFs in the following paragraphs. We
would also discuss our application of these MOFs as fluorescent chemical sensors and
the growth of these MOFs on surfaces functionalized with self-assembled monolayers
(SAMs).

2. Synthesis Procedures. In the following paragraphs, the methods used to
synthesize each type of MOF are detailed and the observations specific to each type
of MOF are noted.

2.1. MOF 5/IRMOF-1.

Procedure: Weigh out appropriate amounts of materials (consult table 2) and put
them into a scintillation vial. Measure out appropriate amount of DEF with a grad-
uated cylinder and mix DEF with the materials. The solution at this point should
appear slightly cloudy due to the undissolved linker material. Place a stir bar into
the solution and let it sit on a stir plate for approximately 1 hr, or until everything
is dissolved. The solution should then be placed into the oven at 105 oC for about 1
day.

Observations: After one day, crystal growth should be observed on side walls and the
bottom of the vial. The color of the DEF should also turn to a dark yellow/light
brown. The decanted DEF solution can be put back into the oven at 105 oC for con-
tinued crystal growth. It has been observed that these crystals are generally smaller
than the first growth.

Fluorescence: Weakly fluorescent (color = blue-green)

Additional info: Addition of water to the reagents can result in a different material
(verified by powder XRD) being produced, depending on the amount of water added.
We have found that being at about 4% (by volume) water in solution, the crystals
cease to form. This is similar to the calculated water sensitivity as published by J.
Greathouse and M. Allendorf [1].

∗University of California at Berkeley
†Sandia National Laboratories
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Table 2.1
Summary of reagents used for synthesis of various MOFs. Note: Metal source can be also be

Zn(NO3)2 cdot 4H2O w/ a conversion between different molar masses.

Type Metal Source Linker Solvent

MOF 5/IRMOF 1 Zn(NO3)2 · 6H2O Terephthalic acid DEF
IRMOF 8 Zn(NO3)2 · 6H2O 2,6-Naphthalenedicarboxylic acid DEF
IRMOF 10 Zn(NO3)2 · 6H2O 4,4-Biphenyldicarboxylic acid DEF

2D Stilbene MOF Zn(NO3)2 · 6H2O Stilbenedicarboxylic acid DMF
3D Stilbene MOF Zn(NO3)2 · 6H2O Stilbenedicarboxylic acid DEF

DEF = Diethylformamide, DMF = Dimethylformamide

Table 2.2
Summary of weights/volumes of reagents for various MOFs Note: The weights for all the above

entries are based on reactions with 10mL of solvent. To synthesize material on a larger scale (i.e.
with more solvent), the weight of materials required is obtained by multiplying the amounts by x/10,
where x is the volume of solvent to be used.

Type Zn(NO3)2 · 6H2O Zn(NO3)2 · 4H2O Linker Molar
mass (mg) mass (mg) mass (mg) ratio

MOF 5/ IRMOF 1 357 313.75 67 3
IRMOF 8 626 550 60 7.57
IRMOF 10 17.53 15.4 3.2 4.54

2D Stilbene MOF 119 104.6 35.67 3
3D Stilbene MOF 119 104.6 15.33 6

2.2. IRMOF 8.

Procedure: Similar to MOF 5

Observations: : Similar to MOF 5, with much smaller crystal sizes.

Fluorescence: Weakly fluorescent (color = purple)

Additional info: These crystals can also be formed at room temperature by leaving
the solution out for about 2 days. Crystal sizes appear smaller but the quality of the
crystals might be better.

2.3. IRMOF 10.

Procedure: Similar to MOF 5

Observations: These crystals are very small; under the microscope, the crystals look
slightly spherical.

Fluorescence: Not very fluorescent (color = blue)

Additional info: The single crystal structure of this material was never obtained by
the Yaghi group because of their small sizes.

2.4. 2D Stilbene MOF.

Procedure: Stilbenedicarboxylic acid is fairly difficult to dissolve in DMF. If you just
add all the stilbene into DMF at once, it is likely that a large portion of the material
would not be dissolved. To facilitate the synthesis, use the following method:

1. Weight out required amount of stilbenedicarboxylic acid in a scintillation vial
and set it aside. Measure out the required amount of DMF, add 5-10mL of
DMF into the scintillation vial, and put the rest of the DMF into a glass
bottle or flask.



V. Liu, C. Bauer, M. Allendorf and R. Simmons 41

2. Begin by sonicating the vial for ∼1-2 minutes to break up large stilbene pieces.
Afterwards, use a glass pipet to siphon a couple drops of the solution from
the scintillation vial and add it to the bottle/flask. Swirl the flask until the
solution appears clear. Heating the solution with a heat gun while swirling
can help the stilbene pieces dissolve into the solution. Repeat this process
until all the solution is in the flask. (At the end, you might want to rinse the
vial with the solution for a couple times to ensure all the stilbene pieces are
collected into the flask) Note that its OK for the solution to be a little cloudy
at the end, as the increase in ionic strength caused by the addition of zinc
nitrate will help in the dissolving process. Note: if the solution still appear
cloudy after swirling/heating, or if you can see large pieces of stilbene in the
solution, try sonicating it for ∼1-2 minutes.

3. Weigh out required amount of zinc nitrate into a scintillation vial, and proceed
by adding the stilbene solution into the vial (if vial is too small for all the
solution, you can just rinse it with the solution and pour/pipet it back to
the larger container; if you do this, make sure you have collected all the zinc
nitrate pieces by sonicating and rinsing the vial a couple of times)

4. At this point, the addition of Zn can help dissolve the remaining pieces of
stilbene that are not yet dissolved. If solution remained cloudy, put the vial
into an oven at 105 oC for around 15 minutes or until the solution looks clear.

5. Filter the solution with gravitational filtration and put the solution into an
oven at 105◦C overnight.

Observations: These crystals look like daggers under an optical microscope. Crystals
are air-stable (due to strong coordination with DMF molecules), making them good
candidates for vapor sensing and other applications. The crystals are called “2D”
because of the crystals structure: the molecules form extended sheets of crystals
separated by DMF molecules.

Fluorescence: These crystals are very bright, and the color looks blue. The intensity
and relative peak heights depend on the size/shape of the crystal. Therefore, when
the fluorescence is measured with a fluorometer, the absolute intensity in counts per-
second (cps) can vary quite a bit, but the normalized shapes will be very similar.

Additional info: We have found that stilbene is easier to dissolve in DMF than DEF,
if the solution looks clear before filtering, that step can be omitted.

2.5. 3D Stilbene MOF.

Procedure: Similar to 2D stilbene MOF, but use DEF instead of DMF as a solvent.
However, this requires more significant sonication and may require filtration before
the crystals are grown to remove significant amounts of undissolved linker.

Observations: These crystals are somewhat sensitive to air (moisture) and require
inert or dry atmospheres when preparing, similar to the other IRMOFs. These were
shown (by single crystal XRD) to have an IRMOF-like structure (Posessing the ZnO4

cluster linked by stilbene) and have an interpenetrated structure.

Additional info: The interpenetrated structure reduces the measured pore volume,
therefore the size of the pores are not as big as expected. The measured Langmuir
surface area is approximately 700m2g−1.Also, decreasing the concentration of reagents
produces smaller but higher quality crystals.

2.6. Anthracene MOF. Note: As of the time of the writing of this document,
we have yet to successfully synthesize high quality crystals with its linker.
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Procedure: It is very difficult to dissolve anthracene in DEF or DMF; we have tried
using different cosolvents of DMSO, DMF and DEF to improve the solubility of an-
thracene, and we have found that a ratio of 4:1 DMSO:DEF/DMF can dissolve an-
thracene well. Even with this mixture of solvents, we still had to use a procedure
similar to the synthesis of stilbene MOFs to dissolve the anthracene.

Observations: Decomposed anthracene would form in the vial after the vial is placed
in the oven at 105◦C overnight. The decants of the solution are placed in the oven at
85◦C, but so far we have only polycrystalline material.

2.7. MOF Storage. When the vial with the MOF with DEF is taken out of
the oven, pour out the DEF into a container as soon as possible and fill the vial
with DMF. The DMF would help wash out the decomposed DEF in the pores of the
crystals and any unreacted salts. After leaving the crystals in DMF for >0.5 hr, pour
out the DMF and pour chloroform into the vial. Repeat the chloroform rinse for 2
more times (separated by about 1 day) and the MOFs can be stored in chloroform
indefinitely.

3. MOFs on SAMs. In order to incorporate MOFs into sensing devices, we
need to be able to reliably grow MOFs on surfaces. Carboxylate-terminated SAMs
provide a promising way to attach MOFs on surfaces by encouraging nucleation on
the SAMs. The growth of SAMs on a gold surface (on Si wafer) can be incorporated
in semiconductor processing, and this can help incorporate these MOFs into sensing
devices.

3.1. MOF5 on SAM.

Procedure:
1. Mix 90mL of ethanol and 10mL of acetic acid, and also prepare a 100mL

portion of MOF5 crystals.
2. Weight out 6mg of mercapto hexadecanol and put this into 10mL of the 10%

ethanol-acetic acid mixture. This solution is then diluted by 100 fold with
the ethanol-acetic acid mixture. The method we used was to add 1 mL of
the mercapto solution to 99 mL of the original mixture to produce a 100mL
solution.

3. Put a cleaned gold substrate into the solution overnight at room temperature.
Next day:

1. Rinse gold substrate thoroughly with ethanol
2. Decant MOF5 solution
3. Place gold substrate into MOF5 decant
4. Leave the solution with gold substrate at room temperature overnight

4. Sensor responses. 3D stilbene MOFs and a solvent are placed in a quartz
cuvette. The quartz is then put into a black box and the excitation/emission is
collected through a fiber-optic. Since the 3D stilbene MOFs are usually stored in
chloroform, a solvent-exchange would be required if we want to test the crystals in
different solvent. For solvent-exchange, a 3-time rinse with the new solvent ensures
that the old solvent is mostly displaced before the MOFs are exposed to the new
solvent.

Preliminary testing with 3D stilbene MOFs has shown a shift in the fluorescence
spectrum when the crystals are immersed in different solvents. In the graph below, 4
solvents of varying polarity are compared. A comparison of the peak positions shows
that different solvents have produced different shifts (compared to chloroform) of the
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spectrum. We think this is due to the different electrostatic interaction between the
solvent and the stilbene linkers in the crystals. Hexane, being a nonpolar solvent,
can be reasonably expected to have a different interaction with stilbene than ethanol,
which is a more polar solvent. The responses to the solvents are reversible except for
the case of pyridine; we suspect this is due to the pyridine coordinating to the metal
clusters of the MOF, fundamentally changing the crystal structure and leading to an
irreversible change in the fluorescence spectrum. We observe a decomposition of the
crystals upon exposure to pyridine.
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Fig. 4.1. Fluorescence spectra of 3D stilbene MOFs in various solvents.

5. Conclusion. In this work, we have detailed the synthetic strategies of vari-
ous MOFs, characterized these new MOFs with fluorescence spectroscopy, and have
achieved sensor responses of 3D stilbene MOFs in different solvents. In the future,
we hope to demonstrate vapor sensing and incorporation of fluorescent MOFs onto
SAMs.
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CLEANING TECHNIQUES AND MECHANICAL PROPERTIES OF
DIATOM FRUSTULES

T. LYNCH∗ AND B. SIMMONS†

Abstract. Since the production of nanoscale parts has proven to be fairly difficult by ordinary
means, biomimetics is taking another approach in attempting to mimic biological systems production
of intricate, microscopic structures. Further understanding the mechanics of assembling the silica
nanosphere structure that composes the diatom frustule and its resulting strength will aide in the
investigation of synthetic self-assembling structures. This was investigated through fluorescence
microscope imaging of PDMPO doped diatom frustules, thorough cleaning the frustules using three
different acids as the cleaning agent, and nanoindentation performed by a Dimension 3000 AFM. The
resulting elastic moduli from nanoindentation of 7 to 640 MPa were lower than previous experiments
have shown. This is believed to be caused by an inadequate indenting AFM. However, these results
put us on the right track to understanding more about this biological system.

1. Introduction. The diatom outer shell, or frustule, is composed primarily of
silica nanospheres and a complex matrix of proteins (silaffins), which initiate and con-
trol the production of silica within the cell and construct the frustules during cellular
division. Because of the frustules’ porous framework and multi-scale silica composi-
tion, they possess a strong and lightweight structure and therefore the diatom frustule
has been found as a favorable system to utilize as a model system in the realization of
similar silicified materials in a laboratory setting. Self-assembling silica nanospheres
like these would be immensely useful, especially in further developments/innovation
of thin-films and microscopic frameworks. Before a synthetic system can be produced
and understood, the model system of the frustule must be thoroughly studied to learn
more about the mechanisms used to produce and assemble the silica frame and its
resulting strength. To further understand the capabilities of the frustule, a thorough
processing technique must first be administered to remove the extra-polymeric sub-
stance, which coats certain species, and other organic materials, to leave the silica
structure in a pristine condition. Once this is accomplished, mechanical property
tests, such as indentation and lithography, can be conducted to gain knowledge of
the hardness and elastic modulus of the frustule without having tainted results from
organic matter coating the frustule surface. This experiment will explore the produc-
tion and allocation of silica during the cell division process by fluorescence microscopy,
continued by comparing several different acid-based cleaning techniques and their effi-
cacy in cleaning diatoms, followed up with a comparison of the mechanical properties
of the frustules as a function of species as measured with nanoindentation.

2. Experimental Materials and Methods. Diatom species N.
alba, T. pseudonana, and T. weissflogii were cultured at Sandia Na-
tional Laboratories, CA, through the expertise of Pamela Lane. The
PDMPO/silica uptake experiment was conducted on N. alba. PDMPO,
(2(4pyridyl)5((4(2dimethylaminoethylaminocarbamoyl) methoxy)phenyl) oxa-
zole), is a fluorescent dye that traces silica movement. Diatoms are synchronized
by keeping them in a saltwater medium void of silica to not allow further cellular
divisions. At time equal to zero, they are exposed to a silica and PDMPO rich
environment. Every increment of forty minutes, a sample was removed, exposed to
ionophores, and resuspended in a silica dry medium. To image, they were placed on
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a glass slide and viewed with a mercury lamp under a green light filter at 510 nm.
The fluoresced light at about 530 nm was recorded using the optics portion of the
microscope.

These three species then underwent an acid-based cleaning process to remove the
organic material coating the frustule exterior. Nitric acid, sulfuric acid and piranha
were used as the cleaning agents. 200 µl of diatoms suspended in media, with a
concentration of ∼500 million cells per ml, was added to 800 µl of as received acid.
Frustules were subjected to each acid for a marked period of time to determine the
appropriate cleaning time per acid. Nitric acid evaluation took place at five, ten and
fifteen minutes of exposure. Sulfuric acid cleaning was evaluated at two, four and six
minutes of exposure. Piranha, however, was only performed once on T. pseudonana
and T. weissflogii for three minutes.

Once a proper cleaning time was determined, the washed frustules were ready for
AFM imaging and indentation. The frustules were mounted on glass slides prepared
with poly-l-lysine. The glass slides were first washed with soap and water, and then
dried. A drop of poly-l-lysine was applied to the slide, allowed to sit for one minute,
and then rinsed with water. The cleaned frustules were then pipetted onto the glass
surface and heated to evaporate the media and to lock the frustules in place. AFM
images were acquired with a Nanoscope IIIa controlled Dimension 3000. Fat/short
DNP silicon-nitride contact imaging tips with a spring constant of 0.06 N/m were
used to image and indent. Once a good image was obtained, the microscope was
switched to force imaging mode where the tip would be pushed into the surface of
the diatom, giving back a Tip Deflection vs. Z Height curve. The raw data from this
curve was extracted and converted to usable units. Following the indentation analysis
procedure produced by Oliver and Pharr [1], the elastic modulus and hardness of the
diatom frustule were calculated.

3. Confocal Microscopy Results. Viewing the displacement of silica during
the cell division process can lead to greater progress in silica nanosphere production.
In this case, the silica uptake experiment marks only the new silica that has entered
into the cell. A normal cell division process for this species takes around six to eight
hours and can clearly be seen in Figure 3.1. The silica is taken into the cell and

Fig. 3.1. These images show the progression of cellular division. The left image displays the
beginning of the process when the cell is pooling silica to utilize later in the production of new valves.
The center image clearly shows the division process in action as the cells are moving apart with
the new valves glowing green in the center of the separation. The right image is an image of post
cellular division where the concentration of silica is definitely strongest in the central nodule region.

pooled to provide an ample supply during cellular division. When the cell is ready
to divide and the new valves have been formed in the silica deposition vesicle, the
cell separates, places the new valves, and is finished. The new valves contain the
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highest concentration of silica on the central nodule region, as has been shown to be
the strongest portion of the diatom frustule from previous studies.

4. Acid-Based Cleaning Results. This process proved to be very species de-
pendent, as no two species reacted equally to the same acid-based cleaning procedure.
These results were verified through images obtained using a field emission scanning
electron microscope. T. pseudonana seemed to fair quite well with all three cleaning
procedures with piranha producing the best results by removing organic matter while
still leaving a completely intact frustule as shown in Figure 4.1

Fig. 4.1. The cleaning process of nitric acid at 10 minutes (left), sulfuric acid at 6 minutes
(center), and piranha at 3 minutes (right) performed on T. pseudonana. From these images, sulfuric
acid and piranha seemed to clean most thoroughly while still leaving an intact frustule. Nitric acid
did not clean as thoroughly and would begin degrading the frustule at longer times before removing
all organic matter.

T. weissflogii reacted quite differently to the acid treatments, as shown in Fig-
ure 4.2. The best cleaning procedure for T. weissflogii was nitric acid at 10 minutes.

Fig. 4.2. Scanning electron micrographs of nitric acid (left), sulfuric acid (center), and piranha
(right) cleaning, respectively, performed on T. weissflogii. In this case, nitric acid produced the best
result with cleaned frustules without degradation of the valves primarily. Sulfuric acid and piranha
began degrading the frustule before organic material was removed.

Sulfuric acid and piranha would destroy the girdle bands very quickly and begin
degrading the frustule intensely before having removed all of the organic material.
Piranha did the same, but much quicker and removing even less organic matter.

For the pennate species that was tested in addition to the previous two centric
species, we gained more results showing how this cleaning technique is very species
dependent. As seen in Figure 4.3, N. alba reacted to nitric acid in a similar manner
as that of T. pseudonana. The best cleaning came from a slightly longer exposure
to sulfuric acid at 6 minutes. Nitric acid would begin removing the girdle bands and
degrade the frustule before all organic material was removed.

The questions that arise from seeing the results of the acidic cleaning processes
are: does a certain acidic cleaning process determine the resulting mechanical strength
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Fig. 4.3. Scanning electron micrographs of cleaning N. alba with nitric acid at 10 minutes (left)
and sulfuric acid at 6 minutes (right).

of the frustule? and does the acidic cleaning procedure the frustule can withstand
reflect its overall strength?

5. AFM Mechanical Properties Tests. With the composition of the frustules
and their height protrusion of around 3 µm off of the glass slide, the best mode of
scanning turned out to be contact mode with DNP silicon-nitride tips. These tips are
some of the softest made, with an elastic modulus of 310 GPa, and could scan the
large height changes in the diatom frustule fairly well.

Fig. 5.1. 3D image of T. pseudonana cleaned by sulfuric acid obtained by AFM contact mode
scanning.

When a good image of the surface was produced, the microscope was transferred
to force mode. The Z scan size and start height were then adjusted to optimize
the contact time on the surface. From the resulting Tip Deflection vs. Z Height
data, a Force vs. Indent Depth curve was produced. Using the method derived from
Oliver and Pharr [1], an elastic modulus and hardness of the sample were calculated.
The load, P , can be calculated by taking the spring constant of the cantilever and
multiplying it by the tip deflection. This is treating the cantilever like a simple spring.
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Fig. 5.2. The loading and unloading of a sample during nanoindentation have been visualized
in these images. The left image displays a proper unloading curve from which the slope and loading
forces can be extracted from. The right image shows the different forms of the indent when loaded
and unloaded, giving the plastically deformed indent depth.

The slope of the unloading curve, S, can be obtained through interpolation. Starting
with the plastic deformation left behind when the tip has been removed, the height
of the indent depth can be defined by:

hs = ε
Pmax

S
(5.1)

where ε is a correction factor for the tip geometry. Using this dimension, the height
at which the tip is in contact with the sample during loading is

hc = hmax − hs (5.2)

where hmax is the height from the planar surface to the bottom of the indent when
fully loaded. The cross sectional area of the indenting tip in contact with the sample is
a function of that height A = F (hc). This area is then used to compute the hardness
and elastic modulus of the sample

H =
Pmax

A
(5.3)

S = β
2√
π
Eeff

√
A (5.4)

1
Eeff

=
1− ν2

E
+

1− ν2
i

Ei
(5.5)

β is a correction factor for a square based punch.
Based on extracting the slope, forces, and maximum penetrating force from the

curve below and applying the above equations, the overall modulus of the diatom
frustules tested in this experiment ranged from 7 to 640 MPa.
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Fig. 5.3. Tip Deflection vs. Z Height curve obtained while indenting T. weissflogii cleaned with
sulfuric acid.

6. Discussion. Following the previous works of Subhash, Yao, Bellinger and
Gretz [2], they show that these results may be on the right track but in no way are
to be taken as actual values for the elastic modulus of a diatom frustule. From their
experiments, the frustule should have a modulus ranging from 0.6 to 2.8 GPa. Some
of the results from this experiment fall into that range, but for the most part do not
display a true representation of the strength of the frustules. In addition to these
observations, the majority of the indentations performed did not produce a Force vs.
Indent Depth curve with a positive slope returning from the maximum force applied.
The bulk of the indents produced a curve more like that shown in Figure 6.1 The most
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Fig. 6.1. This is how the majority of the indent curves returned. The unloading portion is
backwards implying that with a smaller force one could gain a greater indent depth.

probable explanation for producing these curves is the machine used to perform the
indents was not strong enough or built to indent with the scanning probes provided.
Also, the maximum indenting force that the curves display is only around 0.08 µN,
where as previous studies have shown proper indents on frustules with a force in the
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range of 5 to 10 µN. With as small of a force as is produced by this microscope, it is
projected to only have a plastically deformed indent of a few nm in depth. This would
not show up on rescanning the frustule immediately after indenting. No indent was
ever viewed. Therefore, the few indents that produced positive results may be seen
as a fluke from the normal distribution of results with nonsensical interpretations.
Further revisions of the process used in this test are underway and should produce
real values for the elastic modulus of diatom frustules.

7. Conclusion. The use of diatom frustules in biomimetics has a strong ap-
plication in the production and manipulation of silica nanospheres and microscopic
frameworks. Hopefully a further understanding of the biological system will give
greater knowledge in producing a more robust and plausible synthetic system. From
this experiment the basics of silica deposition throughout the cell during cellular di-
vision were examined through fluorescence microscopy to reveal the strongest regions
of the frustule as well as give further insight into the mechanics of the silaffins when
producing silica nanospheres. In addition, the organic coating of the frustules was
removed using three acid cleaning procedures, and each process was then subjected
to nanoindentation to observe the effect of the cleaning procedure on the strength of
the diatom frustule. Unfortunately, the indents performed in this test were not sat-
isfactory for the purposes of determining the strength differences between the three
species of diatoms, between the centric and pennate forms, and between the three
different acid cleanings applied. Further tests will be conducted on these frustules
using a stronger machine with a more precise indenting tip to gain actual results as
to the strength of the diatom frustules.
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A GENERALIZED CONTINUUM MODEL FOR FINITE
DEFORMATION CRYSTAL PLASTICITY ACCOUNTING FOR THE

INFLUENCE OF DISCLINATIONS

J. MAYEUR∗ AND D. BAMMANN†

1. Introduction. The goal of this research is to develop a generalized continuum
model of crystal plasticity capable of predicting defect substructure development over
a wide range of length scales spanning from nanometers to microns. Defect substruc-
ture evolution, as seen in highly deformed crystalline materials, is a self-organized
highly cooperative process driven by the minimization of free energy with respect
to certain kinematic constraints such as boundary conditions, grain boundaries, free
surfaces, etc. The formation and arrangement of these structures is the result of
equilibrated internal forces and moments with respect to these constraints. Prop-
erly accounting for the balance of these internal stresses (in addition to the classical
continuum mechanics balance laws) is essential to predicting realistic substructure
development and its influence on material response ranging from texture evolution
to fragmentation and fracture processes. The methodology proposed to accomplish
these behaviors within a continuum level framework is the inclusion of disclinations
into the kinematics of geometrically-oriented crystal plasticity. The incorporation of
disclinations provides additional rotational degrees of freedom, as well as an addi-
tional characteristic length scale with which to compete with that of dislocations in
driving the evolution of the material substructure.

2. Background. Disclinations are linear, rotational defects initially conceptu-
alized by Volterra simultaneously with the more familiar translational dislocations
from elementary plasticity theory. A disclination can be visualized by considering a
hollow cylinder with a cut running the length of the cylinder. A disclination is then
produced by rotating the cut faces of the cylinder with respect to each other about
one of the three coordinate directions defined by the cylinder axis (disclination line
direction), normal to the cut plane, and the cross product of the cut-plane normal
and axis direction. Each of these 3 rotations produces a different type of disclina-
tion as illustrated in Figure 2.1. Rotating about an axis parallel to the cylinder axis

Fig. 2.1. Types of disclinations.

produces a wedge disclination (right), whereas rotating about the axes perpendicular
to the cylinder axis produces twist disclinations. Therefore, there are two distinct
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types of twist disclinations: a twist disclination with axis normal to the plane of the
cut does not result in inter-penetration of material (middle), while the twist discli-
nation with rotation axis in the plane of the cut and perpendicular to the cylinder
axis does (left). While this simple geometric construction of the disclination concept
is beneficial, it does not give insight as to how these defects might appear in and
influence the properties of crystalline materials. Just as (translational) dislocations
are required to preserve crystalline symmetries (i.e., conservation of burgers vector),
disclinations must, in turn, obey the rotational symmetries of the crystal structure.
Unlike liquid crystals and polymers (which do not posses long-range order), disclina-
tions must appear in screened configurations in crystalline materials due to the large
amount of strain energy associated with the presence of a full disclination. Therefore
disclinations must have their stress field screened either by a surrounding dislocation
distribution or by appearing as partial disclination dipoles. The manifestation of par-
tial disclination dipoles in crystalline materials is in the form of high angle (>15 deg)
grain/subgrain boundaries. At misorientation angles greater than this, the classical
dislocation description of the boundary no longer applies as the individual dislocation
cores become so closely spaced that they cannot be uniquely identified. The crystal
boundary then takes the form of a distribution of partial disclinations (at least for
tilt grain boundaries, i.e., wedge disclinations).

3. Model. In addition to adding disclinations into the kinematics of crystal plas-
ticity, we also introduce a generalization of the classical multiplicative decomposition
of finite deformation plasticity, i.e. F = FeFp. For simplicity, the kinematic en-
hancements are first discussed within the framework of crystal plasticity considering
dislocations only. Our argument is that an additional term, Fi, should appear in
the decomposition which represents a local compatibility restoring deformation, i.e.,
F = FeFiFp, which reflects the state of internal elastic strain due to the presence of
geometrically necessary dislocations. This reflects the belief that the unloading of the
body through Fe−1 should not produce an incompatible anholonomic configuration,
but rather the unloading of internal (residual) stresses in the absence of applied trac-
tions through Fi−1 should produce the familiar intermediate configuration of crystal
plasticity. In this point-of-view FiFp is the solution to the micromechanical problem
where Fp is the source of eigenstrains, Fi is due to microelastic strains resulting from
the inhomogeneity of the plastic flow, and Fe is a superposed compatible deformation
due to the applied tractions. The incorporation of disclinations is straight forward and
achieved by adding a rotational component to the multiplicative decomposition such
that it now takes the form F = FeFiRFp where all of the previous terms carry the
same meaning and the R captures the contribution of disclinations to the deformation
history.

The proper inclusion of disclinations into the kinematics of defective crystals
requires additional degrees of freedom at each continuum point other than the three
displacement components. This is achieved by attaching a triad of rigid director
vectors to each material point that can rotate independently of the material spin
of an infinitesimal line segment. In this type of oriented continuum, geometrically
necessary dislocations are defined in terms of incompatibility of the strain field, and
geometrically necessary disclinations are defined in terms of incompatibility of the
curvature field. This type of material falls under the class of generalized continua and
is called a micropolar material. Traditionally, micropolar materials are associated with
non-symmetric macroscopic Cauchy stresses, due to the presence of couple stresses
stemming from the independent rotations which cause non-symmetric shear strains.
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However, the model proposed here maintains the symmetry of the macroscopic Cauchy
stress, and employs the micropolar balance laws to the micromechanical problem of
determining the internal stresses arising from geometrically necessary dislocations and
disclinations.

For simplicity, a linearized version of the model is presented below. The crux of
the model revolves around the additive decomposition of the displacement field into
two compatible components ū and û . The first component, ū, is equal to the total
displacement prior to the onset of plasticity, and the second component, û, results
from plasticity and is governed by the micropolar balance equations to the microme-
chanical problem. In addition to the these six displacement degrees of freedom, the
independent micropolar rotation, φ̂ , is introduced as part of the micromechanical
problem. The governing equations of the proposed model are summarized below.
The driving force for plasticity is the Cauchy stress, whereas the micropolar stress

Displacement decomposition: u = ū + û

Total strain: ε = sym (∇u) = ε̄ + sym (ε̂)

Cauchy stress: σ̄ = C : ε̄

Macroscopic balance laws: div σ̄ = 0, σ̄ = σ̄T

Micropolar strain and curvature: ε̂ = û∇+ e : φ̂ = ε̂e + ε̂p

κ̂ = φ̂∇ = κ̂e + κ̂p

Micropolar stress and couple stress: σ̂ = A : ε̂e, µ̂ = B : κ̂e

Strain and curvature flow rules: ˙̂εp =
∑

α γ̇
αs̄α

⊗
m̄α, ˙̂κp =

∑
α λ̇

αQα

Slip and spin rates: γ̇α = f (σ̄, σ̂, µ̂,α,θ)
λ̇α = g (σ̄, σ̂, µ̂,α,θ)

Dislocation and disclination densities: αkl = ekmnε̂
e
nl,m − κ̂e

lk + κ̂e
mmδkl

θkl = ekmnκ̂
e
nl,m

Micropolar balance laws: div σ̂ = 0, div µ̂ + e : σ̂ = 0

and couple stress enter the flow rules as back stresses/moments representing the long-
range internal stresses due to presence of geometrically necessary dislocations and
disclinations, i.e. higher-order deformation gradients.

4. Conclusions. The proposed generalized continuum model of crystal plas-
ticity accounting for both dislocation and disclination effects is currently a work in
progress. A foundation for incorporating disclinations into the kinematics of crystal
plasticity and accounting for the balance of the internal force and moment stresses
due to geometrically necessary defects has been laid. Unlike the traditional micropo-
lar material, our model retains the symmetry of the macroscopic Cauchy stress which
is in line with experimental observations. It is believed that the model will have a
wide-range of predictive capabilities including capturing the enhanced role of grain
boundaries in the deformation of nanocrystalline materials to the fragmentation and
fracture processes of severely deformed polycrystals with more conventional grain
sizes. The focus of future work will be on developing the numerical methods and
tools necessary to implement the model into a finite element code.
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DEPOSITION OF NANOPARTICLES ON TEXTURED SURFACES
THROUGH SPIN- AND DIP-COATING

H. MOORE∗ AND B. SIMMONS†

1. Introduction. Patterned arrangements of spherical gold colloids are crucial
for the development of advanced nano-sensors and nano-electro mechanical systems
(NEMS). The main methods for Au nanosphere deposition are spin coating and dip
coating on chemically patterned substrates, mechanically embossed nano-channeled
polymer substrates, or a combination of the two. Research this summer investigated
the effect of varying the particle size, spin speeds, substrate wettability, channel width
and substrate chemical functionality.

2. Results. Several different Zeonor 1060 and PMMA VS100 substrates were
embossed using a Ni wafer with 200 nm width channels or a Si wafer with 600 nm
channels by heating the substrates up to 240◦F and then applying a 3500 lbs. load
with a Carver press shown in Figure 2.1.

Demolding

Polymer

Channeled
Pattern

Heat, load,
time

Fig. 2.1. Nanoembossing Schematic

Once the substrates were allowed to cool some of the Zeonor patterned substrates
were sputtered with gold to create three different surface interface materials with dif-
ferent surface energies and wettabilities. The Zeonor interface is the most hydrophilic,
gold is moderately hydrophilic and PMMA is hydrophobic. The more hydrophilic a
material surfaces the smaller the contact angle between the droplet and the substrate
will be upon wetting. This translated to increased substrate surface area in contact
with the droplet for the same droplet volume. Theoretically, the more hydrophilic a
surface is the more Au particles would come in contact with the substrate surface for
the same droplet unit volume and increase the probability of successful deposition of
Au particles on the substrate. Conversely, the more hydrophobic a material surface
is the larger the contact angle is formed and the lower the probability of Au colloid
deposition on the substrate surface.

∗Georgia Institute of Technology
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The three substrates were dip coated by submersing them into a solution contain-
ing 20 nm spherical Au colloids and then withdrawn mechanically at a constant rate
of ∼1 mm/min. This process schematic can be seen in Figure 2.2.

Polymer 
Substrate

Reservoir Deposited Au 
Nanoparticles

Fig. 2.2. Schematic Dip Coating

The withdraw angle was varied from the vertical position to almost horizon-
tal position with unsuccessful deposition onto any of the substrates for any angle.
The unsuccessful deposition is attributed to the unfavorable force balance in the free
meniscus system where the surface tension and Stokes drag force dominate the parti-
cles motion causing the Au colloids to slide off the substrate with the solution. The
Stockes drag force Fdrag is given by the expression

Fdrag = 6πU0µa, (2.1)

where U0 is the velocity of the particle relative to the fluid and a is the particles
radius. The Stokes drag force is applied to small particles traveling at slow speeds
relative to the fluid and typically associated with fluid systems with Renolds numbers
less than 1.

Spin coating was the next deposition technique investigated to utilize centrifugal
forces created by spin coating to fill the nano-grooves and over come the unfavorable
force balance. Different solutions containing approximately uniformly sized Au spher-
ical colloids were dropped on to the different substrates and spun at speeds varying
from 250 rpm to 1500 rpm to spread the solutions across the substrates. Theoretically
the Au colloids would be deposited in the nanochannels as the water is spun off of the
substrate as shown in Figure 2.3. The actual results can be seen in the SEM images
in Figure 4, which show a larger quantity and a higher packing density of Au particle
as the particle size increased and spin speeds decreased. The increase in particle size
increased the favorable centrifugal force on the particle and the decrease in spin speed
decreased the unfavorable Stokes drag force, thus validating the initial hypothesis.

The solution surface tension and the substrate functionality were altered by the
addition of ethanol to the Au colloid solution which decreased the solutions surface
tension and oxidizing the substrates surface by using an O2 clean. The decrease in
the surface tension caused an increasing the contact angle which was thought to be
favorable for reasons described above. The effects of the oxidation and addition of
ethanol on Au deposition were inconclusive as can be seen Figure 2.5.

The next method for Au colloid deposition investigated was chemical fictional-
ization. Zeonor 200 nm channeled substrates were coated with 100 angstroms of
gold then chemically patterned with either 1 gm/1mL or 5 gm/mL solutions of 1,4-
benezinedithol in ethanol via microimprint lithography to functionalize the top of
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Drop Au 
Solution On 
Polymer  

Spin Sample  
Spreading Au 
Solution 

Deposit Au 
Particles In 
Channels 

Fig. 2.3. Spin coating schematic

Fig. 2.4. Spin Coating Results

the nanochannels on the substrates surface. After dissolving 1,4-benezinedithol in
ethanol, the surface of polymer stamp touched the solution to create a thin film on
the stamp. The thin film solution was transferred by lightly touching the surface
of the stamp to the nanochanneled gold plated substrate. Once the ethanol evapo-
rated, the 1,4-benezinedithol remained on the tops of the channels on the substrate
as displayed in Figure 2.6.

The SEM results of spinning relatively monodispersed Au colloids with diameters
of 80 nm, 150 nm and 250 nm are shown in Figure 2.7.

The variation in particle size showed insignificant effects on the gold particle
deposition compared to the concentration of 1,4-benzinedithol in the solution. The
increase in the concentration of the 1,4-benezinedithol caused an increase in Au col-
loid deposition number and the packing density. The inaccuracy of the nanoimprint
lithography technique caused the Au colloid deposition to be not completely restricted
to the tops of the channels, however does show the feasibility of using physical and
chemically patterned substrates for the directed assembly of Au colloids.
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Fig. 2.5. Oxidization of substrate surface and addition of ethanol
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Fig. 2.6. Nanoimprint lithography schematic

Fig. 2.7. Chemical fictionalization with 1,4-benezinedithol results
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ATOMIC SIMULATIONS OF STRESS EVOLUTION
DURING THIN FILM GROWTH

C-W. PAO∗, E.B. WEBB III† , S.M. FOILES‡ , J.A. FLORO § , AND D.J. SROLOVITZ¶

Abstract. As first presented by Laplace 200 years ago, curvature driven pressure, or stress, is
inversely proportional to the dimension of an object. Put simply, smaller objects are more greatly
affected by surface and interface stress. Understanding stress evolution during growth of nanometer
scale objects as well as thin film materials is paramount to optimizing nano and mesoscale device
performance. During thin film growth, many materials exhibit significant compressive stress evolution
after the underlying substrate has been completely covered. During this stage of growth, a continuous
film of the growing material exists and depositing adatoms are encountering a surface typically rich
with defects such as atomic steps and grain boundaries. Mechanisms of stress evolution at this stage
are difficult to establish given the complexity of the system and the required resolution for direct
experimental observation. This work presents molecular dynamics simulation results to investigate
stress evolution during later stages of thin film growth. Simulations were performed of Ni adatoms
being deposited onto a film of Ni with the free surface intersected by grain boundaries. A significant
percentage of deposited atoms diffuse to the grain boundary where they are rapidly incorporated into
the structure below the surface. This process is demonstrated to generate significant compressive
stress. Results presented show stress in the simulations is larger in magnitude than is observed in
experiment. We show preliminary evidence that this discrepancy is a result of modeling perfect
crystal surfaces (i.e. away from the grain boundaries). More realistic surfaces have atomic steps on
the surface, which we show to trap adatoms and prevent adatom diffusion to the grain boundary,
thereby lowering the magnitude of compressive stress generated for a given amount of deposited
material. Simulation data will guide development of a new, predictive model for compressive stress
evolution in thin films.

1. Introduction. Growth of materials via methods like chemical vapor deposi-
tion or physical vapor deposition is important to a very large number of technologies;
the automotive and microelectronics industries are but two of many that are impacted
by thin film science and engineering. Residual stress in small objects and thin films
strongly impacts the corresponding behavior of the film. From a mechanical point of
view, residual stress can result in undesired behavior in the form of bending, warping,
or failing. Less intuitive is the tie that has been observed between residual stress
and, for instance, ferroelectric response in some oxides [9]. Similarly, a tie has been
observed between residual stress and the optical response of some semiconductor ma-
terials [10]. Being able to engineer residual stress is thus critical to maximizing the
benefit we obtain from emerging nano and mesoscale devices. Predictive models that
connect growth processes to resulting stress in materials would greatly reduce design
costs by guiding engineers into narrower process windows, giving quicker turnaround
times. Clearly such models depend upon an intimate knowledge of the fundamental
mechanisms of stress evolution during growth.

Growing thin films are subject to stress evolution from a number of sources [6].
Two that are fairly well understood are stresses that evolve due to lattice mismatch
and due to thermal expansion mismatch. The former refers to the effect of forcing a
material to grow at a lattice spacing different from its equilibrium value and thereby
building inherent strain (and stress) into the structure. Thermal expansion mismatch
is, of course, most manifest when the temperature of the system makes wide traverses.

∗Princeton University, cpao@princeton.edu
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‡Sandia National Laboratories, foiles@sandia.gov
§University of Virginia, floro@virginia.edu
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Film and substrate don’t deform the same with temperature change, resulting in stress
build-up. While these sources of stress evolution are fairly well understood, stresses
that evolve as a result of atomic scale behavior inherent to the growth process are
not. An important example can be found in materials that grow in the Volmer-Weber
(VW) or island mode [6]. Such materials exhibit three morphological regimes: at
early time, isolated islands nucleate on the substrate and grow; at intermediate time,
growing islands impinge and coalesce; at late time, a complete film covers the sub-
strate and deposition results in film thickening. For high surface mobility materials,
each of these growth process regimes can be associated with a specific stress state:
compressive at early time, tensile at intermediate time, and compressive again at late
time. Much has been conjectured about the atomic behavior inherent to each growth
process regime and how the behavior results in observed stress. For instance, it is
fairly well accepted that, during the intermediate time regime when growing islands
are impinging and coalesching, they are stretching to close gaps between them and
eliminate undesired surface energy [8]. While this results in tensile stress evolution,
it lowers the system energy by removing surface energy contributions. Despite this
fairly well accepted mechanism, questions remain. Indeed, a great deal of uncertainty
still exists, particularly for the late time regime.

In the late time regime, most systems have developed significant grain structure
in the film. For instance, each island growing on the surface at early time may have
the same crystallographic orientation perpendicular to the surface. However, their
particular orientation in the plane of the surface can vary between adjacent growing
islands. As such, when they impinge and coalesce, a tilt grain boundary (GB) will be
formed between them. Once the film fully coalesces and begins thickening (i.e. the
late time regime), there is typically a collection of different tilt GBs intersecting the
film surface. Deposited adatoms behave in some fashion to generate compressive stress
at this stage. Two prevalent theories exist attempting to explain this behavior. One
theory proposes that kinetic effects in conjunction with compressed surface ledges
or steps act during deposition to allow adatoms to be trapped into an otherwise
perfect crystalline lattice [12]. Such interstitial atoms create significant compressive
stress so, if subsequent growth buried them in this state, they could be the reason
for compressive stress evolution. Note that this theory does not depend upon GBs
being present but does depend upon other surface defects (steps). In another model,
adatoms are driven into existing GBs due to an increased chemical potential on the
free surface that results from dynamic impingement of adatoms (i.e. deposition)
[3]. Adatom incorporation into GBs should also produce compressive stress but the
magnitude of the effect is less understood and it is even unclear if such incorporation
does occur.

Herein, we present molecular dynamics simulations of deposition onto a metal
surface intersected by tilt GBs. We examine atomic behavior near and far from the
GBs along with corresponding stress behavior. From these results we evaluate the
models discussed above. We also review necessary improvements to our calculations
to further elucidate stress evolution during this complex stage of growth.

2. Procedure. Interatomic potential energy in the simulations was described
via the embedded atom method (EAM) wherein the potential energy for N atoms
is [4]

E =
N∑

i=1

[
Fi(ρi) +

1
2

∑
j 6=i

φij(R)
]
. (2.1)



60 Atomic Simulations of Stress Evolution

Here, ρi is the electron density at atom i,

ρi =
∑
j 6=i

ρj
a(R), (2.2)

where ρj
a(R) is the spherically symmetric electron density contributed by atom j,

a distance R from i. Fi(ρi) is the energy associated with embedding atom i into
an electron density ρi; this provides a many-body nature to the model. φij(R) is a
pair potential between atoms i and j; in the EAM model used herein, it represents
core/core repulsion. The many-body nature of the EAM makes it superior over pair
potentials for modeling metals and it has been widely used to study bulk, surface,
point defect, and alloy behavior [5]. We model Ni deposition onto a Ni(111) film
surface; the parameters for our Ni EAM potential are discussed in [7]. Except where
noted, all runs are performed at T = 763 K as this corresponds to half the melting
point; temperature is maintained in the simulation via a Nose-Hoover thermostat [1].
Although many deposition processes are performed at room temperature, temporal
constraints inherent in the MD method encouraged us to model an elevated tem-
perature such that atomic diffusion and other processes would be accelerated. This
enhances our ability to observe phenomena in MD time scales. Near the conclusion
of our article, we address possible implications of elevated temperature.

Prior to depostion, it was necessary to form a Ni(111) free surface intersected
by grain boundaries; initially, a bulk system (no free surfaces) was created. It is
difficult to characterize GB structures in a film from a typical deposition experiment;
however, it is often observed that, for metal systems, (111) texture emerges in the
growth direction. For this reason, we chose to model a Σ79 coincident site lattice
boundary; this nomenclature indicates that, 1 in every 79 sites that would match up
in a perfect crystal (i.e. no boundary) actually do match up across the boundary. Put
simply, the lower the Sigma number for a coincident site lattice designation, the higher
the coherency or order across that boundary. The Σ79 boundary can be characterized
as having intermediate coherency and thus represents well a fairly generic GB. To form
this boundary, two half-crystals are modeled with the (111) crystallographic direction
along z. One half-crystal is rotated 33.99 deg relative to the other half crystal; thus,
this is a symmetric tilt boundary. The boundary planes that meet are (−3 −7 10)
and (3 −10 7); these planes (i.e. the plane of the GB) are made normal to the x
direction in the simulation box. Periodic boundary conditions are applied in all three
dimensions (i.e. a bulk geometry is initially assumed). This implies that there are
actually two GBs normal to the simulation x direction, separated from one another
by half the simulation cell dimension in x and with opposite rotations. Simulation
cell dimensions in x and y were held constant throughout all simulations to keep the
lattice constant of the crystal (away from the GB) at its equilibritum value for the
temperature studied. The dimensions of the system thus formed were 85 Å in x,
40 Å in y, and 180 Å in z. Following extensive equilibration of the GB structure in
the bulk, periodic boundary conditions were removed in z, resulting in two free (111)
surfaces intersected by the Σ79 GBs. Atoms in a slab 12 Å thick in z at the ’bottom’
surface, were held rigid for subsequent simulations to mimic the slab being attached
to some underlying substrate (i.e. a film). Empty space was defined to exist above
the ’upper’ surface of the film in z and the system was extensively equilibrated in this
surface (film) geometry prior to deposition [2].

Deposition was then modeled by inserting adatoms into the empty space above
the film free surface in z. Adatoms were placed in a random position in x and y at a
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distance above the surface slightly larger than the planar separation in (111) for Ni at
this temperature. This insertion process assumes the ballistic part of atomic deposi-
tion is essentially concluded and permits more rapid equilibration of the added atom.
For one case, we repeated adatom deposition, allowing atoms to ballistically deposit
onto the substrate by inserting them at a distance above the surface slightly less than
the interaction cut-off. As expected, these adatoms took longer to equilibrate but
there were no differences in the primary conclusions of this work. As such, only simu-
lations employing the former method are discussed herein. The time between adatom
depositions was 50 ps; given the temporal constraints on MD, it is not surprising that
simulation deposition flux is many orders of magnitude greater than in experiment.
We address this issue in the context of our results in the following section.

3. Results and Discussion. Figure 3.1 shows a snapshot from the simulation
after 100 adatoms have been deposited onto the film surface. Although all atoms are
Ni, adatoms are colored differently from film atoms to assist discussion. In the view
shown, the Σ79 GBs are located in the middle of the picture and at the edges of the
picture (i.e. one GB is straddling the periodic bound in x — the horizontal in the fig-
ure). Is is easy to observe that a significant percentage of the adatoms deposited have
found their way to the GBs where many have incorporated into the structure below
the free surface. In some cases, this adatom incorporation into the GB results in what
was a film atom being forced out onto the free surface. Howerver, in many cases, this
does not occur. There can also be observed a number of atoms forming a cluster away
from either GB. So, some fraction of deposited atoms diffuse across the surface until
they interact with one of the GBs. When they do, some percentage of these adsorb or
incorporate into the film at the GB. This serves as striking evidence in support of the
model for compressive stress generation that asserts GB incorporation is a plausible
phenomenon. Note that we did not observe adatom trapping into the structure away
from the GB. However, as pointed out in the Introduction, trapping is assumed to be
assisted by neighboring steps or ledges that generate a compressive stress due to the
corresponding atomic interactions. Thus, the absence of steps (at least at the start of
deposition) could prevent observing this mechanism. Also, as mentioned in [12], the
compressive interaction between steps may be material dependent so this mechanism
may not emerge in all systems.

We wish to evaluate the stress evolution in the film during deposition and attempt
to coordinate it with the GB incorporation behavior observed. In stress measurement
experiments, what is actually determined is the product of the stress in the film mul-
tiplied by the mean thickness of the film (material deposited is assumed to form a
uniform film with minimal roughness). To compare to this quantity directly, we calcu-
late the stress-thickness product in our simulation; the method for doing so is covered
in [11]. Data obtained are shown in Figure 3.2 and it can be seen that, over the first
100 atoms deposited, a very large compressive stress is generated in the model film.
Because we can specifically track where each atom in the system is, we can easily de-
termine how many extra atoms have incorporated into the film. A direct correlation
is seen between the magnitude of compressive stress and the number of extra atoms
in the film. This proves that, although processes on the surface may also be influenc-
ing stress generation, the prominent compressive stress generation mechanism in our
simulations is adatom incorporation at GBs. While this is encouraging with regard to
existing models, the magnitude of the response in the simulation is significantly larger
than in experiment. Because data are plotted versus coverage (rather than time), this
difference in stress response magnitude cannot be directly attributed to the difference
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Fig. 3.1. Snapshot from the film deposition simulations after 100 adatoms have been deposited.
Atoms that belonged to the film prior to deposition are green and adatoms are blue.

in deposition flux between experiment and simulation. Nonetheless, we repeated the
simulation allowing only 5 ps between adatom additions to the system (i.e. an order
of magnitude increase in flux). Little effect was observed on the stress response; how-
ever, it cannot be ruled out that a flux rate effect may emerge at significantly lower
fluxes.

One way to assess the role of flux rate is to perform a long simulation with only
one deposited adatom and to observe the behavior of that adatom in the absence of
any further deposition. This permits one to assess the interaction between the adatom
and the surface in a less complicated geometry. In all cases where we did this (i.e. we
varied the starting random position), the deposited atom eventually diffused near the
GB and very quickly incorporated into it. In fact, if the adatom was deposited within
≈ 7 Å of the center of the GB (in x), incorporation typically occurred in less than
10 ps. Furthermore, this incorporated adatom was never observed to leave the GB. In
the absence of highly tedious free energy calculations (beyond the scope of this work),
these observations support the notion that adatoms are more energetically favorable
when incorporated into the GB as compared to being on the free surface. Thus, while
a flux effect may exist, the fundamental mechanism of adatom incorporation into GBs
is still expected to be a relevant contributor to compressive stress generation. What
should be noted regarding the existing model is that the authors’ contend adatoms
are driven into GBs due to an increased surface chemical potential due to deposition
flux [3]. However, our calculations with single adatoms indicate that the chemical
potential in the GB may be lower than at the free surface, regardless of flux. That is,
flux may enhance this relationship but it appears that adatom incorporation may be
thermodynamically favored even in the absence of a flux.

Another possibility for the discrepancy between the compressive stress magnitude
in experiment versus simulation is the difference in temperature (although this is
unlikely since some experiments have been performed at elevated temperature and the
difference exists in data from those experiments as well). Furthermore, a few single
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Fig. 3.2. Calculated stress-thickness product as a function of deposition onto the model film.

adatom simulations were performed for T = 300 K and, although surface diffusion was
greatly reduced, atoms still incorporated into a GB once they got within ∼ 7 Å of the
GB center (in x). In addition, the kinetics of incorporation, once an adatom got close
enough to a GB, were very similar at different temperatures. This indicates that,
while diffusion to the GB will be slower at room temperature, adsorption into the GB
is essentially spontaneous once the adatom interacts sufficiently with the boundary.
A more likely suspect for the discrepancy between simulation and experiment stress
magnitude was our use of a fairly ideal structure system. In other words, our free
surface is absent of any surface defects other than the GBs. Images from thin film
growth experiments reveal surface steps in relative abundance on single crystal grains.
In order to assess the effect of surface steps on adatom incorporation into GBs, we
performed deposition simulations onto a surface with steps on it. It is a subject of
ongoing research as to whether adatoms are more energetically favorable attached
to steps versus adsorbed in GBs. However, in our simulations, we observed that
adatoms that diffused near to a step would readily attach at the step and, at least for
the duration of our MD simulations, remain there. This indicates that surface steps
may be diffusion traps for adatoms. As such, even if they would be lower in energy
at a GB, adatoms are kinetically limited from every finding the GB if they encounter
a surface step first.

4. Conclusions. We have used MD simulations to examine atomic behavior
relevant to compressive stress generation during thin film growth. In accord with an
existing theory, adatoms deposited on crystal surfaces intersected by grain boundaries
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diffuse to the GBs and readily incorporate into them. Furthermore, this behavior is
seen to correspond with compressive stress generation in the film. A discrepancy
between experiment and simulation was noted in that the magnitude of stress gen-
eration was significantly greater in simulation than experiment. It is known that, in
experimental samples, steps are present on crystal surfaces. When deposition was
modeled onto a surface with crystal steps, the steps were demonstrated to act as
diffusion traps, preventing adatoms from reaching a GB. This reduces adatom incor-
poration, and therefore compressive stress generation, for a given coverage. Future
work will attempt to gather these various effects into an analytical model describing
stress evolution as a function of thin film growth.

REFERENCES

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.
[2] Authors’ Note: Model grain boundary construction is a complex process involving molecular

dynamics, Monte Carlo methods, and energy minimization procedures. As a detailed dis-
cussion of this is beyond the scope of this article, the interested reader is directed to S. M.
Foiles (foiles@sandia.gov).

[3] E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, Origin of com-
pressive residual stress in polycrystalline thin films, Phys. Rev. Lett., 88 (2002), p. 156103.

[4] M. S. Daw and M. I. Baskes, Phys. Rev. B, 29 (1984), pp. 6443–6453.
[5] M. S. Daw, S. M. Foiles, and M. I. Baskes, The embedded-atom method: a review of theory

and applications, Mater. Sci. Rep., 9 (1993), pp. 251–310.
[6] J. A. Floro, E. Chason, R. C. Cammarata, and D. J. Srolovitz, Physical origins of

intrinsic stresses in volmer-weber thin films, MRS Bulletin, 27 (2002), pp. 19–25.
[7] S. M. Foiles and J. J. Hoyt, Acta Mater., 54 (2006), p. 3351.
[8] S. J. Hearne, S. C. Seel, J. A. Floro, C. W. Dyck, W. Fan, and S. R. J. Brueck, Quanti-

tative determination of tensile stress creation during island coalescence using selective-area
growth, J. Appl. Phys., 97 (2005), p. 83530.

[9] G.-F. Huang and S. Berger, Combined effect of thickness and stress on ferroelectric behavior
of thin batio3 films, J. Appl. Phys., 93 (2003), pp. 2855–2860.

[10] J. Lee, W. Gao, Z. Li, M. Hodgson, J. Metson, H. Gong, and U. Pal, Sputtered deposited
nanocrystalline zno films: a correlation between electrical, optical, and microstructural
properties, Appl. Phys. A, 80 (2005), pp. 1641–1646.

[11] C. Pao and D. J. Srolovitz, Phys. Rev. Lett., 96 (2006), p. 186103.
[12] F. Spaepen, Interfaces and stresses in thin films, Acta Mater., 48 (2000), pp. 31–42.



NECIS Summer Proceedings 2006 65

USING THE FOCUSED ION-BEAM TOOL FOR SITE-SPECIFIC
ATOM-PROBE TOMOGRAPY ANALYSIS OF CU ALLOYS

J. RIESTERER∗ AND E. MARQUIS†

Abstract. Grain boundary triple junctions have been shown to impact the behavior of grain
boundaries, but very limited experimental experiments have been carried out to understand dopant
segregation at triple junctions and the driving forces at play. Characterizing triple junctions can
be very challenging. Only a few limited transmission electron microscopy observations have been
reported so far. Because of the three-dimensional character of triple junctions, atom probe to-
mography would be the technique of choice, providing atom-by-atom three-dimensional mapping of
small volumes of material. We are therefore developing techniques to prepare atom probe specimens
containing triple junctions and grain boundaries of known character. After annealing to promote dif-
fusion of dopants within the Cu samples and ensure stability of the boundary structures, site-specific
atom probe tips containing grain boundaries and triple junctions are prepared. The analyzed bound-
aries and junctions are characterized by electron backscatter diffraction (EBSD) prior to focused-ion
beam milling of the areas of interest.

1. Introduction. The significance of grain boundaries and triple junctions in
impurity segregation has long been known, however, not fully understood. Au is a
natural impurity in Cu, while Bi segregation to Cu grain boundaries is known to
cause embrittlement. Segregation of impurities to the grain boundaries may result in
an impurity concentration orders of magnitude higher at the grain boundaries than in
the bulk [32]. Until recently, atom-by-atom three-dimensional mapping of these small
volumes was not possible. The development of atom-probe tomography (APT) has
enabled the investigation of structure and chemistry at grain boundaries and triple
junctions in Cu alloys. By definition, triple junctions are 3-D objects. Traditional
analysis methods, such as transmission electron microscopy (TEM), are only capable
of 2-D renderings. APT combines a time-of-flight mass spectrometer with a position-
sensitive detector, allowing samples to be reconstructed in all three dimensions.

Careful sample preparation is the key to successful microscopy and tomography
of these materials structures. Analysis of as-received, annealed and/or doped Cu may
be performed after preparing suitably thin atom probe tips using a FIB. The focused
ion-beam (FIB) tool allows site-specific features to be plucked from the bulk. The
goal here is to measure Au and Bi segregation to grain boundaries and triple junctions
with known character in Cu-alloys using the APT.

Embrittlement in the Cu-Bi system was first observed by Hampe in 1874. When
Bi is introduced to Cu, the ductile-to-brittle transition is facilitated via intergran-
ular fracture [1]. Questions remain regarding where Bi sits in Cu grain bound-
aries. One model proposes that Bi enhances grain boundary roughening, reducing the
grain boundary adhesion, leading to embrittlement [31]. High-resolution transmis-
sion electron microscopy (HRTEM) [6, 7], scanning transmission electron microscopy
(STEM) [1], Auger electron spectroscopy (AES) [5–7], energy dispersive spectroscopy
(EDS) [1], and electron energy loss spectrometry (EELS) [1] have all been used to
analyze grain boundary structure and segregation levels of Bi in Cu. Chang, et al [4,5]
have been working on clarifying the Cu-Bi phase diagram. The position of the Cu-
solidus line has been shown to dramatically change the Bi segregation levels and grain
boundary structure in Cu. The solid solubility of Bi in Cu was measured to be 100
ppm at 1100 K [5]. However, segregation to the grain boundaries depends on the
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grain boundary type and the grain boundary planes [31]. Using Changs phase dia-
gram, Divinski, et al. proposed premelting of Cu grain boundaries in the presence of
Bi [6, 7].

Alber, et al. [1] did an extensive study of symmetric and asymmetric boundaries
of different misorientations at different temperatures. The concentration of Bi was
shown to change the grain boundary faceting. Grain boundary segregation was also
shown to be driven by Bi dissolved in the bulk, rather than Bi at the surface or
in precipitates. The final conclusion made was that the higher the grain boundary
energy, the stronger the Bi segregation will be.

Besides being found naturally as an impurity in Cu, Au forms a stable long-period
superlattice structure with Cu [15]. When concentrations approach equiatomic, Au
will increase age-hardenability of Cu, especially in the presence of Ga [26]. Prokofjev
investigated segregation behavior of Au in Cu boundaries of known misorientation and
proposed a structural transformation of the boundaries with the change of segregation
enthalpy [29, 30]. However, little is known about the 3-dimensional grain boundary
structure.

The effect of triple junctions on diffusion and segregation is still not well known.
Triple junctions are 3-dimensional structures and become increasingly more important
as science pushes into nanoscale regimes [13]. The large volume available at triple
junctions for impurity segregation and the high grain boundary energies cause triple
junctions to be the preferred segregation sites [14].

2. Atom-probe tomography. APT has the highest resolution of any micro-
scopy technique; lateral and depth resolutions of less than 1 nm may be routinely
achieved [25]. Single atoms can be mapped on the needle surface spatially and chem-
ically [17]. The technique allows microstructure, such as precipitates at grain bound-
aries, to be imaged [8, 25]. Point defects, dislocations and twin boundaries may also
be imaged [25].

The APT combines a field ion microscope (FIM) with a time-of-flight mass spec-
trometer. Mu̇ller was the first to develop FIM in 1951 [27]. The FIM draws atoms
from the sample surface by using an ionizing gas and high electric fields of 20-50 V/nm
to induce field evaporation [21]. The electric field controls the rate at which atoms are
evaporated [27]. The technique requires samples to be conductive and in the shape
of a sharp needle with tip radius of 50 nm or less. Once evaporated from the surface,
the ionized atom passes through an aperture to a position-sensitive detector and the
time-of-flight is measured. Figure 2.1 illustrates the operation of an APT. The original
atomic position and the position struck on the detector are directly correlated [27].
The time-of-flight and mass-to-charge ratio are used to identify the atoms chemical
nature. Data is reconstructed in 3-dimensions, typically as a colored-coded dot map.
Each dot represents an atom in space and the color identifies the chemical nature [24].

Difficult specimen preparation, high surface-to-volume ratio and image interpre-
tation are issues with this technique [8]. The efficiency of atoms detected ranges
from 50-60% of atoms evaporated, making vacancy determination difficult. Features
of interest need to be sufficiently close to the tip apex to be imaged, thus sample
preparation is difficult. Traditionally, tips are fabricated via electropolishing; feature
positioning using this preparation method is tedious [19]. Site-specific tips may be
fabricated using a FIB tool [21].

3. Focused ion-beam tool. The ability to prepare samples in cross-section,
rather than plan-view, to investigate the characteristic properties is not trivial. In
traditional mechanical methods, a significant amount of polishing is usually necessary.
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Fig. 2.1. Schematic representation of APT operation.

Damage to the cross-section surface is nearly always present as a result [37]. Tradi-
tional methods may take an enormous amount of time. Chemical etching is difficult
and often carries with it safety concerns. Site-specific features can not be easily char-
acterized due to the imprecision of the human hand. The FIB tool is the solution to
most sample preparation issues [11]. Cross-section samples of integrated circuits [2],
Si [33,35], WC [3], FeAl [3], silica-zirconia membranes [16], glass substrates [36], and
nanoparticles [28] are just a few examples of samples prepared by using ions to mill
away a trench in the sample for cross-sectional viewing using the SEM or TEM [11,37].

A FIB tool is nearly identical to an SEM with one major exception. As can be
in seen in figure 3.1, a liquid metal ion source, usually Ga+ liquid metal, is attached
to an SEM at a 52o angle to the electron beam column [9,11,20]. While imaging the
sample with the electron beam, the ion beam can be used to sputter away a user-
defined region on the sample surface. Using successively smaller ion beam currents
and spot sizes, material may be milled away in a finer, more precise manner, analogous
to traditional polishing, until electron transparency is reached. When imaging with
the ion source, 10-100 nm resolution may be achieved depending on the beam current
and apertures used [20]. FIB tools are also equipped with Pt and/or W gas injection
sources (GIS), allowing the membrane to be welded in situ to the sample grid with
the ion beam.

If a site-specific TEM sample is desired, the FIB membrane may be plucked and
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Fig. 3.1. A common FIB tool set-up. (FEI Strata 235 DualBeam).

placed on a sample grid using in situ or ex situ micromanipulators. This procedure is
termed the lift-out technique. The self-supported sample geometry is also common for
TEM samples; the material is polished traditionally and the FIB tool mills trenches
[9, 20, 28]. The sample is attached to a TEM washer and has an H-shaped surface
after milling.

Several other advantages and disadvantages exist. Surface damage due to Ga+
implantation may be prevented by depositing straps of Pt, W or SiO2 using the gas
injection sources [9, 20]. A protective metal layer also prevents the curtain effect
where striations form due to changes in sputter rate between different materials.
However, when comparing FIB to broad ion beam (BIB) milling, preferential milling
is reduced [20]. The lift-out method may have a very low-yield due to the precision
needed when using micromanipulators.

The FIB is not just a sample preparation tool. Often times, EBSP and EDS
detectors will be attached to the column of the FIB [23]. As milling proceeds, orien-
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tation and composition maps may be taken. Stringing the data together may create
a 3D image of the sample. Needle samples used for APT and TEM membranes may
be easily made using automated routines [21,22].

4. Experimental. Polycrystalline copper disks, (purity 99.9995%), approxi-
mately 9 mm in diameter and 0.8 mm thick were used for grain boundary segregation
studies of Au and Bi dopants. The disks were encapsulated inside silica tubes under
Ar atmosphere, heat treated in a Lindberg/Blue M furnace for 1 hr at 400oC and air
quenched. Annealing promoted grain boundary stabilization prior to dopant diffusion
and deposition. Disks were polished to a 0.5 µm finish using diamond lapping film
followed by a silica slurry polish. Grain size was measured using electron backscatter
diffraction (EBSD) and found to be an average of 8 µm before the initial anneal, as
shown in figure 4.1.

Fig. 4.1. EBSD analysis of a pure Cu surface prior to annealing or deposition.

Au or Bi thin films were deposited via physical vapor deposition (PVD). The
initial Cu surface was sputtered with N2 for 30 s to remove any oxides. Bi films were
capped with a thin film of Au to prevent surface oxidation. Substrate heating reached
∼50oC during deposition; the PVD was not equipped with a cold stage to prevent
diffusion during deposition. Substrates were cleaned with an acetone/methanol rinse
prior to deposition.

Disks were, again, encapsulated, annealed at 250oC and air quenched. Anneal-
ing times and temperatures were calculated using Bi and Au diffusion coefficients
calculated by Gorbachev, et al. [12] Samples were kept in a continuously N2-flushed
dessicator when not in use to minimize oxidation.

Atom probe tips were made from the substrate disks using the FIB tool. An
FEI Strata 235 DualBeam and a Quanta 200 3D FIB tool were used to mill thin
membranes in the bulk. These membranes were plucked from the bulk via the lift-out
technique and affixed to fabricated Si micro-tips using the Omniprobe needle and Pt
deposition features of the microscopes. Prior to milling the main trenches, markers
were milled in the surface to enable the same region to be found later. EBSD was
used to identify grain boundaries and triple junctions at the surface. A Pt strap was
deposited over the features of interest for identification and protection from Ga ion
beam damage. After the membrane was diced and welded to the micro-tips, a series of
annular millings were performed until the tip was approximately 100 nm in diameter.
A Pt cap remained at the tip to protect the surface from oxidation and beam damage.
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Atom-probe tomography was performed to analyze the tip contents. Tips were
evaporated at 60 K using a pulse fraction of 15% and pulse rate of 200,000 Hz in an
Imago LEAP 3000 APT. Using the micro-array geometry, several tips from the same
grain boundary may be analyzed in series.

5. APT Tip Preparation. Samples are initially mounted to a 45◦ angle holder.
Markers in the substrate are milled using 3000 pA current at 7◦ tilt. (Sample surface
is positioned at 52◦ to the electron column.) Samples are moved to 70o with respect
to the electron beam; EBSD maps produced using TSL or HKL detectors and aid in
locating triple junctions. A representative map is shown in figure 5.1. The surface is

(a) (b)

Fig. 5.1. (a) SEM image at 70◦ tilt of region of interest, (b) EBSD map of same region.

tilted back to 52o and a protective Pt strip is deposited over the triple junctions and
grain boundaries of interest. The electron beam is used to deposit ∼50 nm Pt before
the ion beam deposits ∼400 nm Pt, and can be seen in figure 5.2. Use of the electron
beam before the ion beam allows the sample to be protected from ion-beam damage.
Substrates are remounted to a flat holder with additional spaces for electropolished
tips and micro-arrays, which preserve samples when using the Omniprobe needle by
avoiding chamber venting. The region of interest can be found again using the markers
milled for EBSD.

Two milling recipes have been used for membrane preparation. Both require the
stage to be tilted 30o to the ion beam (22o with respect to the electron beam), and
have the same procedure. The first recipe called for large trenches to be milled next
to the area of interest, while thin slices were milled in the second recipe. The second
recipe proved to be much more time-efficient and subjected the sample to less Ga+
bombardment. Therefore, only the second, more refined, recipe will be described here.

After a grain boundary is chosen and Pt deposition is done in situ, the sample is
tilted 22◦ and small slits are milled on either side of the Pt, shown in figure 5.3(a).
The sample membrane is in the shape of an isosceles triangle, where the bottom
has been cut free and is attached at the sides. One side is milled free from the
bulk, forming a cantilever, as in figure 5.3(b). The Omniprobe micromanipulator is
brought into the chamber such that it just touches the sample, shown in figure 5.3(c).
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(a) (b)

Fig. 5.2. (a) Electron-beam deposited Pt, (b) ion-beam deposited Pt.

The micromanipulator is welded to the sample surface using the Pt deposition, the
membrane is cut free from the bulk and the membrane is lifted from the surface.
Figure 5.3(d) shows a membrane free from the bulk and welded to the Omniprobe.

The membrane may be diced into smaller sections and affixed to a Si coupon
with micro-tips prepared via lithography. Figure 5.4(a) shows how the end of the
membrane is brought to just touch a micro-tip. Pt welds are used to hold the sample
to the micro-tip without cutting the sample free from the Omniprobe. The section is
milled away from the rest of the membrane and more tips can be made from the section
until the membrane is completely used. The welded sections are sharpened into tips
using a sequence of annular milling. Smaller annuli and beam currents are used until
the final tip, shown in figure 5.4(c), is less than 100 nm in diameter. The tips can
then be taken to the APT and analyzed. Preliminary data is shown in figure 5.4(d).

6. Conclusions. While the goal of measuring dopant concentration levels at
triple junctions and comparing to levels at adjacent grain boundaries has yet to be
reached, a solid start has been made. The sample preparation method has been
fine-tuned and can now be used to confirm diffusion coefficient measurements and
segregation levels in the future. Stresses in the sample needle resulting from the high
electric field used in APT can cause embrittled Cu to fracture during analysis before
sufficient data is obtained [34]. A method to prevent fracture needs to be looked at.

In the sample preparation experiments, the Pt deposited in the FIB was found
not evaporate in the APT. A strong C signal was collected, but no Pt. Specimen
fracture occurred very early during analysis due to the high strains on the sample by
trying to evaporate the Pt. Work is being conducted to determine how to sufficiently
protect the surface from ion bombardment.

The effect of Ga+ ion bombardment is a topic of future research. The same effects
on Cu grain boundaries need to be looked at with Ga as the segregant. Ga is soluble
in Cu and for the same 3-dimensional considerations, the grain boundary segregation
behavior needs to be investigated [10, 18]. Little is known about the influence of
Ga introduced by the FIB on Cu grain boundaries and may be investigated using
the method outlined here. According to Sigle, et al. ion-beam thinning introduces
dislocation loops, which disrupts the diffusion process.
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(a) (b)

(c) (d)

Fig. 5.3. (a) Trench milling, (b) side cut creating cantilever, (c) Omniprobe needle touching
membrane, and (d) membrane lifted from bulk on Omniprobe needle.
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MODELING POLYCRYSTALLINE MECHANICS VIA THE
EXTENDED FINITE ELEMENT METHOD

JESSICA SANDERS∗, THOMAS VOTH† , AND JOSHUA ROBBINS†

Abstract. There are many challenges associated with finite element modeling of polycrystalline
structures at length-scales on order of grain-size. For example, at the micro-scale material behavior
is modified relative to the macro-scale response by a (generally random) distribution of ”grains” and
the associated grain interfaces. Hence, assumptions about bulk material behavior may no longer be
appropriate. In simulations where modeling at the micro-scale is of interest (e.g. micro-machining
applications [8]) capturing this behavior by explicit meshing of grain boundary interfaces can be
inefficient and impractical. In either case, models for sub-grid mechanics (e.g. grain boundary
sliding) are needed [6, 11].

The eXtended Finite Element Method (X-FEM; cf. [2, 9]) and the Generalized Finite Element
Method (GFEM; cf. [4]) provide a variational framework to represent boundaries and interfaces
without fitting a conforming mesh. Instead, internal features are represented with discontinuous
enrichment of the standard finite element basis. An extension of the method by Simone et al. [11],
specifically applies these ideas to the problem of polycrystalline materials.

In this paper an implementation of the generalized finite element method is demonstrated. The
technique, based on that of [11], is designed to capture polycrystalline grain behavior independent
of the background mesh. Some results are presented which demonstrate the efficacy of the method
in terms of i) accuracy (patch test and convergence) and ii) independence of discontinuity location
(grain boundary) on background mesh topology. Finally, new techniques for treating inter-granular
physics in the context of GFEM/X-FEM are briefly discussed.

1. Introduction. Material removal (machining) processes at the macro-scale
represent a substantial portion of the metal shaping industry, accounting for ap-
proximately $5Bn annual investment world-wide. Indeed, nearly all metal forming
processes involve some machining component as it allows significantly increased i)
tolerances and ii) freedom in final part shape [1].

Significant sophistication and detailed understanding in macro-machining pro-
cesses and their underlying physics have been realized over the last several decades.
Unfortunately, this effort has not translated to the micro/meso-scale process [8]. Man-
ufacturing of micro/meso-scale parts (e.g. micro-machines and MEMs packaging) has
generally relied on additive/subtractive lithography and etching techniques developed
for the electronics industry. Although valuable, these techniques are limited in part
geometry that may be manufactured (they are inherently planar 2 1

2 -D) and materials
that may be considered [7]. Micro-machining, like macro-machining, is theoretically
unlimited in terms of the geometries and materials to which it may be applied. Hence,
the technology promises increased freedom in terms micro-machine design.

Although machining of small parts offers significant advantages, the process is
quite different from the macro-scale process. One substantial difference is that process
length-scales (e.g. tool tip radius and depth-of-cut) are on the order of material grain-
size. Hence, to appropriately model the cutting process it is necessary to model the
discrete structure of the grains. One approach is to model the grains as a continuum
(with a finite element approach, for example) and to capture the inter-granular effects
via some sub-grid model. However, in simulations where modeling at the micro-scale is
of interest (e.g. micro-machining applications [8]) capturing this behavior by explicit
meshing of grain boundary interfaces can be inefficient and impractical.

The eXtended Finite Element Method (X-FEM; cf. [2, 9]) and the Generalized

∗Duke University
†Sandia National Laboratories



J. Sanders, T. Voth, and J. Robbins 77

(a) (b)

Fig. 1.1. Images of (a) a machined part and (b) a micro-machining tool (end-mill). Courtesy
of D. Gill, Org. 2450

Finite Element Method (GFEM; cf. [4]) provide a variational framework to represent
boundaries and interfaces without fitting a conforming mesh. Instead, internal fea-
tures are represented with discontinuous enrichment of the standard finite element
basis. An extension of the method by Simone et al. [11], specifically applies these
ideas to the problem of polycrystalline materials.

The goal of this paper is to present some first steps towards modeling of the com-
plex micro/meso-scale machining process. Specifically, we describe the theory and
implementation of a generalized finite element approach for polycrystalline materials
characterized by homogeneous grains. The sub-grid mechanics associated with the
grain/grain interfaces are modeled via an applied traction condition. As noted earlier,
an important aspect of the GFEM/X-FEM introduced here is that grain boundaries
need not align with the underlying mesh boundaries - a significant advantage in terms
of, for example, stochastic analysis of the impact of crystal topology on large-scale me-
chanical response [3]. We note that this approach provides a framework though which
complex granular interface models (obtained via experiment or molecular dynamics
simulations, for example) may be incorporated.

In the following sections, we begin with a description of our problem followed
by a derivation of the generalized finite element method as implemented here. We
then demonstrate the efficacy of the method in terms of i) accuracy (patch test and
convergence) and ii) independence of discontinuity location (grain boundary) on back-
ground mesh topology. Finally, new techniques for treating inter-granular physics in
the context of GFEM/X-FEM are briefly discussed.

2. Problem Formulation. A description of our model problem and its dis-
cretization follows. Unless otherwise noted, the GFEM discretization presented here
follows that outlined in [11].

2.1. Problem domain. We consider a body, Ω, in a two-dimensional euclidean
space. The body is comprised of N discrete and non-overlapping sub-domains, or
grains, as shown in Figure 2.1. The boundary of the body is Γ and is divided into two
non-overlapping regions, Γd and Γn, over which displacement and traction boundary
conditions are applied respectively. The set of grain boundaries not included in Γ is
shown as ϕ. Mathematically, the body is defined as the union of all N grains,
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Fig. 2.1. Illustration of model polycrystalline domain.

Ω =
N⋃

n=1

Gn (2.1)

2.2. Model equations. We are interested in finding a displacement field over
the body which satisfies the time-independent model equations including force equi-
librium over the whole body,

σij,j + fi = 0 in Ω (2.2)

displacement boundary conditions on the boundary Γd,

ui = gi in Γd (2.3)

tractions over the boundary Γn,

σijnj = hi in Γn (2.4)

and a material constitutive relationship

σij = Cijklu(k,l) (2.5)

where strains are assumed to be small.
Additionally, some constraint must be applied at the grain boundary interfaces,

the choice of which will affect the final form of the variational equations.

2.3. Variational form. Thus far, all of the derivation, including the model
equations, parallels standard linear finite element problem formulation. The first
point of departure for X-FEM is in the definition of the solution space. In our case,
we are interested in a solutions in terms of displacements over Ω. To derive the
variational form of the equations on which the finite element solution will be based,
it is necessary to define a suitable form of the displacement solution, u(x). Whereas
traditional finite element formulation assumes a C0 continuous space for the solution,
the X-FEM formulation allows the displacement field to be discontinuous over the
body. The displacement field in this case takes the form,

u(x) = û(x) +
N∑

n=1

Hn(x)ũi(x) (2.6)
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Fig. 2.2. Schematic view of Heaviside definition.

In Equation 2.6, H is a Heaviside function defined by the geometry of the grain
structure and takes the form,

H(x) =
{

1 if x ∈ Gn

0 if x /∈ Gn
(2.7)

as shown schematically in Figure 2.2.
Using the approximation for displacement in Equation 2.6, we multiply Equation

2.2 by an appropriate weighting function of the same form, integrate, and apply the
appropriate boundary conditions. The result is the variational form of the equations.
Note that there are multiple variational equations, one for the entire body (coarse-
scale; Equation 2.8) and an additional equation for every grain (fine-scale: Equation
2.9).

∫
Ω

ŵ(i,j)σijdΩ =
∫

Ω

ŵifidΩ +
∫

Γn

ŵitidΓn (2.8)

∫
Gn

w̃(i,j)n
σijdGn+ grain boundary terms =

∫
Gn

w̃infidGn+
∫

ΓGn

w̃intidΓGn (2.9)

2.4. Enriched FEM Approach. To solve the coupled variational problems,
we apply a finite element discretization to the domain. With the X-FEM approach,
it is not necessary to fit a finite element mesh to the grain boundaries, ϕ. The
background can be any uniform or unstructured mesh with elements appropriate to
the kind of material deformation that is expected. Elements that are cut by a grain
boundary must support a discontinuous displacement approximation in the same way
that it is defined over the domain. Consequently, the X-FEM approximation to the
displacement field takes the same discontinuous form as the overall displacement, with
the addition of the standard finite element shape functions, φ(x).

uh(x) = φA(x)ûA +
N∑

n=1

Hn(x)φA(x)ũAn
(2.10)

An example of the displacement field over an element that crosses a grain bound-
ary interface between grains 1 and 2 (see Fig. 2.2) might be,

uh(x) = φA(x)ûA +H1(x)φA(x)ũA1 +H2(x)φA(x)ũA2 (2.11)
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for A = 1...nen where nen is the number of nodes in the element.
However, there is an immediate problem in that the set of H is linearly dependent

over the element. Specifically, we have that,

H2 = 1−H1 (2.12)

For this reason, only one Heaviside “enrichment” need (or should) be implemented
over that node,

uh(x) = φA(x)ûA +H1(x)φA(x)ũA1 (2.13)

The use of H2 is an equally valid choice. Similarly, over elements where there are no
discontinuities present, the traditional finite element approximations are sufficient.

Nodes on elements which are cut by boundaries receive extra degrees of freedom,
i.e., ũA1 in Equation 2.13, as a result of the discontinuous approximation and are
referred to as “enriched”. The integration of an element that has been cut by a
grain boundary has to be approached differently than the integration of a standard
finite element. To resolve the displacement field appropriately, a cut element must
be decomposed into integrable regions on either side of the discontinuity. A suitable
Gaussian quadrature can then be applied to the element subregions.

2.5. Grain interface model. After enrichment, cut finite elements have addi-
tional degrees of freedom at the enriched nodes which are allowed to move indepen-
dently. This is the mechanism that allows discontinuous displacement fields across
boundaries, but it also means that if no constraints are applied at grain boundaries,
the grains are free to separate from each other. There is on-going research into the me-
chanical nature of grain interactions at the boundaries. In the finite element context,
a model must be chosen to represent the interactions.

Here, we have implemented two relatively simple models for grain boundary inter-
actions. The first is a perfect tie between the grains. The second is a perfect tie normal
to grain boundaries and no constraint in the tangential direction. The second choice is
a rough model of minimally viscous grain boundary sliding. For this implementation,
a penalty method enforces the constraint in the affected elements. Additional terms
are added to the stiffness of the granular variational equations (equation 2.9).

In the case of perfect tying, the term that is added to the variational equation in
place of the previous term only referred to as “grain boundary terms” is

ε

∫
ϕ

[[w̃]]dϕ
∫

ϕ

[[w̃]]dϕ (2.14)

In the case of tying only in the normal direction, the term is very similar, with the
inclusion of the dot product with a grain normal.

ε

∫
ϕ

[[w̃]] · ~ndϕ
∫

ϕ

[[w̃]] · ~ndϕ (2.15)

In both cases, the displacement jump in an element across a grain boundary is the
term being “penalized” to be zero, and it is defined as,∫

s

[[ũ]]ds =
∫

s

ũ+ds−
∫

s

ũ−ds (2.16)
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Fig. 3.1. Results to stress free problem.

In addition to traditional issues of convergence and ill-conditioning, it has been
shown ( [10]) that the use of penalty method to enforce intra-element interface trac-
tions (in the context of Partition Of Unity; POU methods) may result in artificial
oscillations in these tractions. Simone notes that this issue, which is similar in nature
to that for interface elements, is not well understood [10]. More distressing is that,
while these oscillations may often be controlled for interface elements via an appro-
priate choice of interface integration scheme, such an approach is only effective for
special mesh/interface configurations when applied in the context of POU/X-FEM
methods. Indeed, Simone showed that oscillations will always be present when a
penalty is employed and linear triangle elements are used [10]. For these reasons,
more sophisticated enforcement methodologies are desirable and are currently under
investigation.

3. Numerical Examples. The preceding method was implemented in a 2-
dimensional eXtended Finite Element Code in the MATLAB framework. Only small
strains and linear materials were considered. Linear triangle finite elements were
used as the background mesh, and grain structure was produced through a process
of Voronoi tessellation. The open source mesher GMSH [5] was used to produce the
mesh. A number of verification problems were developed to test the capability of the
code and algorithm.

The first verification problems were run with no grain boundary interfaces, and
rigid body displacements applied to grains so that they separated. The ability to
freely separate is demonstrated by Figure 3.1. All results are completely stress free,
as should be expected.

The first test problem is essentially a patch test in which a linear displacement
field is applied to a rectangular body. The body is comprised of two grains, as shown
in Figure 3.2, separated by a vertical interface constrained by a perfect tie. A constant
pressure on one end and a fixed displacement condition on the other produce a linear
displacement field. The end displacement of the body can be analytically deduced
as a function of the position of the grain interface in the body and the properties of
each grain. Several numerical simulations were run with different interface locations.
Figure 3.2 also demonstrates the comparison between the analytical solution and the
numerical simulations. All numerical simulations recovered the analytical solution to
machine precision.

The second problem is a test of the grain boundary sliding algorithm. It also
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(a) (b)

Fig. 3.2. Patch test on a fully tied interface showing (a) problem domain and (b) predicted and
analytical solutions.

(a) (b)

Fig. 3.3. Patch test on a fully tied interface

involves a rectangular body with two grains, but in this case one grain has a 0 Poisson’s
ratio and the second has a Poisson’s ratio of 0.25 (Figure 3.3). With the appropriate
constraints, an end displacement was applied to the second grain. There is also an
analytical solution for the problem. The second grain should contract in the vertical
direction while the first does not. No tangential tractions should be created at the
boundary, and the stress should be constant in both elements. Again, the numerical
solution reproduces the solution exactly (Figure 3.3).

Both of the first two test problems considered only linear displacement fields.
With a high enough penalty number, the correct answer can be recovered to machine
precision regardless of mesh density.

Next, A problem without a linear displacement field was designed in order to
test convergence of the method with mesh density. With a penalty number scaled
as O(1/h2) a convergence rate approximately equal to 2 was recovered (Figure 3.4).
However, such scaling of the penalty number can easily destroy matrix conditioning,
which provides another incentive to move to more robust numerical techniques for
grain boundary constraints.

Finally, to demonstrate the technique on a more complicated problem, a simu-
lation was run with a more complicated grain structure and grain boundary sliding
(Figure 3.5). Though there is no analytical solution to the problem, certain expected
features emerged, such as a lack of tangential traction along grain boundaries and a
reasonable displacement field.

4. Conclusions. The purpose of this work was to begin addressing issues as-
sociated with finite element modeling of polycrystalline materials at length-scales
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Fig. 3.4. Convergence of tip-displacement for a multi-material beam with Heaviside enrichment
and fully tied interface.

(a) (b)

Fig. 3.5. Multiple grain (a) geometry, mesh and applied loadings, and (b) (exaggerated) dis-
placements for normally-tied, tangentially free interface conditions.

on order of grain-size. We have investigated a technique for representing the poly-
crystalline grain structure on a background mesh using the eXtended finite element
method. Specifically, we demonstrated a 2-dimensional, linear implementation of the
method in a MATLAB based GFEM/X-FEM code. We have described the theory
and implementation of a generalized finite element approach for polycrystalline ma-
terials characterized by homogeneous grains. The sub-grid mechanics associated with
the grain/grain interfaces were modeled via an applied traction condition. Numerical
examples were presented, including verification patch tests for the two grain bound-
ary behavioral models implemented. Additional examples demonstrated the more
complicated abilities of the method and implementation.

Through the implementation presented here we have shown that X-FEM can rep-
resent interfaces (with both strong and weak discontinuities) with a non-conforming
mesh. Some of the advantages of the method include the trivialization of the mesh-
ing process, and establishing a natural framework for the introduction of the crack-
propagation problem.
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There are many future directions to be considered. To realize the goal of a full
micro-machining simulation, research and algorithm development for X-FEM in the
areas of,

• inter-/intra-granular failure
• large deformation mechanics, grain re-contact
• remap in the context of X-FEM
• interface reconstruction and X-FEM

are being pursued.
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MECHANICAL PROPERTIES OF METAL-ORGANIC
FRAMEWORK-5 FROM FIRST PRINCIPLE CALCULATIONS

M. SHINDEL∗, M. ALLENDORF , AND R. STUMPF†

1. Introduction. Metal-organic frameworks (MOFs) are an exciting new class
of materials that have potential applications in areas such as catalysis, gas storage, and
sensing technologies. In order to facilitate the development of devices that incorporate
this type of material, it is important to be able to model the materials interaction
with various substrates. This, in part, requires intimate knowledge of the materials
mechanical properties, namely the elastic constants, which relate stress and strain
within the system. To date, very little experimental data has been collected on the
mechanical properties of MOFs. To circumvent this lack of information, first principle
calculations have been made on MOF-5 to determine the systems elastic constants.

MOFs generally consist of a network of inorganic clusters interconnected by or-
ganic linkers [14]. MOF-5 employs 1,4-benzenedicarboxylate (BDC) to link together
Zn4O clusters. As shown in Figure 1.1, the primitive unit cell of MOF-5 is rhombo-

Fig. 1.1. The structure of metal-organic frameworks

hedral, while the conventional unit cell, which is four times larger than the primitive
cell, is face centered cubic. The BDC linkers form the cube edges, while the Zn4O
clusters act as vertices.

2. Details of Calculations. it Ab initio methods are a powerful set of tools
that allow for predictions of a material systems mechanical properties. In this work,
the Vienna Ab-initio Simulation Package (VASP) [5] has been used to calculate the
equilibrium volume, bulk modulus, and second-order elastic constants of MOF-5.

∗University of California at Irvine
†Sandia National Laboratories
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VASP uses density functional theory (DFT) [3] and a plane-wave basis set to make
electronic structure calculations. A geometrical input is coupled with information
about the electronic structure of the atomic species present, to calculate the total
energy of a given system. In this work, calculations were made under both the local
density approximation (LDA) [4], using the Ceperley-Alder functional [1] as parame-
terized by Perdew and Wang, and the generalized gradient approximation (GGA) [12]
with the Perdew-Burke-Ernzerhof (PBE) [4] exchange-correlation functional. Results
from LDA were found with both Vanderbilt ultra-soft (USPP) [15] and projector-
augmented wave (PAW) [6] pseudo-potentials. Only the PAW method was used with
GGA calculations. All ionic relaxations were done with the conjugate-gradient al-
gorithm [13] included in the VASP package. The MOF-5 is quite computationally
taxing to study via the methods presented here. To reduce the computational load
only a single k-point, the Γ point, was used for integration over the Brillouin zone.
Prior results have shown that increasing the size of the k-point mesh does not have a
significant impact on the resulting MOF-system energy [9]. Furthermore, calculations
were performed on the 106 atom primitive, rhombohedral cell, as opposed to the con-
ventional cubic (fcc) cell which is four times as large (424 atoms). In all calculations
the residual atomic forces were reduced below 0.01 meV/Å.

3. Procedure and Results.

3.1. Fitting to an Equation of State. To determine the optimal structure for
MOF-5, VASP was used to calculate the system energy at various cell volumes. During
these calculations the cell shape was held constant while the lattice parameter was
varied. The lattice constants used ranged from 5% above and below the experimentally
determined value [8]. In total, six data points were collected. Once the energy versus
volume data had been obtained, it was fit to the empirical Murnaghan equation of
state (EOS) [10],

E (V ) = Eo +
BoV

B′o

(
(Vo/V )B′

o

B′o − 1
+ 1

)
(3.1)

This allowed for the determination of both the equilibrium cell volume (Vo) and the
bulk modulus (Bo). Bo is a measure of isothermal compressibility.

The values of the parameters calculated from the fit are shown in tables 3.1 and
3.2, along with results from prior studies.

Table 3.1
MOF-5 Equilibrium Volume (Å3)

This Work Ref. [8] Ref. [9]
LDA/USPP 4196
LDA/PAW 4206 4338
GGA/PAW 4458 4464
Experimental 4335 4349

The USPP and PAW volume results agree well with each other and they differ
from the results in [8] by ∼3%. The two experimental volumes differ by a negligible
amount. The volume found with GGA differs from the experimental results by less
than 3%. It should be noted that the Mattesini results [8] were obtained with a much
more approximate software package (Siesta) [11], and a force cut-off five times larger
than that used here.
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Table 3.2
MOF-5 Bulk Modulus (Mbar)

This Work Ref. [8]
LDA/USPP 0.1797
LDA/PAW 0.1838 0.1702
GGA/PAW 0.1543

3.2. Elastic Constants. The elastic constants of MOF-5 were determined in
a similar fashion to the way in which the equilibrium volume and bulk modulus
were obtained. Energy can be described as a function of strain via a taylor series
expansion [2],

E (V,α) = E (Vo,0) + Vo

∑
i

σiαiξi +
1
2

∑
i,j

Cijαiξiαjξj

 . (3.2)

If only small strains are applied to the system, so as to remain in the elastic regime,
the taylor series can be truncated after the second order term. A designed strain is
appled to the systems geometric basis,

A′ = (I + ε) ·A, (3.3)

thereby distorting the shape of the unit cell. The ε term in equation 3.3 is the
strain matrix, A is the set of basis vectors and I is the 3x3 identity matrix. After
straining the MOF-5 unit cell, VASP was used to calculate the systems energy at
several magnitudes of the applied strain. The data was then fit to equation 3.2 and
the relevant elastic constants were obtained from the second order coefficient [7]. A
more detailed description of this method can be found in [7]. The number of distinct
elastic coefficients that need to be determined is dictated by the symmetry of the
system under investigation. For cubic systems there are only three individual elastic
constants: C11, C12, and C44. The value of C44 was obtained directly from the fitting
procedure, after applying an Orthorhombic strain [7] to the unit cell. The value of the
shear modulus C’ = C11-C12, was found by applying a tetragonal shear [7] to the unit
cell. The individual values of these elastic constants were found by combining the value
of the shear modulus with the relationship between elastic constants, C11 and C12,
and the bulk modulus [7]. The results are shown in table 3.3. The elastic constants

Table 3.3
MOF-5 Elastic Constants (Mbar)

C11 C12 C44

This Work (LDA/USPP) 0.2234 0.1578 0.0637
This Work (LDA/PAW) 0.2263 0.1619 0.062
This Work (GGA/PAW) 0.1982 0.1323 0.0668
Ref. [8] 0.2152 0.1477 0.0754

produced here are in good agreement with those generated by Mattesini [8]. However,
during the course of this investigation, it was realized that the applied strains were
designed for cubic cells. However, the calculations employed the primitive form of the
MOF-5 unit cell, which has a rhombohedral geometry. The presence of this error was
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confirmed by the fact that the MOF-5 structure did not assume the expected geometry
when distorted by the strain matrices given in [7]. Because the structure was strained
in an incorrect fashion, it is probable that the tabulated values are actually linear
combinations of the three elastic constants, rather than the constants themselves.

4. Future Work. Prior to further theoretical or experimental work, more cor-
rect values of the elastic constants must be obtained by performing calculations on
the conventional (cubic) MOF-5 cell. The values of these constants should also be
determined using the stress tensor computed by VASP (for a given strain) and the
linear stress/strain relationship,

σi =
∑

j

Cijεj . (4.1)

Once credible values for the elastic constants have obtained, the interactions between
MOF-5 and various substrates can be investigated in order to find a favorable surface
on which MOF-5 can be grown. It may also be of interest to examine any changes in
physical or mechanical properties that may result from interactions between MOF-5
and any guest molecules absorbed into the structure.
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NANOFILLER AND CHEMICAL STRENGTHENING OF
POLYURETHANE FOAMS

B. WEISSMAN∗ AND A. VANCE†

Abstract. Polymer foams produced at Sandia have traditionally been used as impact protection
material for the sensitive electronic components in nuclear missile systems. However, a recent market
opening has shown that Sandias TufFoam may also be an ideal material for surfboard blanks. In
attempting to create a more appealing and marketable material, this summers project is aimed at
using nanomaterial fillers to strengthen TufFoam. Of the variety of nanomaterials tested, Cloisite30B
at 2 wt% loading is the most effective, increasing TufFoams collapse strength by 8.6%. The epoxy
resin Epon826 is a potent chemical strengthener, improving collapse strength by 10.6%. In addition to
these discoveries, the characterization of high-shear mixed foams with Cloisite30B is also undertaken.

1. Introduction. TufFoam is a foam formulation invented by researchers at
Sandia that was originally intended to replace older foams as an insulating and shock
absorbing material for nuclear weapons electronics. When Clark Foam, the leading
supplier of surfboard blanks, closed in December 2005 it was realized that TufFoam
could potentially fill the large market share they left behind. TufFoam is a rigid closed-
cell polyurethane foam (Figure 1.1) that is structurally sound, thermally insulating,
and electrically insulating. Unlike previous foams it is created with environmentally

(a) Closed Cell (b) Open cell, deflecting under an applied force

Fig. 1.1. Schematic diagrams of foam unit cell structures [3]

friendly chemicals, replacing carcinogenic TDI (toluene diisocyanate) with Isonate181
and CFC blowing agents with water-blown CO2. In addition to withstanding quasi-
static compressive loads, TufFoam exhibits excellent durability and fracture resistance
under impact conditions. The commercial availability of its constituent chemicals
suggests that the manufacture of TufFoam is scalable for industrial applications.

∗Brown University
†Sandia National Laboratories
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The chemical constituents of TufFoam are a hydroxide-rich polyol, surfactant, an
amine catalyst, water, and an isocyanate. When all of the compounds are combined,
foaming and polymerization reactions occur simultaneously, as shown below [3]: In

R-NCO + HO-R' R   N   C   O   R'

H   O

(a)

R-NCO + HO-H R   N   C   OH

H   O

R-NH2 + CO2
(b)

R-NCO + NH2-R' R   N   C   N   R'

H   O   H

(c)

Fig. 1.2. Foaming and polymerization reactions that occur to form TufFoam.

reaction 1.2(a), also known as the “gel” step, the isocyanate and a hydroxyl group from
the polyol form urethanes. Simultaneously, in the “blow” step of reaction 1.2(b), an
isocyanate reacts with water to form an amine and carbon dioxide. The amine reacts
with another isocyanate in reaction 1.2(c) to form urea linkages, while the CO2 from
1.2(b) causes the foam to expand. This expansion is balanced by the polymerization
of the reaction products of 1.2(a) and 1.2(c), causing the foam to harden as it rises [3].

The chemical formulation of TufFoam produces foam that is strong and durable.
Thus, when adding filler materials it is important to avoid altering this stable formula-
tion. Potential nanofillers were chosen on the basis of desirable physical characteristics
and chemical compatibility with the TufFoam constituents. Nanoparticles were ex-
plored in lieu of micro-particles due to their favorable surface area to volume ratios
and their success in other polymer compounds [1,2,4–9]. High-shear mixing of certain
nanomaterials was investigated as a means of exfoliation and particle dispersion.

2. Materials and Procedure. The isocyanate source, Isonate181, and the
polyol Voranol490 were both purchased from Dow Chemical Corp. The surfactant,
DC-193, and the DABCO 33LV catalyst were both acquired from Air Products and
Chemicals, Inc. Distilled water was obtained from a laboratory distillation source.

A variety of nanomaterials were tested throughout the course of these experi-
ments. Fumed silica and Cloisite30B were obtained from Cab-O-Sil and Southern Clay
Co., respectively, while aluminum oxide nanopowder, aluminum oxide nanopowder
whiskers, and multiwall carbon nanotubes were from Aldrich. Zyvex provided Nano-
Solve compounds consisting of 5% SWNT in Epon826 and 10% MWNT in Epon826.
Additional Epon826 epoxy resin was purchased from E.V. Roberts.

To produce foams with nanomaterial inclusions, two basic procedures were fol-
lowed. One is a standard procedure, and the other is complicated by the incorporation
of high-shear mixing of select ingredients. The former involves hand-mixing the Vo-
ranol and nanofiller of choice into a 500-mL cup, followed by addition of surfactant,
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catalyst, and water and more hand-mixing. The Isonate is then added, followed by a
minute-long period of mechanically agitated mixing using a stirrer head at 700 rpm.
The appropriate amount of liquid mixture is quickly poured and clamped into a 60oC
pre-heated steel mold. After a 30 minute hardening period the mold and clamp are
transferred to a 60oC oven for at least four hours.

To create shear-mixed foams, the Voranol and nanomaterial are first mixed for 30
minutes in a 250-mL cup with a Jelenko dental vacuum mixer. An appropriate mass
of this mixture is transferred to a 500-mL cup, and the aforementioned procedure is
followed.

After heat treatment, foam cylinders 2” tall and 1.6” in diameter are cored from
the bulk sample, ensuring that no foam within 1

4” of the outer bulk skin is included in
these samples. Quasi-static compression testing is performed at a constant strain rate
on a Satec Materials testing machine to generate stress-strain curves. By manually
selecting points on the linear regime, local maxima, and minima of these curves,
the software determines the elastic modulus, yield stress, and collapse stress of each
sample. Three to four samples per batch are tested in such a manner.

3. Results and Discussion. The first objective of this undertaking was to
determine which nanomaterials were best suited for strengthening TufFoam. Six
foams, containing 1 wt% alumina nano-powder, 1 wt% alumina nano-whiskers, 0.5
wt% fumed silica, 0.5 wt% Cloisite30B, 0.1 wt% MWNT, and 0.1 wt% SWNT re-
spectively, were produced by the methods described above. Using collapse stress as a
measure of the foam strength, Figure 3.1 was produced.

Fig. 3.1. Effect of nanomaterial identity on collapse stress

Since foam density plays a very large role in strength, each foam in Figure 3.1
contains a reference TufFoam sample at the same density. Comparing each sample to
its respective control reveals that both alumina materials and the silica material are
inferior strengtheners and actually cause a weakening of the foam. This weakening is
most likely caused by interruption of the polymer matrix by the filler material. For
a material to be a successful strengthener, the benefits it offers must outweigh this
matrix disruption. Although the nanotubes and Cloisite also weaken the foam, they
weaken it to a smaller degree and thus warrant further investigation.

To better understand the strengthening mechanism of Cloisite30B, it was tested in
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foams at weight loadings of 1%, 2%, 3%, and 4%. The results of compression testing
are shown in Figure 3.2(a). In addition, different Cloisite30B samples underwent

(a) Normal Cloisite30B composites. (b) High-shear mixed composites.

Fig. 3.2. Effects of Cloisite30B and high-shear mixing on collapse stress.

high-shear mixing in an effort to fully exfoliate the clay nanosheets. Exfoliation
would theoretically cause a lower weight loading to produce a significant strength
increase, as uniform dispersion of Cloisite would improve cross-linking and physical
strengthening efficiency. The results of compression testing of the high- shear mixed
samples are shown in Figure 3.2(b). These foams and all foams discussed henceforth
in this report have densities of 0.100 ± 0.002 g/cc.

The normal Cloisite30B testing reveals that at a loading of 2 wt%, the collapse
stress of TufFoam is increased by 8.6%. Once again, too much or too little filler
causes matrix degradation without sufficient supplemental strengthening. In the high-
shear mixed samples, maximal strength is attained by the 0.5 wt% loaded sample.
However, high-shear mixing decreases the strength of all samples, exemplified by the
TufFoam control growing weaker by 11.8%. One possible explanation for this decrease
in strength is that the process of mixing imparts heat to the mixture, which decreases
viscosity. This warmer, less viscous solution could react differently with the other
chemicals or behave differently in the cure process. The nano-filled foams could also
be weakened by physical destruction of their fillers, but TEM studies are required for
verification.

A similar range of foams were created for testing the SWNT and MWNT ma-
terials. However, the nanotubes available were mixed with Epon826, meaning that
a certain weight loading of nanotubes also included a greater fraction of the epoxy.
As such, control samples which contained the corresponding amount of epoxy (and
no nanotubes) were prepared for comparison. Results from subsequent compression
testing are shown in Figure 3.3(a). After this preliminary testing, dry MWNT were
obtained and incorporated into foams via high-shear mixing. Compression data from
these shear-mixed samples, along with shear-mixed epoxy control and shear-mixed
SWNT/epoxy combination foams, are shown in Figure 3.3(b).

The normal CNT materials exhibit no strength improvement over the original Tuf-
Foam formulation. However, the Epon control with 1 wt% epoxy unexpectedly shows
a collapse stress 10.6% greater than that of TufFoam. This phenomenon explains
the observed behavior: small amounts of epoxy strengthen the polymer matrix, while
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(a) Normal CNT/Epon Composites. (b) High-shear mixed CNT composites.

Fig. 3.3. Effects of MWNT, SWNT, Epon826, and high-shear mixing on collapse stress.

larger amounts weaken it. In samples with small amounts of epoxy (such as the
0.1% MWNT with 1% Epon), the nanotubes serve as a weakening agent. In foams
that contain larger quantities of epoxy (such as the 0.25 SWNT with 5% Epon), the
nanotubes strengthen the mixture. In this manner, the nanotubes act as a moderator
and bring either high- or low-strength materials toward an intermediate value. Once
again, none of the high-shear mixed samples are stronger than unmixed TufFoam,
but a small improvement is observed for the shear-mixed 0.1 wt% SWNT material
compared to the normal sample.

With the observation that small amounts of epoxy improved collapse strength,
it was hypothesized that an epoxy/Cloisite composite foam would enhance strength
even more. According to Jia et al [5] the addition of organophilic montmorillonite to
interpenetrating polymer networks (IPNs) of polyurethane and epoxy resin strength-
ens the composite. The sequential IPN formation is thought to exfoliate and disperse
the nanoclay sheets, improving strength at a lower filler concentration. This work
was completed for non-foamed polymer composites, and the same principles were as-
sumed to be applicable to foamed systems. To fully test this assumption, TufFoam
with varying degrees of Epon826 and Cloisite30B fillers were produced and tested.
The compression results are shown below in Figure 3.4.

No drastic strength improvements were found to occur in the Epon/Cloisite com-
bination system. In fact, none of the combinatorial foams produced in this manner
matched the strength of the separated fillers. In order to fully understand why this
occurs, more detailed characterization of the foams is required. Transmission electron
microscopy (TEM) and wide-angle X-ray diffraction (WAXD) studies are needed to
illustrate the degree of clay dispersion to verify that the IPN exfoliation effect doesnt
work in foamed systems.

In addition to collapse stress values, the stress-strain curve produced in compres-
sion testing is a useful tool to evaluate foam strength and integrity. Figure 3.5 contains
the stress-strain curves for the TufFoam baseline and the three strongest foams pro-
duced in these experiments. Each foam in this figure displays a similar stress-strain
curve, implying that fracture toughness and impact strength were not compromised
in creating a stronger foam. The difference in collapse strength is evidenced by the
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Fig. 3.4. Effect of various Epon826/Cloisite30B filler combination on collapse stress.

Fig. 3.5. Stress-strain curves for the three strongest foams produced and a TufFoam control.

difference in peak and trough height of each curve.
The final characterization performed on these foams was Scanning Electron Micro-

scopy (SEM). While SEM provided general information about foam structure and
cell size, it was not detailed enough to yield any insight into nanomaterial exfoliation
or polymer matrix disruption. The images presented in Figure 3.6 show that the
nanofilled foams have a similar structure and cell size to the TufFoam control. The
images also suggest that high-shear mixed foams (or at least the SWNT/Epon foam)
exhibit a higher frequency of smaller cells.

4. Conclusions. Through careful and systematic testing of various nano-fillers,
materials and loading conditions were discovered that improve the collapse strength
of standard TufFoam. The nanoclay Cloisite30B at a 2 wt% loading was found to
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(a) TufFoam (b) with Cloisite30B

(c) with Cloisite30B, shear mixed (d) with SWNT/Epon mixture

(e) with SWNT/Epon mixture, shear mixed

Fig. 3.6. SEM images depicting foam structure and cell size.

increase collapse strength by 8.6%, while the epoxy resin Epon826 at a 1 wt% loading
increased collapse strength by 10.6%. High-shear mixing was found to decrease the
collapse strength of nearly all materials tested, but if the inherent thermal effects of
mixing can be overcome, shear-mixed Cloisite30B at a 0.5 wt% loading may prove to
be even stronger than the epoxy-containing foam. The IPN dispersion of organophilic
montmorillonite discovered by Jia et al [5] was found to be inapplicable to foamed
systems, but TEM and WAXD studies are required to verify this theory with con-
fidence. SEM characterization verified a normal foam structure and hinted at a cell
shrinking phenomenon due to shear-mixing.
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Nano/Micro-Fluidics

The articles in this section focus on the fundamental understanding of nanoscale fluid
flow as well as novel applications of micro- and nanofluidic devices that underpin in-
novative portable equipment for the detection of biological and chemical agents. In
Dickson et al. advanced continuation algorithms (LOCA) are used to investigate and
map out the influence of continuum parameters, such as density and temperature,
on the probability distributions on atoms in fluid systems through solution of the
Ornstein–Zernike equations. Fettig & Collis develop a numerical simulation capa-
bility for modeling metathesis polymerization for the self-healing of materials. This
process occurs at the micro-scale and is modeled by a combined Stokes model for the
bulk fluid flow with a Lagrangian particle tracking for the catalyst that sets the poly-
mer viscosity. A systematic verification process was implemented using the method
of manufactured solutions and the resulting simulation tool was driven by DAKOTA
to perform parameters studies for the healing process. Harder & Bochev document
their progress on understanding the theory behind electrokinetically induced micro-
and nanoflows as well as implementation of a simulation tool to model the motion
of particles in nanochannels. Kennedy and Moody use detailed experimental mea-
surements combined with analytical solutions to investigate the interfacial fracture
toughness of gold films on silicon substrates. Kopacz, Nguyen, and Wagner explore
the immersed finite element method as a tool for modeling complex fluid flows in
deforming geometries typical of microfluidic systems. Rhieu, Huber, & Pennathur
present a combined simulation and experimental study of the diffusivve transport of
fluorescein in a nanofluidic device. Through this approach, they were able to estimate
the zeta potential within a nanofluidic T-shaped channel. Terrel and Long evaluate
a level-set approach to topologic optimization for the design of microfluidic devices.
The section closes with a paper by von Winckel, Romero and Coutsias dealing with
specialized, multiscale approaches to modeling micro-chromatographs. A common
thread between these articles is the use of advanced computational and experimental
techniques, often together, to advance the state-of-the-art in nano/micro fluidics.

S. Scott Collis

October 30, 2006
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DISTRIBUTIONS OF ATOMS IN FLUIDS USING LOCA

K.I. DICKSON∗, C.T. KELLEY† , B.M. PETTITT† , A.G. SALINGER‡ , AND J.J. HOWARD‡

Abstract. The Ornstein-Zernike (OZ) equations [1] can be used to find probability distributions
of atoms in fluid states where the primary unknowns are the radial pair correlation function and the
direct correlation function. In order to specify conditions of the state, certain parameters such as
density and temperature are chosen. While one can find a single solution to the OZ equations
corresponding to particular parameter values, here we use LOCA (Sandia developed continuation
software) in order to investigate solution behavior as the parameters density and temperature vary.

1. Introduction. The Ornstein-Zernike (OZ) equations [1] can be used to find
probability distributions of atoms in fluid states. These equations are a set of nonlinear
coupled integral equations with two unknowns. The system is closed with an algebraic
constraint relating the two unknowns. Such a constraint is called an approximate
closure relation, for which there are various options [2]. The one considered at this
time is called the HNC equation. We now describe the equations of interest in more
detail, followed by their application to numerical continuation.

1.1. The Equations. The Ornstein-Zernike equations are given by

h(r) = c(r) + ρ(h ∗ c)(r)

where

(h ∗ c)(r) =
∫
<3
c(‖r− r′‖)h(‖r′‖)dr′.

Here,
• r ∈ <3,
• r = ‖r‖ is the distance of r from the origin,
• ρ is density, and
• h, c ∈ C[0,∞) are the unknowns.

The unknown h is called the radial pair correlation function and is an experimental
observable from, for example, an X-ray or neutron diffraction experiment on fluids.
The unknown c is called the direct correlation function defined by the above equations.
The closure equation of choice here is the HNC equation

exp(−u(r)/(TKB) + h(r)− c(r))− h(r)− 1 = 0, 0 ≤ r ≤ ∞.

In this equation, u is called the pair potential between particles. The standard u used
is the Lennard-Jones potential

u(r) = 4ε
((σ

r

)12

−
(σ
r

)6
)
. (1.1)

Additionally,
• T is absolute temperature (Kelvin),
• KB is Boltzmann’s constant (kcal/Kelvin),

∗North Carolina State University
†University of Houston
‡Sandia National Laboratories
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• ε is the well depth of the potential (kcal/mol), and
• σ is essentially the diameter of the particles (Angstroms).

In order to solve the OZ equations together with the HNC closure relation, one must
specify certain parameter values, in this case, values for ε, σ, ρ, and T . However it is
possible to get a sense of how solution behavior changes as one or more parameter
values vary. This process is called numerical continuation.

1.2. Numerical Continuation and LOCA. Consider a set of non-linear, pa-
rameter dependent equations of the form

G(x, λ) = 0 (1.2)

where x ∈ <N is the unknown and λ ∈ < is a real number parameter (although in
general, there may be more than one parameter). The idea of numerical continuation
is to find solutions x corresponding to various values of λ and to investigate the
solution behavior as λ varies. In particular, one is often interested in detecting solution
paths that undergo bifurcations. In the context of the OZ equations, we can think of
correlation functions h and c as the unknown x and the parameters ρ and T as λ. We
would like to understand what happens to the solutions h and c as the parameters ρ
and T vary.

There are many established numerical techniques and software dedicated to solv-
ing numerical continuation problems like the one just described. Trilinos (overseen
by Mike Heroux, 1414) is a collection of free software packages written in C++, each
one designed by a Sandia development team. The packages may stand alone, but are
designed to integrate with one another. NOX (Nonlinear Object-Oriented Solutions)
is the nonlinear solver package headed by Roger Pawlowski (1416), Tammy Kolda
(8962), and others. Within NOX is a package called LOCA (Library of Continua-
tion Algorithms) developed by Andrew Salinger, Eric Phipps, Brett Bader, and Russ
Hooper (1416). LOCA and NOX are the primary packages responsible for the results
in §3. For more on Trilinos including download information, visit

http : //software.sandia.gov/Trilinos.

1.3. Paper Layout. In §2, we first formulate the OZ equations into a problem
of the form (1.2) and then describe the problem’s discretization. In §3 we look at
solutions to our problem using Trilinos, followed by a description of future goals in
§4. Finally, §5 offers concluding remarks.

2. Solving the OZ/HNC Equations. In order to solve the OZ/HNC equa-
tions, we first express the OZ equations as a compact fixed point problem in the form
of (1.2). We then discretize the resulting problem with the trapezoid rule. This gives
us the format for the continuation problem to be solved using NOX and LOCA in §3.

2.1. The Fixed Point Problem. Recall that the OZ equations are given by

h(r) = c(r) + ρ(h ∗ c)(r) (2.1)

where

(h ∗ c)(r) =
∫
<3
c(‖r− r′‖)h(‖r′‖)dr′. (2.2)

The convolution h ∗ c can be computed with only one-dimensional integrals using the
spherical-Bessel transform. Assuming h decays sufficiently rapidly, we define

ĥ(k) = H(h)(k) = 4π
∫ ∞

0

sin(kr)
kr

h(r)r2dr
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and

h(r) = H−1(ĥ)(r) =
1

2π2

∫ ∞

0

sin(kr)
kr

ĥ(k)k2dk.

We compute h ∗ c by discretizing the formula (see §2.2)

h ∗ c = H−1(ĥĉ) (2.3)

where ĥĉ denotes the pointwise product of functions. Transforming (2.1) gives

ĥ = ĉ− ρĥĉ

so that, given c, we can compute h as

h = H(c) = H−1

(
ĉ

1− ρĉ

)
.

Now we use the HNC closure

exp(−u(r)/(TKB) + h(r)− c(r))− h(r)− 1 = 0, 0 ≤ r ≤ ∞. (2.4)

to recover the fixed point map. Here u is the Lennard-Jones potential defined in (1.1).
Having computed h = H(c), we define

y = h− c

so h = y + c, and the HNC closure becomes

exp(−u(r)/(TKB) + y(r))− y(r)− 1 = c(r).

Substituting H(c)− c in for y gives

K(c) = exp(−u(r)/(TKB) + (H(c)− c)(r))− (H(c)− c)(r)− 1

where K is a compact fixed point map in c [1] with c = K(c) at a solution. The final
residual is

G(c) = c−K(c).

Since h can be recovered once c is known, and recalling the parameters involved in
the problem, we now seek to solve

G(c, h, σ, ε, T, ρ) = 0. (2.5)

As seen in §3, we choose σ and ε to be constant and allow T and ρ to vary for the
continuation study.

2.2. The Discretization. As alluded to in §2.1, we discretize the convolution
in (2.3) by discretizing the transfom and then defining the discrete convolution as
the inverse transform of the product of the transforms. We discretize the transform
variable in a way that allows a fast Fourier transform (FFT) to evaluate the transform
and its inverse.
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First, we truncate the radial variable at L so that r ∈ [0, L]. The nodes in r are
defined as

{rδ
i }Ni=1

where rδ
i = (i− 1)δ and δ = L/(N − 1) is the mesh width.

The nodes in the transform variable are kj = (j − 1)δk where δk = π/L (so
δkδ = π/(N − 1)). We define, for 2 ≤ j ≤ N − 1 and v ∈ <N ,

v̂j = H(v)j

= 4πδ2

(j−1)δk

∑N−1

i=2
(i− 1)vi sin((i− 1)(j − 1)δkδ)

= 4πδ3(N−1)
j−1

∑N−1

i=2
(i− 1)vi sin((i− 1)(j − 1)π/(N − 1)).

Then, for 2 ≤ i ≤ N − 1,

H−1(v̂)i =
1

2(i− 1)πδ3
∑N−1

j=2
kv̂j sin((i− 1)(j − 1)π/(N − 1)).

Finally, define for 2 ≤ i ≤ N − 1,

(u ∗ v)i = H−1(ûv̂)

where ûv̂ denotes the component-wise product. We set (u∗v)N = 0 and define (u∗v)1
by linear interpolation

(u ∗ v)1 = 2(u ∗ v)2 − (u ∗ v)3.

We use a fast sine transform to compute the transform and inverse transform.

3. Results. Now that we have defined and discretized the continuation problem
(2.5), we are ready to solve it with the help of Trilinos.

In order to solve the problem in LOCA, we were required to write two major
components of C++ code. The first of the two is an interface between LOCA and
the problem itself. The primary purpose for this is to define options for the contin-
uation (LOCA), the nonlinear solver (NOX), and the linear solver (AztecOO, also a
package in Trilinos). Specific solver methods, convergence tolerances, and maximum
iterations are only a few examples of solver options that must be specified in this part
of the code. Here we used pseudo-arclength as the continuation strategy, Newton’s
method with line search as the nonlinear solver, and matrix-free GMRES to solve
for the Newton step. Once again, we allow temperature T and density ρ to be the
continuation parameters in our study. As seen in the figures to follow, LOCA holds
one parameter constant while continuing in the other. In general, the continuation
parameter switches if a bifurcation is detected.

The second necessary piece of code is the one that defines the problem. In general,
this is where the residual (1.2) is coded and queried by the solvers. For the problem
of interest, it is the place that implements the compact fixed point problem and
discretization from §2. Other methods can also be defined here such as a method to
print out the solution with each continuation step or a method that defines a Jacobian
matrix if the user wishes to supply one.
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After coding, compiling, and running with Trilinos, we obtained the following
plots. Figures 3.1(a) and 3.1(b) display continuation in ρ for two sample values of T
and Figures 3.2(a), 3.2(b) display continuation in T for two values of ρ. Recalling that
h and c are the unknowns for our problem, we plot the varying parameter against the
L2 norm of the solutions h and c. Additionally, we choose ε = .1, σ = 2.0, K = .002,
N = 65, and L = 9.0. Note that in Figures 3.1(a) and 3.1(b), Newton’s method
did not converge in the maximum number of iterations allotted around the values of
ρ = .35 and ρ = .4. Thus the data is not plotted, causing the sharpness in the curve
at these points.
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Fig. 3.1. Continuation in ρ

4. Future Work. The problem presented in this paper solves the OZ equations
(2.1) together with the HNC closure (2.4) as the values of T and ρ vary. As mentioned
in §1, HNC is not the only closure relation that can be considered. In particular, [2]
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presents an “interpolating” closure of the form

exp(−u(r)/(TKB))
(
−a+ (a+ 1)exp

(
h(r)− c(r)
a+ 1

))
− h(r)− 1 = 0, 0 ≤ r ≤ ∞.

Here, the value of a must be chosen to minimize excess chemical potential. While we
do not present the expression for chemical potential at this time, one can see that
within the continuation problem for the new closure resides an optimization problem
that selects the appropriate value for a. The next stage of this research is to implement
the new closure relation in LOCA and perform the same parameter study as done for
the HNC closure.

5. Conclusions. Solving the Ornstein-Zernike equations together with the HNC
closure relation gives probability distributions of atoms in fluid states under certain
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conditions. We have implemented a continuation study using LOCA to look at solu-
tion behavior as the temperature and density of the state change. In the future, we
wish to exchange the HNC closure for the closure presented in [2] for the continuation
study.
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STOKES FLOW WITH POLYMERIZATION

JOHN FETTIG∗ AND S. SCOTT COLLIS†

Abstract. The flow of a fluid undergoing a ring opening metathesis polymerization is of par-
ticular interest in the design of microvascular networks for self-healing materials. In order to guide
the experimentation and design process a finite element code has been developed to find and op-
timize a suitable set of parameters. The flow in the microscale is modeled using Stokes flow of
an incompressible fluid coupled to the convection and diffusion of the catalyst in the fluid. The
polymerization of monomer is approximated through a rise in the viscosity of the fluid, which is
accomplished through Lagrangian particle tracking in the finite element mesh. In this paper we
will discuss the implementation and verification of the computer code, as well as ongoing parameter
studies and parameter optimization which utilize the computer code DAKOTA . Phase plot diagrams
which identify the regimes in which healing occurs show that for certain parameter ranges no healing
occurs in the test setups, which indicates that careful tuning of the experimental setup is required
to achieve the goal of a microvascular self-healing material.

1. Introduction. The concept of a composite material that is capable of re-
sponding autonomically to damage was demonstrated in [9] with a polymer material
capable of recovering 75% toughness in response to a crack-initiated heal event. This
research in the field of polymeric composite systems, where materials are susceptible
to virtually undetectable damage mechanisms and where repair of damaged parts can
require both costly procedures and highly specialized technicians, is an important
step in making these systems both inexpensive to maintain and reliable in cyclic ther-
mal and mechanical stress loading environments. Thus the one-time healing system
holds great promise if it can lead to a material capable of repeated, or continuous,
self-healing.

The idea of embedding a microvascular system inside materials which is capable
of continuous delivery of a healing agent draws inspiration from examples in nature
such as the human circulatory system. A healing agent, in this case a monomer
such as dicyclopentadiene (DCPD), flows through microvascular channels which run
in network through the material which is embedded with a catalyst. The catalyst, in
this case Grubbs catalyst, catalyzes a ring-opening metathesis polymerization of the
monomer which produces a highly crosslinked polymer [6] [7]. The hydrodynamics
of such a polymerizing flow will play a vital role in the determination of how such a
system will respond to multiple damage events. The design of a self-limiting reaction
which both heals regions of damage while leaving intact a delivery system to heal
future damage is important in ensuring the longevity of such a system.

In this paper, we explore the design of this system through computer simulation.
First, we give a brief summary of the equations which govern this problem. A com-
puter code, muflow , which combines an Eulerian frame finite element solver with a
Lagrangian particle method is examined to verify the order of accuracy of the calcu-
lation. A parameter study utilizing the DAKOTA toolkit along with this computer
code is detailed in order to identify the flow regimes and constitutive models which
result in successful healing.

2. Governing Equations.

2.1. Stokes Flow. The flow of healing agent is governed by the incompressible
Stokes flow equations [5]. Here the viscosity term, ν = µ/ρ, is written in the general
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case where viscosity is not constant in space or time. We assume that the viscosity,
however, does not change drastically in the timestep taken by the overall solver, and
so we approximate the unsteady Stokes equations with the following steady equations

∇ · u = 0

−1
ρ
∇p+∇ · (ν∇u) = 0

In order to calculate viscosity, which is a Lagrangian quantity, we must integrate
a fluid particle over time in contact with a catalyst field, φ. We define a minimum
concentration φmin, below which polymerization does not occur, for example

µ(x(ξ), t) = F

(∫ t

0

max(φ(ξ, τ)− φmin, 0) dτ
)

F (t) = et .

The weak form of the Stokes flow equations is as follows:∫
Ω

∇v : (ν∇u) dΩ−
∫

Ω

1
ρ
p · ∇v dΩ =

∫
∂Ω

v ·
(
ν
∂u
∂n
− pn

)
dΓ∫

Ω

q∇ · u dΩ = 0

Where v and q are suitably chosen test-functions. In discrete form, this corresponds
to the following linear algebra problem:[

A BT

B 0

]{
u
p

}
=
{

f
g

}

Where A is the vector-Laplacian matrix and B is the divergence matrix [3]. The
vectors f and g are boundary condition terms.

2.2. Convection-Diffusion of Catalyst. The viscosity calculation depends
on the presence of catalyst in the healing agent. This catalyst concentration, φ, is
governed by the advection-diffusion equation [10]:

∂φ

∂t
= − (u · ∇)φ+∇ · (k∇φ)

Here, the diffusion constant is related to the viscosity through the Schmidt number,
which is the ratio of the diffusion of momentum to the diffusion of mass:

k =
1

Sc µ

The weak form is given by:∫
Ω

v
∂φ

∂t
dΩ = −

∫
Ω

v (u · ∇)φ dΩ +
∫

∂Ω

v(k∇φ) · n dΓ−
∫

Ω

∇v · (k∇φ) dΩ

In the discrete solution to this problem, time is advanced through finite-differencing.
In particular, we use a Crank-Nicolson method in combination with finite elements
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to produce the following linear algebra problem:

[M ]
{
φn+1 − φn

∆t

}
+ [K + C]

{
φn+1 + φn

2

}
=
{

f
}

where

[M ]ij =
∫

Ω

ψiψj

[K]ij =
∫

Ω

∇ψi · (k∇ψj)

[C]ij =
∫

Ω

ψi(u · ∇ψj)

{f}i =
∑

j∈∂Ω

φj

∫
Ω

ψi(k∇ψj) · n

2.3. Boundary Conditions. The boundary conditions on the convection-dif-
fusion equation must take into account the behavior of the system we are trying to
model. Namely, on the solid wall boundaries we should have no diffusion or convection,
and on the inflow and outflow we would like the catalyst to convect and diffuse away
to infinity. The first of these conditions is straightforward, since we enforce a no-slip
boundary condition on the Stokes flow and can additionally set the boundary integral
in the weak form of the convection-diffusion equation to zero.

To achieve the effect of the catalyst diffusing away to infinity at both the inflow
and the outflow, we choose to implement infinite elements [1] [4]. The infinite elements
allow us to set the boundary conditions on the diffusion at infinity, rather than at
the end of our finite domain. This reduces the amount of edge effect we incur by
truncating the domain modeled, and makes the model more physically accurate.

3. Verification.

3.1. Method of Manufactured Solutions. First, we define a solution for u,
p, µ, and φ. Through substitution into the governing equations for our problem, we
find source terms that correspond to this particular solution [8]:

∇ · u = Q1

∂u
∂t

+
1
ρ
∇p−∇ · (ν∇u) = Q2

∂φ

∂t
+ (u · ∇)φ−∇ · (k∇φ) = Q3

The relationship between µ and φ is chosen to simplify the coupling between the
Stokes flow equation and the convection-diffusion equation:

µ = f

(∫ t

0

φ(ξ(τ), τ) dτ
)

where

f(x) = x so that

φ(ξ(t), t) =
∂µ

∂t
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Table 3.1
Velocity convergence data on the rectangular geometry

Number of elements u-l2 norm ratio order v-l2 norm ratio order
56 1.28356e-03 2.85123e-03
224 8.68444e-05 14.78 3.89 1.90155e-04 14.99 3.91
896 5.64300e-06 15.39 3.94 1.22694e-05 15.50 3.95
3584 3.69152e-07 15.29 3.93 7.82259e-07 15.68 3.97

Table 3.2
Pressure convergence data on the rectangular geometry

Number of elements p-l2 norm ratio order
56 2.69353e-03
224 6.89240e-04 3.91 1.97
896 1.68112e-04 4.10 2.04
3584 4.14434e-05 4.06 2.02

where ξ(t) is the position of a fluid particle at time t. Thus, by specifying u, p, and
µ, we have fully specified the problem. We choose ρ = 1, and recall that k = 1/(Sc µ)

3.2. Stokes Solve. We begin by verifying the individual solvers (Stokes and
convection-diffusion) separately to verify their independent order-of-accuracy before
testing their combined behavior. For the Stokes solver, we choose the following solu-
tion:

u = sin(x+ y)
v = − sin(x+ y)

p = sin(x2 + y2)
µ = µo + µo sin(x+ y)

Two domains were investigated. The first domain chosen is −0.1 < x < .7, and
.3 < y < 1.0. This avoids any possible symmetry in the solution, which would
potentially hide a mistake in the solver. With a refinement ratio is 2, we find super-
convergent behavior in the velocity and optimally convergent behavior in the pressure
field. See Tables 3.1 and 3.2 for the velocity and pressure convergence data.

The second domain is depicted in Figure 3.1. It is a curved geometry, chosen
to reduce the super-convergent behavior in the velocity and test the solver on non-
regular meshes. The convergence results shown in Figure 3.3 and 3.4 still show
super-convergent behavior in the velocity, however the convergence has been reduced
from order 4 to 3.5.

4. Computational experiments. First, the code was run on a set of parame-
ters which produced greater than 80% healing on two different domains. The results
for this are shown in Figure 4.1. Shown are the initial catalyst concentrations, the
initial total velocities, the final catalyst concentrations, and the final viscosities.

Using the finite element code developed to simulate the microvascular fluid flow
problem, muflow , we explore the parameter space by driving it with the DAKOTA [2]
toolkit. The domain specified is a rectangular region. The parameters that are varied
by DAKOTA include the aspect ratio of the channel, the driving pressure, the Schmidt
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Table 3.3
Velocity convergence data on the curved geometry

Number of elements u-l2 norm ratio order v-l2 norm ratio order
117 2.93910e-04 5.53162e-04
468 4.00229e-05 7.34 2.88 8.34950e-05 6.63 2.73
1872 3.22303e-06 12.42 3.63 6.54367e-06 12.76 3.67
7488 2.70671e-07 11.91 3.57 5.53374e-07 11.83 3.56

Table 3.4
Pressure convergence data on the curved geometry

Number of elements p-l2 norm ratio order
117 8.00469e-04
468 4.38057e-04 1.83 0.87
1872 4.37066e-05 10.02 3.33
7488 7.34302e-06 5.95 2.57

number, and the constant in the model for the viscosity, F (t) = exp(ct). The initial
condition for the catalyst was chosen as:

φ(x, y, 0) = e−5(x−xc)
2
e−5(y−yc)

2

where xc, and yc indicate the location of maximum concentration.
Before the parameter study began, the Schmidt number was first tuned so that

with zero flow in a channel of width 2 and length 8, the channel would heal to 80%
with the maximum catalyst location at the center of the channel in both directions.
As a first attempt, we use a zero boundary condition on the inflow, which makes 100%
healing difficult.

The amount of the channel that is healed is determined using the formula

%healed =
1

µmaxA

∫
Ω

µ(x, y, t) dΩ

where µmax is the maximum viscosity allowed and A is the area of the channel.
The results are shown as phase plots for various values of c and Sc , with black

indicating that greater than 80% of the channel healed. Figure 4.2 shows a few other
values of c (=muexp) and Sc (=dparam). Figure 4.2(a) shows the initial study done
by varying the driving pressure and channel width using the values of c and Sc found
above. In this case, there is a “sweet spot” for which healing occurs. In the region of
small channels and low pressure, no healing occurs because too much catalyst diffuses
out of the inflow. In the region of large channels and high pressure, too much catalyst
is advected out of the channel.

Figure 4.2(b) depicts a set of parameters for which the “sweet spot” has been
pushed into a lower pressure region. Again there is a region below and above the
healed region for which no healing occurs. Figure 4.2(c) depicts a set of parameters
for which healing occurs down to zero pressure and small channels, but no healing
occurs in the region of high pressure and large channels. Finally, Figure 4.2(d) depicts
a region of parameter space where the entire set of pressures and channels heal.
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Fig. 3.1. The curved geometry used in verification studies, show with the u velocity contours.

5. Conclusions and Future Work. A finite element code which utilizes La-
grangian particle tracking has been developed to model the flow of healing agent in a
self-healing system. The code has been verified to be at least third order convergent in
velocity and second order convergent in the pressure solution coming from the Stokes
solver. It remains to be verified on the convection-diffusion, but should also be third
order accurate since the code is highly similar.

Using this code we have undergone parameter studies using DAKOTA, and have
demonstrated the potential to use the optimization routines in DAKOTA to guide
the design of the self-healing system. This combined experimentation and simulation
is on-going.
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(a) The initial catalyst concentration (b) The initial total velocity

(c) The final catalyst concentration (d) The final viscosity

(e) The initial catalyst concentration (f) The initial total velocity

(g) The final catalyst concentration (h) The final viscosity

Fig. 4.1. Two different domains with healing
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Fig. 4.2. Three characteristic phase diagrams
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IMPLEMENTATION OF A FINITE ELEMENT CODE
IN SOLVING A COUPLED PROBLEM IN MICROFLOWS

CHRISTOPHER HARDER∗ AND PAVEL BOCHEV†

Abstract. Herein presented is an accumulation of information relevant to a collaboration in-
volving Pavel Bochev and summer intern Christopher Harder. There were two major goals for the
work here

1. Begin to understand the theory behind electrokinetically induced micro- and nanoflows.
2. Begin an implementation of a solver (in Matlab) which would ultimately be used to provide

numerical simulations to UNM of electrophoretic motion of particles in nanochannels.
Concerning item number two, the first step was considered to be the implementation of a solver which
would produce results for a pared down set of equations that could be compared to an analytical
solution in the literature [9] [8]. Contained in this paper is the basic theory behind microflows and
the assumptions to pare down the full set of equations in order to obtain the problem considered
in [9]. Following this are the basics behind the implementation of the solver and results showing that
the solver is working for the equations under consideration.

1. Introduction. Microfluidic systems arise in many applications in areas rang-
ing from the medical field to denfense. One area of interest within the realm of
these types of flows is electrokinetic flows. These flows “are important for micro- and
nanoscale transport applications [3].” For one, since these flows are induced by the
presence of electric fields, no moving parts are required. The benefit of this is made
obvious when the difficulty of manufacturing and maintaining systems involving mi-
cropumps is considered [3]. Also, it is seen that electrokinetic flows have numerous
advatages over pressure driven flows. Because electrokinetic flows are “plug-like,”
there is a “reduced sample species dispersion as compared to the velocity gradients
associated with pressure-driven flows [2].”

Our main interest is in the numerical simulation of electrokinetic flows in cylin-
drical pores that contain a charged particle (approximated by a rigid sphere). These
pores are filled with an electrolyte fluid and an electric field is applied. Due to what
are termed the Electric Double Layers (EDL), fluid flow is induced.

There are two major pieces of the following paper. First, we briefly explore the
theoretical underpinnings which describe electrokinetic flows. The equations which
result are nonlinear and strongly coupled. It is the numerical solution of this system,
with the geometry described above, that is the ultimate goal of our project. However,
we would like to begin by tackling the problem at an easier level. Under what is
termed the thin EDL approximation, we may neglect certain of these equations and
solve a system involving the Laplace and Stokes equations. This system is coupled
only through the boundary conditions on the Stokes equations. Thus, the resulting
equations may be solved in series, taking the solution for the first and using it in a
boundary condition on the second. Finally, instead of jumping right in and finding a
solution with a sphere placed in the flow, we seek a solution to the system of equations
in the case that we are simply observing flow in a cylinder induced by the electric
field.

The second part of the paper deals with practical issues that arise when developing
a code from the “ground up.” Our implementation of a solver for the coupled Laplace-
Stokes system will employ Q2 and Q2/Q1 interpolations. We will discuss the method
we used to partition the cylinder into hexahedral cells. Further, we will touch on
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how we determined the location of the nodes on this mesh. Next is a discussion on
how to find the values and derivatives of trilinear and triquadratic basis functions on
the physical elements. Finally, we will discuss briefly the issues of quadrature and
assembly.

The code that we have written thus far is for the Laplace and Stokes equations. We
would like to ensure the reliability of our code for solving these equations. Therefore,
tests against known solutions for the cylinder are performed and given here.

This paper is meant as a survey of the issues related to the topics mentioned
above. As such, it is brief in all areas. In the cases where more detail on the theory is
desired, the reader is encouraged to look into the references provided. For the reader
who wants to move quickly through this paper and avoid details, see Sections 3 and
5.

2. Theoretical Background. We will begin by exploring the theory regarding
the description of microflows. We first need to understand the Electric Double Layers
(EDL). Next, a discussion of the governing equations in electrokinetic flows is offered.
We then will see how these equations can be simplified under certain assumptions to
yield a system which is more easily solved. Finally, we will summarize the statement
of a problem which Yariv and Brenner [9] found an analytic solution to.

2.1. The Electric Double Layer (EDL). When a surface comes into contact
with an electrolyte, it will typically acquire a surface charge [4]. Due to the presence
of the electric field induced by the static surface charge, ions of the opposite charge
are attracted to the surface and ions of the same charge are repelled.

For example, when silica is in contact with an aqueous solution, its
surface hydrolyzes to form silanol surface groups. These groups may
be positively charged as Si-OH+

2 , neutral as Si-OH, or negatively
charges as Si-O−, depending on the pH value of the electrolyte solu-
tion. [3]

This results in what is called the Electric Double Layer, which gives rise to elec-
trokinetic phenomena in the presence of an applied eletric field E. In many cases, the
length of the EDL is on the order of a few nanometers. As such, even in the case of
microflows, the EDL does not occupy a significant portion of the flow region.

We may conceptually decompose the EDL into two distinct regions. The first,
named the Stern layer, consists of those ions which have been “glued” to the wall
due to their electric attraction. The second is the Gouy-Chapman diffuse layer. In
this layer, the ions are capable of moving freely into the bulk fluid “and therefore are
available to impart work on the fluid [4].” The plane between the Stern layer and
Gouy-Chapman diffuse layer is called the shear plane. See Figure 2.1.

2.2. Governing Equations. At this point, we make the assumptions that the
fluid which we consider has constant viscosity and constant permittivity. We will take
the electric charge density ρe to be

ρe = F
∑

i

zici (2.1)

where F is Faraday’s constant [3], the sum being over the N species of ion present.
Each species i obeys a conservation law in the absence of chemical reactions [3]

∂ci
∂t

+∇ · (−Di∇ci + ci(u + µiE)) = 0 (2.2)
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Fig. 2.1. A schematic of the EDL and together with the electric potential ψ due to the ion
distribution.

where µi and Di are the electrophoretic mobility and the diffusion coefficient,
respectively, and u is the velocity of the fluid. Assuming an incompressible Newtonian
fluid with constant viscosity ν, we have the following Navier-Stokes equations which
govern the motion of the bulk fluid.

ρf

(
∂u
∂t

+ (u · ∇)u
)

= −∇p+ ν∇2u + f (2.3)

We take ρf to be the fluid density and f as the electrokinetic body force. Under the
assumptions of incompressibility and constant electric permittivity, we have [3]

f = ρeE.

Due to the distribution of ions in the Gouy-Chapman diffuse layer, there is a
net electric charge there. Taking ε as te electric permittivity, we can relate the local
electric potential ψ to the electric charge density by

∇2ψ = −ρe

ε
. (2.4)

The bulk fluid far from the walls has no net electric charge.
Let us now make the further assumtion, for the moment, that we are considering

the EDL for a flat plate. We then have the concentration of ion species i defined by
the Boltzmann distribution

ci = c∞,iexp
(
−zeψ
kT

)
(2.5)

where “c∞,i is the molar concentration of ion i in the bulk, z is the valance number of
the ion, φ is the local potential, T is the temperature, e is the charge of an electron and
k is Boltzmann’s constant [4].” If we further assume that the electrolyte is symmetric
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in that it has equal concentrations of monovalent ions, then on using Equations (2.5)
and (2.1) in Equation (2.4), we have the Poisson-Boltzmann equation

∇2ψ =
2Fzc∞

ε
sinh

(
zeψ

kT

)
(2.6)

where c∞ is the molar concentration of both ions in the bulk fluid [3] [4] [2].
Using a nondimensionalized form of the Poisson-Boltzmann equation, Karniadakis

et al. [3] show that the electrokinetic potential decays rapidly to zero across the EDL
from a maximum at the wall. See Figure 2.1.

2.3. Electroosmosis. We see that the flow in the Navier-Stokes equations (2.3)
is driven by a body force which is proportional to an electric field E. This external
electric field, which induces the flow, can be represented as [3]

E = −∇φ. (2.7)

Assuming constant electric conductivity and the laws of elastostatics, we have since
∇ ·E = 0. Therefore,

∇2φ = 0 (2.8)

Furthermore, if we assume the boundary is electrically insulating, then the boundary
condition

∇φ · n = 0 (2.9)

holds. Once this external electric field is determined, we have the full set of equations
to describe the electrokinetic flow.

2.4. Paring things down. In the case that we have “thin” EDL and the flow is
steady and at low Reynold’s numbers, we may make some assumptions which simplify
things tremendously. Under these assumptions, we neglect the electrokinetic forces
in the EDL. Taking these to be zero in the bulk fluid (since ρe ≈ 0, ie - the fluid is
neutral) and neglecting the gradients of velocity and time derivative in the Navier-
Stokes equations, we have that the governing equations for the fluid are the Stokes
equations. In this case, we have removed the body forces for driving the flow. As such,
the flow is driven by the electrokinetic effects using the “slip” boundary condition

u = µE (2.10)

µ being the electrophoretic mobility. Equation (2.10) is the Helmholtz-Smoluchowski
slip condition [3]. Furthermore, we do not have to solve the Poisson-Boltzmann equa-
tion [3]. The problem is therefore simplified tremendously, resulting in the case where
we have only to solve the following two equations

−∇2u +∇p = 0 (2.11)
∇ · u = 0, + boundary conditions

and

∇2φ = 0, + boundary conditions. (2.12)
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2.5. A problem statement from [8] [9]. In two papers [8] [9], Yariv and
Brenner consider problems governed by the Equations (2.11) and (2.12). The geome-
try of the problems consists of the same structures, although the specific setup differs
slightly between the two.

In [8], the authors consider the motion of an eccentrically positioned sphere mov-
ing in a cylindrical pore. The method of reflections is employed to obtain an open
form analytical solution in the case that the sphere was eccentrically positioned in
a cylinder of infinite length, yet still “far” from the cylinder wall. This represents a
generalization of the result obtained by Keh and Anderson [7], who considered the
case of a concentrically positioned sphere. In [9], the authors consider an eccentrically
positioned sphere in an infinitely long cylindrical pore, this time under the assumption
that the sphere fits closely with the cylinder.

The reader is referred to the papers for details regarding the calculations and for
more specific information. Here we will present the geometry used in [9]. We will
let the spherical particle have radius a and the cylinder have radius (1 + ε)a. The
cylinder will be filled with an electrolyte solution and a uniform electric field E∞
applied parallel to the cylinder walls. Denote byW and P the surfaces of the cylinder
and the sphere, respectively. Assume that they have uniform charge densities with
zeta potentials ζW and ζP . Further, let the vectors n̂W and n̂P be the unit normal
vectors to their respective surfaces. Under the assumption of thin EDL, we have the
following dimensionless forms of the relevant equations (see [9] for details). Owing
to the use of an infinitely long cylindrical pore, far-field conditions are used for the
“ends” of the cylinder.

To begin, the electric potential φ satisfies (see Equation (2.7))

∇2φ = 0 (2.13)

with boundary conditions (see Equation (2.9))

n̂W · ∇φ = 0 on W (2.14)
n̂P · ∇φ = 0 on P (2.15)

∇φ→ −ẑ as |z| → ∞. (2.16)

Equation (2.16) is the far-field condition and ẑ is a unit vector which points in the
same direction as the applied vector field.

We consider next the Stokes equations governing the bulk fluid. These are

−∇2u +∇p = 0 (2.17)
∇ · u = 0 (2.18)

with boundary conditions (see Equations (2.7) and (2.10))

u = γ∇φ on W (2.19)
u = ∇φ+ U + Ω× r on P (2.20)
u→ −γẑ as |z| → ∞ (2.21)

where we take U to be the linear velocity of the particle, Ω the angular velocity,
r a position vector relative to the center of the sphere, and γ = ζW

ζP
. The far-field

condition ensures the velocity approaches an electroosmotic “plug flow” profile.
As one can see from the equations, we may first find a solution for the electrostatic

potential φ. Using this, the electric field (E = ∇φ) may be determined, thereby
allowing us to solve the Stokes equations.
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3. The Current Project. Keeping in mind the ultimate goal of solving the
full set of equations describing the electrophoretic motion of a particle moving in a
cylinder, the decision was made to, as a first step, find the solution to easier problems.
As such, we chose as our starting point the problems presented in [8] and [9]. The
choice of these was guided by Professor Dimiter Petsev of the University of New
Mexico. The benefit of the choice of these problems is they provide the opportunity
to produce numerical results for a solver involving a fewer number of equations than
if the full set of equations was being considered. Furthermore, the coupling is much
simpler. These results may be then be weighed against the theoretical results in order
to test the performance of the solver. Once things are performing well at this level,
the full set of equations may then be considered.

We note that in the case that we seek a numerical solution to the problems defined
in [8] and [9], we must consider a cylinder which has finite length. As such, the far-
field conditions in Equations (2.13)-(2.21) must be replaced by conditions at the end
of the cylinders which we are considering. Also, the length of the cylinder as compared
to the radius should be “long” enough such that for comparisons in the middle of the
flow, we obtain results that are not largely affected by the effects of the inflow and
outflow boundary conditions. We will assume for the time being that the cylinder (of
length L) has one face in the xy-plane and the other in the plane z = L.

As an intermediate step, we wanted to consider the further simplification of the
above problem where the spherical particle is removed from the domain. In this case,
we are simply solving the following set of equations (note the replacement of the
far-field conditions).

For the electric potential φ,

∇2φ = 0 (3.1)

with boundary conditions

n̂W · ∇φ = 0 on W (3.2)
φ = −z on z = 0 or z = L. (3.3)

We consider next the Stokes equations governing the bulk fluid. These are

−∇2u +∇p = 0 (3.4)
∇ · u = 0 (3.5)

with boundary conditions

u = γ∇φ on W (3.6)
u = −γ∇φ on z = 0 or z = L. (3.7)

Testing of the code at this intermediate step will be carried out by comparing with
exact solutions for slightly modified equations. More on this will discussed in the
results section. After this section of code is running satisfactorily, the sphere will be
added back into the problem (with its associated boundary conditions included in the
equations). The goal for the inclusion of the sphere is to never have to remesh, but
rather have the sphere placed in the flow, “moving” against the fixed mesh in the
background.
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4. Implementation. With the theory of the problems fully introduced and the
problem which we will currently implement well-defined (Equations (3.1)-(3.7)), we
now turn to the various pieces necessary to implement a code for solving the stated
problem. The four main areas of interest here are the method used to generate a mesh,
locating nodes on the mesh for both trilinear and triquadratic basis functions, how
values of basis functions and their derivatives on a particular element were determined,
considerations involved in evaluating integrals and assembling the stiffness matrix, and
considerations involved in evaluating integrals and assembling the stiffness matrix.

Regarding the second point (and the first) listed above, the methods here are
not optimal in that they don’t produce a matrix of as narrow bandwidth as possible.
Here, the goal was to get a matrix which could be inverted to obtain a solution and
work on performance improvement at a later point. Qualitative descriptions of the
algorigthms for determining the mesh and nodes are given.

4.1. Meshing. Assume that we begin with a cylindrical domain of length l
and radius r. We would like to partition the domain into hexahedra and at the
end have two output files vertices.txt and elements.txt. These two files contain
the information relevant to a finite element program for locating vertices and their
relationships to one another. We will see more specific information about these shortly.

4.1.1. Cylinder geometry. The geometrical setup is pictured below in Figures
4.1(a) and 4.1(b). For our purposes, we will assume that the cylinder’s axis lies on

l

r

r

(a) The geometry of the
cylidner.

x

y

theta

r

(b) The geometry of a circular section
of the cylinder.

Fig. 4.1. Geometries of the cylindrical domain which we will consider.

the z-axis and the lower face of the cylinder lies in the xy-plane.
With the partitioning, we are not concerned at this moment about matching the

circular shape of the cylinder shaft, but rather with having vertices of straight-edged
hexahedra on the boundary being at a distance r from the axis of the cylinder. As
such, our goal at this time is to produce a mesh that recovers the circular shape when
taken with an infinite number of points at the boundary. In Figures 4.2(a) and 4.2(b)



C. Harder and P. Bochev 121

is an example of the type of mesh we have in mind.

(a) The partitioning of the
whole cylindrical domain.

120 120

120120

(b) The partitioning of the cylinder as
viewed from above.

Fig. 4.2. An example of the type of partition for the cylindrical domain which we hope to
reproduce.

There are five parameters we identify that allow us to define our mesh.
• r - The radius of the cylinder.
• l - The length of the cylinder.
• cpn - The number of vertices on the circular boundary. (Short for ‘circle

points number’).
• csn - The number of ‘slabs’ of elements extending in the radial direction when

looking at a face of the cylinder. (Short for ‘circle-slabs number’.)
• zpn - The number of ‘slabs’ of elements when looking at the cylinder with

the z-axis perpendicular to the line of sight. (Short for ‘z-slabs number’.)
For example, Figures 4.2(a) and 4.2(b) have cpn = 8, csn = 2, zsn = 11.

One thing to note about the mesh is that we have moved the vertices on edges
which do not intersect (shown as bold lines in Figure 4.2(b)) at the axis of the cylinder
so that all angles are 120 degrees. This is done so that if we increase cpn toward
infinity, we don’t get elements inside with angles which approach 180 degrees.

4.1.2. Preliminaries. To begin, we discuss the meaning of the contents of the
ASC-II elements.txt file. First, some definitions are in order. Imagine that you have
gone through and numbered each of the vertices exactly once in a mesh which you
have drawn. We’ll call these the global vertex numbers since they are members
of a global numbering system for the mesh. If we look at each cell individually,
we could number the vertices of this cell, going counterclockwise around one face,
then moving to the next and going counterclockwise once again (the starting place
being the same as for the first place, just horizontally displaced). We will call the
numbers which have been assigned in this way the local vertex numbers. Each
local numbering will have exactly the numbers 1 − 8 since we have partitioned into
hexahedra. The elements.txt file describes the cells according to the global vertex
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Fig. 4.3. Global numbers are assigned to the vertices. A representative element is shown to the
side.
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78

Fig. 4.4. An example of a cell with local numbers assigned.

number of the vertices which make it up. There are exactly as many rows as there are
cells, where each row contains exactly eight numbers. These eight numbers appear in
the order which corresponds to the local numbers for the element, where the entry
corresponds to the global vertex number. In Table 4.1 is an example corresponding
to the numbering shown in Figures 4.3 and 4.4.

...
...

...
...

6 14 15 7 23 31 32 24
...

...
...

...
Table 4.1

An example of the the representative cell in Figure 4.3 using the numbering as described above.

4.1.3. Algorithm. Here we see the method by which the mesh was determined
and the files vertices.txt and elements.txt were created. We first describe how
we determined the (x, y, z) coordinates of the vertices and how they are organized in
the vertices.txt file. Then we will describe how elements.txt was created.
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We will use an algorithm that assumes a global vertex numbering similar to that
shown in Figure 4.3 for arbitrary cpn, csn, and zsn. Namely, we start at the face
in the xy-plane, assigning the coordinates of the vertex in the center to the first row
of an array (say ‘vertices’), then working outwards, going counterclockwise, until all
vertices in the plane have been given coordinates (at their respective location in the
‘vertices’ array). Then we move up to the next level at which we must describe the
vertices. This process continues until we have assigned all vertices their coordinates.
The end result is an array with (x, y, z) coordinates in the rows, where the location
of the row indicates which global vertex we are looking at. The contents of this array
make up the values contained in the vertices.txt file.

The creation of the elements.txt file needs no input from the vertices.txt
file. We just need to make sure that the global vertex numbers are consistent with
eachother so that when we use the information later, we don’t end up using coordinates
that don’t have anything to do with a vertex we think we are looking at. That said,
we need only to examine the number scheme to determine if there is any pattern. To
this end, we may observe that there is, as may be readily verified. The exploitation
of this is self-evident in the code, so here we will only discuss the organization of the
code.

We must first decide how we will number the cells. In current implementation,
we begin with a cell having a face in the xy-plane and one of its vertices being the
center of that face. This will be cell 1. The next cell is the one immediately next to
it in the z-direction. This is continued until there are no more cells in the vertical
direction. We then return to the xy-plane and number a cell neighboring cell 1 and
work our way vertically.

4.2. Locating nodes. We turn now to the method by which global numbering
of the nodes (which relates to the type of interpolation we want to use) is performed.
The code needs this information to create basis functions and their derivatives in order
to evaluate integrals involving these. As indicated above, we have implemented both
8-node trilinear and 27-node triquadratic reference elements (see Figures 4.5(a) and
4.5(b)). A call is made to a function which determines where the nodes are located
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(a) A general 8-node element in the phys-
ical domain.
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(b) A general 27-node element in the phys-
ical domain.

Fig. 4.5. Example of elements which have 8 nodes or 27 nodes.

and what cells they belong to. Within the code, the data arrays IEN and nodes carry
this information. The structure of the data arrays created is similar to the structure
of information in the vertices.txt and elements.txt files. In fact, in the case of
trilinear basis functions the nodes and vertices are exactly the same and we take the
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same local numbering scheme. Therefore, the necessary information is exactly that
which is stored in the vertices.txt and elements.txt files. The case where we will
use triquadratic interpolation is not so easy.

A few definitions of some variables is in order here. We will take nvt to be the
total number of vertices in the mesh and nnd to be the total number of nodes. In the
case of triquadratic basis functions on the reference element, we will begin by taking
all vertices of the mesh as nodes, and then add nodes in the middle of edges, faces,
and hexahedra as necessary. The nvt vertices from the mesh are taken as the first
nvt nodes. Then we start in the xy-plane and work counterclockwise and outwards,
assigning numbers to the nodes that haven’t yet been accounted for. Once this is
done, we move up and repeat the process for the next interface of elements. Finally,
we start at the lowest elements and assign all nodes in the middle of the element
(by the z-axis) and then work our way up. All of the nnd nodes now have a global
number. We will take the local numbering scheme in this case to be as shown in
Figure 4.5(b). Note that the order of the nvt nodes that were assigned first has been
changed to reflect this different local numbering.

4.3. Elements. We now explore how to describe the functions on a physical ele-
ment by means of a reference element. The discussion here is general for all Lagrange
type interpolations in 3D in which we associate one degree of freedom with each node.
Here, we will also assume a general domain (for some arbitrary problem) which has
been partitioned into hexahedral elements. We shall let this partitioning be denoted
by T and the elements denoted by K.

To begin, we give a few definitions
• reference element - The element on the cube [−1, 1]3 on which we may

define trilinear, triquadratic, etc. basis functions and the location of nodes
necessary to define these functions. The coordinates in this domain will be
denoted ξ = (ξ1, ξ2, ξ3).
• physical element - An element that is defined on a cell which is a member

of the mesh of the domain on which we are solving an equation. (These are
the members K of the partition T .) In general we do not know the basis
functions. The coordinates in this domain will be denoted x = (x1, x2, x3).

In creating the stiffness matrix and load vector associated with a discretization,
it is often necessary to evaluate integrals on physical elements such as:∫

K

∇Na · ∇Nbdx or
∫

K

Nab · ∇Nbdx

However, as indicated in the definition, we do not in general know the basis functions
of a physical element. As such, we need to work out some relationships to the functions
on the reference element in order to evaluate integrals of the type shown above.

4.3.1. Reference element basis functions. Let the interpolation we use be
denoted by i. The number of nodes for this element is nndel = (i+ 1)3. As such, we
have nndel basis functions for a typical Lagrangian element. The nndel basis functions
for the reference element will be defined as the product of ith-order polynomials in each
of the coordinate directions. Let N̂a(ξ), a ∈ {1, . . . , nndel} be basis functions in the
reference element. Letting ξb be a node for the reference element, b ∈ {1, . . . , nndel},
we enforce the property N̂a(ξb) = δab.

4.3.2. Reference element to physical element mapping. We define a map-
ping which takes points in the reference element and maps them to points in the
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physical element. We will denote this mapping by F and its inverse by G. Since we
have physical elements defined on cells with straight edges, the mapping F may be
defined as [6]

F =
8∑

a=1

N̂a(ξ)xa (4.1)

where the N̂a are the eight trilinear basis functions defined on the reference element.
As was stated, we will take G to be the inverse of F . Therefore, the following

relations hold

(F ◦ G)(x) = x and (G ◦ F)(ξ) = ξ. (4.2)

In general, we don’t know the form of the inverse mapping G, but it turns out not to
be important. We simply need to know relationships involving it. These relationships
will be given below.

4.3.3. Properties of the mappings. To begin, we define the following Jaco-
bian matrices [1]

JF =


∂F1
∂ξ1

∂F1
∂ξ2

∂F1
∂ξ3

∂F2
∂ξ1

∂F2
∂ξ2

∂F2
∂ξ3

∂F3
∂ξ1

∂F3
∂ξ2

∂F3
∂ξ3

 and JG =

 ∂G1
∂x1

∂G1
∂x2

∂G1
∂x3

∂G2
∂x1

∂G2
∂x2

∂G2
∂x3

∂G3
∂x1

∂G3
∂x2

∂G3
∂x3

 .

If we denote the rows of JG by ∇Gj and the columns of JF by Vi and write their
determinants as |JF | and |JG |, it is possible to derive the following relationships [1]

∇Gi =
1
|JF |

(Vj × Vk) and Vi = |JF | (∇Gj ×∇Gk) . (4.3)

4.3.4. Evaluation of basis functions on physical elements. We may now
define how basis functions for physical elements and their derivatives are evaluated.
Let Na(x) be basis functions of the physical element. We will give values to the
physical basis functions via the following relationship

Na(x) = (N̂a ◦ G)(x). (4.4)

It follows from this that

∇Na(x) = ∇(N̂a ◦ G)(x). (4.5)

Next, consider that it is typical to deal with integrands involving functions such as
Na(x) or ∇Na(x). Since we don’t actually know the form of Na(x), we have to make
use of the relationships shown in Equations (4.4) and (4.5). For instance, because of
Equations (4.2) and (4.4)

(Na ◦ F)(ξ) = N̂a(ξ). (4.6)

Furthermore, we may write, using Equation (4.5)

∇Na(x) = ∇(N̂a ◦ G)(x) =
3∑

i=1

(N̂a,i ◦ G)(x)∇Gi(x). (4.7)
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We may therefore substitute (4.3) into (4.7) and use Equation (4.2) to write the
following useful equality which allows us to evaluate integrals involving functions of
the type ∇Na(x)

(∇Na ◦ F)(ξ) =
∑

(i,j,k)+

N̂a,i(ξ)(Vj(ξ)× Vk(ξ))
1
|JF |

(4.8)

where the sum over (i, j, k)+ is taken over cyclic permutations of i, j, k through the
numbers 1, 2, 3. For an explicit form of Equation (4.8), see [6].

4.4. Assembly. We now turn to a few aspects regarding the actual assembly of
the stiffness matrix and load vector. We will address numerical quadrature and the
use of data arrays to create the assembly of the matrices.

4.4.1. Numerical quadrature. In general, numerical quadrature rules have
the following form ∫

K

f(x)dx ≈
n∑

i=1

wif(xi) (4.9)

where the xi are called quadrature points and wi are called weights. It is well-
known that if function f meets certain criteria which depend on the way in which the
weights and quadrature points are chosen, then we may replace ≈ by = in Equation
(4.9). See [6] for a discussion of this.

Though for the type of polynomials which we will evaluate in the current code,
8-point Gaussian quadrature should be enough to evaluate them exactly, the presence
of 1

|JF | in the integrals which we evaluate seems to throw a wrench in the works
when trying to evaluate integrals with triquadratic basis functions. We suspect that
this is because the term 1

|JF | is not constant and not a polynomial. Whatever the
case, when attempting to use 8-point Gaussian quadrature, the stiffness matrices
which result are singular. When one switches to 27-point Gaussian quadrature, the
difficulty is alleviated and the stiffness matrix is invertible. We have been able to
track down a reference [5] which seems to shed some light on why this works. Though
we have not yet worked through it, there is a section which indicates that it should be
no surprise that the evaluation of an integral with triquadratic basis functions using
8-point quadrature yields a singular matrix. The document suggests the use of 27-
point quadrature in this case. It would be interesting to explore this a bit further and
determine if there is any other type of quadrature rule that is cheaper to implement,
yet produces invertible matrices.

4.4.2. Data arrays. The data arrays which we use in the assembly of the stiff-
ness matrix and load vector are those suggsted by Hughes. They are the IEN , ID,
and LM arrays. See [6] for detailed information on this.

5. Results. In order to test the code at the intermediate step previously indi-
cated, we must formulate problems with known solutions to which we can compare
our results. First, we will consider the problem involving the electrostatic potential.
Then we will consider a problem

6. Continued Work. The next stage of work will be to couple the Stokes equa-
tions with the Laplace equation in the case that the sphere is present. The plan is
to do this in a framework where no meshing relative to the sphere is done. In that
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sense, we hope to introduce the sphere on top of the mesh already implemented in
the work we have completed up to the present. From this point, we will be able
to make comparisons of our solution to the solution obtained in [9] via some values
computed from the solution. From here we hope to animate the motion of the sphere.
We still need to explore methods for including the sphere and enforcing the boundary
conditions it presents without remeshing around it.

In the stage following this, we would use our existing solvers together with solvers
for the equations we have negelected so far in order to solve the full set of equations
describing the electrokinetic flow. In this sense, we should at this point be able to
simulate the motion of the particle in a tube assumed to be on the order of nanoscales.
As a part of this stage, it will be important to investigate the validity of the continuum
models at the nanoscale.

7. Conclusions. In this paper, we have introduced the theory describing elec-
trokinetic flows. Employing some assumptions, we have seen how the system of equa-
tions can be simplified to a form that admits analytical solutions for certain geome-
tries. Our hope is to implement a code to produce numerical results that we would
be able to compare to one of these analytical solutions. Yariv and Brenner [8] [9]
have produced solutions for the case that the geometry is a sphere inside a cylinder.
As a first step toward a comparison with this result, we have developed a solver for
the coupled (through boundary conditions) Laplace-Stokes system in the case that
the sphere is not present. In order to test the Laplace and Stokes solvers we have
implemented in Matlab, we have shown comparisons to known results. Finally, we
have outlined what the next stages of work will consist of.
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EFFECTS OF INTERFACIAL INTERACTIONS ON ADHESION OF
NANOSCALE GOLD FILMS ON SILICON SUBSTRATES

M.S. KENNEDY∗ AND N.R. MOODY†

Abstract. The reliability of thin films used in nanostructured devices is dependent on the
interfacial fracture energies between the film and substrate. This interfacial energy imposes limita-
tions on stresses in the device since when the interfacial fracture energy is exceeded, delamination
occurs. This study examined the effects of chemistry changes that occurred during processing and
subsequent service on film adhesion. In particular, we examined the impact of changes in chemi-
cal bonding along an interface on the interfacial fracture energy. During this project, experimental
measurements of adhesion were coupled with analytical solutions to determine interfacial fracture
toughness of Au/SiO2. This film system was picked due to its utilization in Sandias MEMS devices,
such as MEMS mirrors, and also microelectronics systems.

1. Introduction. Many nanostructured materials are currently integrated into
devices utilized by Sandia and its consumers. These materials are also part of emerging
nanotechnologies with applications in medicine, security, and defense. These nanos-
tructured materials include metals, polymers and ceramics and are often fabricated
into thin film structures. Fracture properties are of high importance in small-scale
systems, and currently few experimental testing methods are available to measure
deformation and fracture phenomena in these systems. Some of the more recent
techniques being utilized include spontaneous blisters, stressed overlayers [2, 6–9, 15],
nanoindentation induced delamination [2], scratch testing [10,12,13,15] and four point
bending [1,3,4]. These methods induce delamination at the interface and from which
the adhesion energy or the crack growth rate can be determined. Idealized interfaces
have uniform dimension, chemistries, and depth, but are typically seen only after the
initial stages of fabrication. In devices where processing includes high temperatures
or large strains, the interfaces may undergo transformation due to diffusion. In addi-
tion, interfaces have been known to change during device service. The effects of these
changes in composition on the film functionality, mechanical response and adhesion,
are currently not known.

One film system that is currently employed in MEMS mirrors and nanoscale in-
terconnects is the Au/SiO2 system. Recent work on thin Au films (100-200 nm) has
shown that the interface of this system is not stable during processing and service.
When these films were deposited with higher thicknesses, this change in composi-
tion was not a significant concern because the diffusion rate limited the composition
changes to small regimes. For thinner films, the interactions lead to a complete film
composition change. This study looks at the property changes of the interfacial ad-
hesion and mechanical response of Au/SiO2 with both experimentation and finite
element modeling. The interface compositions were studied using SAM and the sur-
face topography, such as roughness, were measured using AFM. The films moduli
were then measured using nanoindentation and adhesion energies by stressed over-
layers and four point bending. In addition, a finite element based indentation model
was used to define film and substrate contributions on elastic and plastic properties.
By looking at as deposited, annealed, and changes with long service times, this study
aims to bring clarity to aging kinetics of this interface.

2. Background.

∗Washington State University
†Sandia National Laboratories
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2.1. Adhesion and Interfacial Fracture Energy. To understand the impor-
tance of interfacial fracture energy of a solid-solid interface, a working definition of
adhesion needs to be specified. Adhesion is the energy per unit area required to sep-
arate a film from its substrate along the dividing interface. This energy is delineated
into two parts: the true work of adhesion and the inelastic contributions that occur
during the separation process [5, 14].

The true work of adhesion, ΓA, is the thermodynamic work required to create
two new surfaces at the expense of the interface and is an intrinsic property of a given
system property that depends on the type of chemical bonding between the film and
substrate. ΓA is calculated from

ΓA = γf + γs − γfs (2.1)

where γf is the surface energy of the film, γs is the surface energy of the substrate and
γfs is interfacial energy of the two materials in contact. This true work of adhesion can
only be measured directly for liquid-solid interfaces where the contact angle between
the surface and substrate can be measured. The work of adhesion can be expressed
by Young-Dupr as

ΓA = γf (1 + cos Θ) (2.2)

where Θ is the angle between the film and substrate as shown in Figure 2.1.

Fig. 2.1. Contact angle measurement to determine the adhesion between a liquid film and solid
substrate. This angle can be used with the Young-Dupr equation to determine the adhesion energy.

In most practical cases of mechanical de-adhesion, there is additional inelastic
damage, including plasticity and micro-cracking occurring in the regions of the sub-
strate and film near the interface. This additional inelastic contribution is taken into
account as follows

ΓP = ΓA + Γinelastic (2.3)

where ΓP is the total fracture energy, ΓA is the true adhesion energy and Γinelastic

is the energy per unit area required for the inelastic deformation. Although it is
impossible to completely limit inelastic contributions, careful consideration of test
methods will approach the calculated true work of adhesion.

2.2. LEFM models and current experimental techniques. Recently de-
veloped quantitative methods are based on linear elastic fracture mechanics, LEFM.
These quantitative methods compare the applied strain energy release rate, G, and
the resistance to crack propagation (the interfacial fracture toughness, Γ). Delamina-
tion will only occur when the strain energy release rate is greater than the interfacial
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fracture toughness. Measurement of Γ is achieved by increasing the strain energy
release rate to or above a critical point where the crack starts to propagate. Then the
critical rate for fracture, G, is often assessed when the delaminating crack arrests.

The film delamination is modeled as a bimaterial crack and the adhesion energy
is calculated as the strain energy release per unit increase in delamination area. Me-
chanics based models [1, 11] made it possible to calculate the adhesion energy using
the buckled film morphologies after delamination. This method, however, depended
on the films being compressively stressed and needing only the energy stored within
the film to overcome the interfacial adhesion energy.

As previously stated, four quantitative techniques used to measure adhesion in-
clude stressed overlayers, indentation induced delamination, scratch testing and four
point bending. Of these four test techniques, our study has utilized two: stressed over-
layers and indentation induced delamination. A third method, four point bending, is
being developed. Below is a brief description of these techniques.

The measurement of spontaneous buckles to determine adhesion energy has been
summarized by Hutchinson and Suo [5]. This type of measurement is only applicable
when a compressive film has enough residual stress in order to over come the interfacial
fracture toughness. Various models have been proposed to determine the energy from
a variety of buckle shapes including Euler buckles (long, straight), telephone cord
(wavy), and circular blisters. In models for each of the morphologies, the process is
similar and so only the steps for an Euler buckle will be described here. The buckling
stress, the amount of stress needed to delaminate the film, must be less than or equal
to the residual stress of the film. The buckling stress of a straight sided blister, σb,
can be described by

σb =
π2E

12 (1− ν2)

(
h

b

)2

(2.4)

where h is the thickness of the film, b is the radius of the induced blister, E is the elastic
modulus of the film and ν is Poissons ratio for the film. Since film delamination has
already occurred, the driving stress, σd, is known to be greater than, and proportional
to, the buckling stress. This driving stress is estimated as

σd = σb

[
3
4

(
δ

h

)2

+ 1

]
(2.5)

where δ is the height of the film delamination and h is the thickness of the film. The
mixed mode interfacial fracture energy, Γ (Ψ), is

Γ (Ψ) =

(
1− ν2

)
h

2E
(σb − σd) (σb + 3σd) (2.6)

where all the constants are the same as described in equations (2.4) and (2.5). Con-
versions to mode I adhesion values are obtained by first calculating the phase angle
of loading. This loading angle is calculated by

Ψ = tan−1

(√
3ξ sinω + 4 cosω√
3ξ cosω − 4 sinω

)
(2.7)

where ω is 51.2◦ and

ξ =
[

1
c1

(
σb

σd
− 1
)]1/2

. (2.8)
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c1 is a constant dependant on Poissons ratio of the film and is given as

c1 = 0.2473 (1 + ν) + 0.2231
(
1− ν2

)
(2.9)

The mode I adhesion energy is simply a function of the mixed mode value, the phase
angle,

ΓI =
Γ (Ψ)[

1 + tan2 ((1− λ) Ψ)
] (2.10)

where λ is often assumed to be a constant, 0.3.
Films may fail under a variety of stresses ranging from all normal stresses to a

combination of shear and normal stresses to pure shear stresses. Each test technique
measures the adhesion energy corresponding to a different ratio of shear to normal
stresses and is described by the phase angle of loading or mode mixity, Ψ. This ratio
of stresses influences the magnitude of energy dissipation needed for fracture. When
failure occurs due to mode I, opening mode loading, the interfacial fracture toughness
is equal to the thermodynamic work of adhesion. Since the work of adhesion involves
only normal forces, adhesion values are often reported as both as a function of the
experimental mode mixity and mode I value. An estimate of the mode I value can be
made once the phase angle of loading is determined. The Ψ is a ratio of the mode II
and mode I stress intensity as shown by

Ψ = tan−1

(
KII

KI

)
(2.11)

where KII and KI are the stress intensity factors for mode II and mode I respectively.
The relationship between the phase angle and fracture energy is shown in figure 2.2.

Fig. 2.2. This shows the relationship between the mode mixity and the interfacial adhesion energy.

The simplest method to apply energy if the system has not delaminated is by the
use of stressed overlayers where an additional film with a uniform compressive stress
is applied to an underlying ductile layer to add energy. This method enables buckle
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morphologies to be used to determine the adhesion energy for films under a tensile
stress. Like spontaneous buckles, it is the ratio of the driving stress to the buckling
stress. The buckling stress of a multilayer film was first modeled by Kriese et al [8].
This group showed that stress for delamination, σb, was proportional to the moment
of Inertia, IT , by

σb =
µ2

ahb2

[
E

(1− ν2)

]
IT (2.12)

where h is the thickness of the film of interest and the overlayer film, b is the radius
of the induced blister, E is the elastic modulus of the film, ν is Poissons ratio for
the film, IT is the moment of inertia and a is a geometric constant. The geometric
constant drops out when evaluated with IT .

With indentation-induced delamination, a spherical-tipped conical indenter is
driven perpendicularly into the film to add mechanical energy. When modeling the
indentation events, the systems are simplified. It is assumed that the interfacial crack
is directly under the indenter tip. As the film is indented, there is radial expansion
of the film and the film is buckled either during or after the indentation test. The
total strain energy to create a blister has been modeled by assuming the fracture is
a clamped circular plate, where the indent is kept within the film. Like the stressed
overlayer method, the fracture energy, Γ (Ψ), takes into account the critical buckling
stress, σb, the driving stress, σd, and the indentation stress, σI . The indentation stress
can be calculated with the following equation:

σI =
VIE

2πhb2 (1− ν)
, (2.13)

where VI is the volume of the residual indentation. In the case of the conical indenter,
the volume can be estimated to be more similar to a semicircle than a cone. The
interfacial fracture energy, Γ (Ψ), is then given by

Γ (Ψ) =
hσ2

I

(
1− ν2

)
2E

+ (1− α)
h (1− ν)

E

{
σ2

d + (σI − σb)
2
}
, (2.14)

where

α = 1− 1
1 + 0.902 (1− ν)

. (2.15)

Another way of applying energy is through scratch testing; a method that applies
both lateral as well as the normal forces with indentation. The test consists of drawing
a stylus of an indenter with a known radius of curvature over a film or coating under
increasing vertical loads. Resultant scratches are then observed under an optical or
scanning electron microscope to measure fracture events corresponding to loading and
measure the area of delamination.

Another LEFM based test technique for interfacial adhesion energy is the four
point bend test. In this test, the interface of interest is bonded between two elastic
substrates. The sample is loaded as shown in Figure 2.3 to propagate the crack
along the weakest interface. Unlike spontaneous, stressed overlayer or indentation
induced delamination, the mode mixity of the loading is constant, 45◦. This is an
attractive technique since the loading mode mixity represents an almost equal amount
of shear to normal stresses. It also is not dependent on an unknown precrack length
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Fig. 2.3. Four point bend specimen with a crack length of 2c [4].

as observed in spontaneous buckling, indentation induced buckling or scratch testing.
During testing, the load is measured and the displacement rate is held constant. By
studying the plateau in load versus displacement, the critical strain energy release rate
can be determined. The initial load-displacement curve shows the composite loading
elastically, storing strain energy in the elastic substrates. At a critical load, the stain
energy release rate exceeds the crack resistance of the weakest interface and there is
a load plateau. A typical load-displacement graph is shown in Figure 2.4.

Fig. 2.4. A load displacement curve showing typical trends during a four point bend test [3].

The interface fracture energy is a function of the critical value of the applied
strain energy release rate (G) as follows:

G =
21
4

(
1− ν2

)
M2

Eb2h3
(2.16)
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where the bending moment M = Pl/2, P is the load, l is the spacing between the
inner and the outer loading lines, b is the beam width, h is the half thickness, and E
and ν are the elastic modulus and Poisson’s ratio of the bulk substrate respectively.

3. Results. The adhesion energy of the as deposited Au/SiO2 was determined
by both spontaneous and indentation induced delamination. A 250 nm compressive
W layer was deposited onto the 150 nm Au / 10 nm SiO2. Figures 3.1(a) and 3.1(b)
are of a spontaneous buckle and indentation induced buckle, respectively. These AFM

(a) Spontaneous blister (b) Indentation induced blister

Fig. 3.1. AFM images of a spontaneous blister, and an indentation induced blister in the
W/Au/SiO2 system.

images, and the profiles shown in Figure 3.2, showed that these blisters had no radial
cracking or pile-up. Calculations of the fracture energies were followed from work

Fig. 3.2. Indentation profiles of the spontaneous and indentation blisters shown in fig-
ures 3.1(a) and 3.1(b).

done by Kriese with one modification. The residual stresses in the films were not
measured but were considered equivalent to the calculated driving stress from the
spontaneous buckles [1]. The calculated interfacial adhesion energies, 0.10 J/m2 ±
0.03 for the spontaneous buckles and 0.09 J/m2 ± 0.05 for the indentation induced
blisters, were practically identical confirming that maintaining close approximations
of model limitations makes calculations more exact.
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To study aging, the Au films were placed into a furnace and heated at 100 and
300◦C for 1 hr. The mechanical properties of these films were then determined by
the continuous stiffness method, using a frequency of 45 Hz and amplitude of 2 nm.
Figures 3.3(a) and 3.3(b) show modulus and hardness as a function of depth for all
the aged samples. This data indicates that the properties do not significantly change

(a) Elastic modulus (b) Hardness

Fig. 3.3. Elastic modulus and hardness as functions of depth for as deposited and aged samples
of Au/SiO2.

during the aging process and the initial values can be used in all fracture toughness
calculations.

Au/SiO2 samples aged for 1 hr at 100◦C showed little visible change in film
morphology, figure 3.4. Auger scans of the interface, figure 3.5, also showed little

Fig. 3.4. An SEM image of the surface of the Au after accelerated aging. This sample was
heated in air at 100◦C for 1 hr.

diffusion of the layers. However, the interfacial fracture energies were significantly
larger than the as deposited, 1.2 J/m2 compared to .1 J/m2. Figures 3.6(a) and 3.6(b)
show the delamination buckles and some of the measured adhesion values.

Au/SiO2 samples aged for 1 hr at 300◦C showed a roughed surface, figure 3.7. The
measured RMS values went from 2nm for an as deposited film to 82 nm for an aged
film. Auger scans of the interface, Figure 3.8, also showed significant diffusion between
the substrate and corresponding film layers. These interfacial fracture energies were
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Fig. 3.5. An Auger scan of the Au interface after heat-treating at 100◦C for 1 hr.

(a) (b)

Fig. 3.6. These optical images are of the accelerated aging of the Au/SiO2 interface. This
interface was heated in air at 100◦C for 1 hr and then a compressive W layer was deposited on top.
The interfacial energies are shown next to their respective regions.

significantly larger than the as deposited and those films aged at 100◦C. Energies
emerging from these delamination buckles, figures 3.9(a) and 3.9(b), were as high as
9.9 J/m2.

In addition to measuring accelerated aging, we also measured the adhesion energy
of a 200 nm Au film on SiO2 that was originally deposited in 1998 by Alex Volinsky.
On this Au sample, we deposited 220 nm of compressive W. Spontaneous blisters
formed near the center of the sample, as shown in figure 3.10. From these delami-
nations, we measured the mode I interfacial fracture energy to range between 1.2-1.9
J/m2. This was higher than the originally adhesion energy, which was determined to
be .6 J/m2 in 1998.
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Fig. 3.7. A SEM image of the surface of the Au after accelerated aging. This sample was
heated in air at 300◦C for 1 hr. A rough silicide has formed on the surface.

Fig. 3.8. An Auger scan of the Au interface after heat-treating at 300◦C for 1 hr. This shows
that significant movement of the Au and Si and the complete alteration of the films chemistry and
interface boundary.

4. Conclusion. Systematic aging showed that limited diffusion increased the
adhesion energy of Au/SiO2 interfaces. That is, when diffusion of only Au and Si is
allowed along the interface, the interface will strengthen over time. The addition of
water or other contaminates along the interface will weaken the interface over time.
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THE IMMERSED FINITE ELEMENT METHOD FOR
INCOMPRESSIBLE FLOW COMPUTATIONS

A. M. KOPACZ∗, T. D. NGUYEN† , AND G. J. WAGNER‡

Abstract. The immersed finite element method (IFEM) is utilized to solve complex fluid and
deformable structure interaction problems. In IFEM, a Lagrangian solid mesh moves on top of a
background Eularian fluid mesh which spans over the entire domain. This technique evicts the need
of mesh update thus saving computation time. Both the fluid and the solid domains are modelled
with the finite element method. The continuity between the fluid and solid sub-domains are enforced
via the interpolation of the velocities and the distribution of forces employing the reproducing ker-
nel particle method (RKPM) delta function. The use of such kernel functions permits non-uniform
fluid spatial meshes with arbitrary geometries and boundary conditions. The goal of this work is to
implement the immersed finite element method within TAHOE’s infrastructure. Much of the effort
this summer has been put forth implementing the stabilized formulation of the Navier-Stokes equa-
tions solver. The stabilized formulations of our main focus is the streamline-upwind/Petrov-Galerkin
(SUPG) and the pressure-stabilizing/Petrov-Galerkin (PSPG) method. These formulations are ap-
plied to the nonlinear Navier-Stokes equations for incompressible flows. Currently, my collaborators
and I are verifying the correctness of the implemented fluid algorithm. Future work necessary to
fulfill the objective will also be discussed.

1. Immersed Finite Element Method.

1.1. Introduction. The Immersed Finite Element Method (IFEM) was devel-
oped to treat fluid-structure interaction problem more effectively and more efficiently.
The following formulation is taken from Zhang et al. [7].

1.2. Equations of Motion. In this section, we start by introducing the equa-
tions of motion for a continuum that contains both the fluid and solid. The governing
equations of both domains are then extracted from the equations of motion along
with a reproducing kernel particle method (RKPM) delta function for enforcing the
continuity between the fluid and solid sub-domains.

In a continuum, the inertial force of a particle is balanced with the derivative
of the Cauchy stress σij and the external force fext

i exerted on the continuum. In
Einstein notation we have:

ρ
dvi

dt
= σij,j + fext

i . (1.1)

If the solid density ρs is different from the fluid density ρf , we can divide the inertial
force into two components within the solid domain Ωs:

ρ
dvi

dt
=
{
ρf dvi

dt , x ∈ Ω/Ωs

ρf dvi

dt + (ρs − ρf )dvi

dt , x ∈ Ωs.
(1.2)

Moreover, the external force fext
i is illustrated as the gravitational force and since

the computational fluid domain is the entire domain Ω, we ignore the hydrostatic
pressure and obtain:

fext
i =

{
0, x ∈ Ω/Ωs,
(ρs − ρf )gi, x ∈ Ωs.

(1.3)

∗Northwestern University, a-kopacz@northwestern.edu
†Sandia National Laboratories, tdnguye@sandia.gov
‡Sandia National Laboratories, gjwagne@sandia.gov
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Furthermore, the derivative of the Cauchy stress can also be decomposed as:

σij,j =

{
σf

ij,j , x ∈ Ω/Ωs,

σf
ij,j + σs

ij,j − σ
f
ij,j , x ∈ Ωs.

(1.4)

Note in former equations, the fluid domain Ωf is represented as the entire domain Ω
minus the solid domain Ωs, namely, Ω/Ωs. The fluid-structure interaction force(FSI)
within the domain Ωs as fFSI,s

i :

fFSI,s
i = −(ρs − ρf )

dvi

dt
+ σs

ij,j − σ
f
ij,j + (ρs − ρf )gi, x ∈ Ωs. (1.5)

RKPM delta function is used to distribute the interaction force from the solid
domain onto the computational fluid domain. Hence, the governing equation for the
fluid can be derived by combining the fluid terms and the interaction force as:

ρf dvi

dt
= σf

ij,j + fFSI
i , x ∈ Ω. (1.6)

Since we consider the entire domain Ω to be incompressible, we only need to apply
the incompressibility constraint once in the entire domain Ω:

vi,i = 0, x ∈ Ω. (1.7)

The coupling of the fluid and solid velocity fields is also accomplished through the
RKPM delta function.

2. Fluid Dynamics.

2.1. Introduction. In this section, we discuss in detail the 3D finite element
fluid solver used in the IFEM formulation that has been implemented within TAHOE’s
infrastructure. The derivations include the strong form, namely, the Navier-Stokes
equations for the incompressible Newtonian fluid with constant density and viscosity,
the streamline-upwind/Petrov-Galerkin (SUPG) and the pressure-stabilizing/Petrov-
Galerkin (PSPG) weak form and the corresponding discretization. Furthermore, the
mixed integration scheme implemented in TAHOE is also detailed.

2.2. Navier-Stokes Strong Form. Consider an incompressible Newtonian
fluid satisfying Navier-Stokes equations. The conservation of mass and the conserva-
tion of momentum in the domain Ω bounded by Γ is given as:

vi,i = 0 (2.1)

ρf (v̇i + vjvi,j) = σf
ij,j + fFSI

i (2.2)

where v is the velocity, ρf is the density, σf
ij is the Cauchy stress tensor, and fFSI

i

denotes the fluid-structure interaction force. The Cauchy stress tensor is comprised
of a pressure and viscous term defined as:

σf
ij = −pδij + 2µτij (2.3)

where µ is the dynamic viscosity, p is the pressure, and the isotropic viscous term τij
is defined as:

τij =
1
2
(vi,j + vj,i) (2.4)
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The fluid boundary can be stipulated in the following manner:

vi = gi on Γgi
(2.5)

σf
ijnj = hi on Γhi

(2.6)

where both gi and hi are given functions describing the boundary. Γgi is the part
of the boundary at which the velocity is assumed to be specified and Γhi

is the
natural boundary associated with the conditions on the stress components. The fluid
boundary Γ is partitioned such that the Dirichlet Γgi

and Neumann Γhi
boundaries

are complementary subsets of Γ, they span the entire domain but do not intersect:

Γgi

⋃
Γhi

= Γ (2.7)

Γgi

⋂
Γhi

= 0 (2.8)

2.3. Petrov-Galerkin Weak Form. The first step in the development of the
weak form, consists of taking the product of the test functions δvi and δp with the
Navier-Stokes equations and integrating over the domain Ω [2]. This approach will
lead to potential numerical instabilities associated with the standard Galerkin formu-
lation of the problem. These numerical instability are also apparent in other standard
discretization techniques such as finite difference and finite volume methods [3]. Such
numerical oscillations in the velocity field are due to the presence of the advection
term which become more apparent for advection-dominated flows, i.e. high Reynolds
number, and flows with sharp layers in the solution. The other possible source of
instability occurs when an inappropriate combination of interpolation functions is
used for the velocity and pressure fields leading to oscillations mostly in the pressure
field [4].

To reduce or eliminate the numerical oscillations in both the velocity and pressure
fields at the boundaries. we employ the SUPG stabilization method on the velocity
field and the PSPG method on the pressure field. The algorithm follows the stabilized
equal-order finite element formulation developed in Ref. [3, 4].

The stabilization is achieved by adding two extra terms to the standard Galerkin
formulation of the problem. The first term is the SUPG, which prevents oscillations
caused by the advection term without introducing excessive numerical dissipation.
The second term is the PSPG, which dampens oscillations in the pressure field, re-
sulting in a more accurate numerical result.

Within the framework of SUPG, the modified test functions δṽi and δp̃ are em-
ployed along with the stabilization parameters τm and τ c:

δṽi =

Galerkin︷︸︸︷
δvi +

discontinuous︷ ︸︸ ︷
τmvkδvi,k + τ cδp,i (2.9)

δp̃ = δp︸︷︷︸
Galerkin

+ τ cδvi,i︸ ︷︷ ︸
discontinuous

(2.10)

The selection of these stabilization parameters τm and τ c has attracted a signifi-
cant amount of attention and research [5, 6]. These parameters involve a measure of
the local length scale, also referred to as the element length, and other parameters
such as the local Reynolds and Courant numbers. Following the work of Tezduyar et.
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al [5], the stabilization parameters are defined as:

τ = τm = τ c (2.11)

τ =

[(
2

∆t

)2

+
(

2‖vi‖
h

)2

+
(

4ν
h2

)2
]− 1

2

(2.12)

where ν is the kinematic viscosity and h is the element length given as:

h = 2‖vi‖

(
nen∑
A=1

|viNA,i|

)−1

(2.13)

For the fluid domain, the weak form of the momentum equation is obtained by
multiplying the velocity test function δṽi and integrating over Ω:

0 =
∫

Ω

δṽi

[
ρf (v̇i + vjvi,j)− σf

ij,j − f
FSI
i

]
dΩ (2.14)

Likewise, the weak form of the continuity equation is obtained by multiplying the
pressure test function δp̃ and integrating over Ω:

0 =
∫

Ω

δp̃vi,idΩ (2.15)

Following with a simple substitution:

0 =
∫

Ω

(δp+ τ cδvi,i) vj,jdΩ (2.16)

0 =
∫

Ω

(δvi + τmvkδvi,k + τ cδp,i)
[
ρf (v̇i + vjvi,j)− σf

ij,j − f
FSI
i

]
dΩ (2.17)

Rewriting the momentum equation:

0 =
∫

Ω

(δvi + τmvkδvi,k + τ cδp,i)
[
ρf (v̇i + vjvi,j)− fFSI

i

]
dΩ

−
∫

Ω

δviσ
f
ij,jdΩ−

∫
Ωe

(τmvkδvi,k + τ cδp,i)σ
f
ij,jdΩ

e (2.18)

Employing integration by parts, we obtain:∫
Ω

δviσ
f
ij,jdΩ =

∫
Ω

(
δviσ

f
ij

)
,j
dΩ−

∫
Ω

δvi,jσ
f
ijdΩ (2.19)

Employing divergence theorem, we obtain:∫
Ω

(
δviσ

f
ij

)
,j
dΩ =

∫
Γhi

δvihidΓhi
+
∫

Γgi

δviσ
f
ijnjdΓgi

(2.20)

The weak form of the momentum equation is then written as:

0 =
∫

Ω

(δvi + τmvkδvi,k + τ cδp,i)
[
ρf (v̇i + vjvi,j)− fFSI

i

]
dΩ

+
∫

Ω

δvi,jσ
f
ijdΩ−

∫
Γhi

δvihidΓhi −
∫

Γgi

δviσ
f
ijnjdΓgi

−
∫

Ωe

(τmvkδvi,k + τ cδp,i)σ
f
ij,jdΩ

e (2.21)
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The final weak form that is computed is the combination of the momentum and the
continuity equation, which yields:

0 =
∫

Ω

(δvi + τmvkδvi,k + τ cδp,i)
[
ρf (v̇i + vjvi,j)− fFSI

i

]
dΩ

+
∫

Ω

δvi,jσ
f
ijdΩ−

∫
Γhi

δvihidΓhi
−
∫

Γgi

δviσ
f
ijnjdΓgi

−
∫

Ωe

(τmvkδvi,k + τ cδp,i)σ
f
ij,jdΩ

e +
∫

Ω

(δp+ τ cδvi,i) vj,jdΩ (2.22)

2.4. Finite Element Discretization. The discretization process using finite
elements follows the procedures in Ref. [1]. The velocity and pressure test functions,
δvi and δp, are interpolated in the following manner:

δvh
i =

∑
A

NAciA (2.23)

δph =
∑
A

NAqA (2.24)

The following is then obtained:

0 =
∑
A

∫
Ω

NAciA

[
ρf (v̇h

i + vh
j v

h
i,j)− f

FSI,h
i

]
dΩ

+
∑
A

∫
Ω

τmvh
kNA,kciA

[
ρf (v̇h

i + vh
j v

h
i,j)− f

FSI,h
i

]
dΩ

+
∑
A

∫
Ω

τ cNA,iqA

[
ρf (v̇h

i + vh
j v

h
i,j)− f

FSI,h
i

]
dΩ

+
∑
A

∫
Ω

NA,jciAσ
f,h
ij dΩ−

∑
A

∫
Γhi

NAciAh
h
i dΓhi

−
∑
A

∫
Γgi

NAciAσ
f,h
ij nh

i dΓgi −
∑
A

∫
Ωe

τmvh
kNA,kciAσ

f,h
ij,jdΩ

e

−
∑
A

∫
Ωe

τ cNA,iqAσ
f,h
ij,jdΩ

e +
∑
A

∫
Ω

NAqAv
h
j,jdΩ

+
∑
A

∫
Ω

τ cNA,iciAv
h
j,jdΩ (2.25)

Let σf
ij,j be approximated by:

σf
ij,j = −p,jδij (2.26)

Combining test functions ciA and qA, we have four sets of equations with respect to
four unknowns at each node A:

cTiAr
v
iA = 0 (2.27)

qT
Ar

p
A = 0 (2.28)
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where the residual vectors are defined as:

rv
iA =

∫
Ω

NAρ
f v̇h

i dΩ +
∫

Ω

NAρ
fvh

j v
h
i,jdΩ−

∫
Ω

NAf
FSI,h
i dΩ

+
∫

Ω

τmvh
kNA,kρ

f v̇h
i dΩ +

∫
Ω

τmvh
kNA,kρ

fvh
j v

h
i,jdΩ−

∫
Ω

τmvh
kNA,kf

FSI,h
i dΩ

+
∫

Ω

NA,jσ
f,h
ij dΩ−

∫
Γhi

NAh
h
i dΓhi

−
∫

Γgi

NAσ
f,h
ij nh

i dΓgi

+
∫

Ωe

τmvh
kNA,kp

h
,idΩ

e +
∫

Ω

τ cNA,iv
h
j,jdΩ (2.29)

rp
A =

∫
Ω

τ cNA,iρ
f v̇h

i dΩ +
∫

Ω

τ cNA,iρ
fvh

j v
h
i,jdΩ−

∫
Ω

τ cNA,if
FSI,h
i dΩ

+
∫

Ωe

τ cNA,ip
h
,idΩ

e +
∫

Ω

NAv
h
j,jdΩ (2.30)

The following equation is to be solved:[
rv,v
iA rv,p

iA

rp,v
A rp,p

A

]
︸ ︷︷ ︸

LSH

{
δvi

δp

}
= −

[
rv
iA

rp
A

]
︸ ︷︷ ︸

RHS

(2.31)

Now let us descritize and define LHS as:

LHS = miAjB

{
∆ḋjB

∆q̇B

}
+ kiAjB

{
∆djB

∆qB

}
(2.32)

where i, j = 1, 2, 3. The mass matrix miAjB and the stiffness matrix kiAjB are defined
as:

rv,v
iA =

∫
Ω

NAρ
f
∑
B

NB ḋiBdΩ +
∫

Ω

τmvh
kNA,kρ

f
∑
B

NB ḋiBdΩ (2.33)

rv,p
iA = 0 (2.34)

∆rv,v
iA =

∫
Ω

NAρ
f
∑
B

NB∆ḋiBdΩ +
∫

Ω

τmvh
kNA,kρ

f
∑
B

NB∆ḋiBdΩ

=
∑
jB

∫
Ω

ρfNANBδij + ρfτmvh
kNA,kNBδijdΩ︸ ︷︷ ︸

miAjB

∆ḋjB (2.35)

rp,v
A =

∫
Ω

τ cNA,iρ
f
∑
B

NB ḋiBdΩ =
∫

Ω

τ cNA,lρ
f
∑
B

NB ḋlBdΩ (2.36)

rp,p
A = 0 (2.37)

∆rp,v
A =

∫
Ω

τ cNA,lρ
f
∑
B

NB∆ḋlBdΩ

=
∑
jB

∫
Ω

ρfτ cNA,lNBδjldΩ︸ ︷︷ ︸
m4AjB

∆ḋjB (2.38)
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rv,v
iA =

∫
Ω

NAρ
f
∑
B

NBdjBv
h
i,jdΩ +

∫
Ω

NAρ
fvh

j

∑
B

NB,jdiBdΩ

+
∫

Ω

τmvh
kNA,kρ

f
∑
B

NBdjBv
h
i,jdΩ +

∫
Ω

τmvh
kNA,kρ

fvh
j

∑
B

NB,jdiBdΩ

+
∫

Ω

NA,jµ
∑
B

(NB,jdiB +NB,idjB) dΩ +
∫

Ω

τ cNA,i

∑
B

NB,jdjBdΩ (2.39)

rv,p
iA = −

∫
Ω

NA,i

∑
B

NBqBdΩ +
∫

Ω

τmvh
kNA,k

∑
B

NB,iqBdΩ (2.40)

∆rv,v
iA =

∫
Ω

NAρ
f
∑
B

NB∆djBv
h
i,jdΩ +

∫
Ω

NAρ
fvh

j

∑
B

NB,j∆diBdΩ

+
∫

Ω

τmvh
kNA,kρ

f
∑
B

NB∆djBv
h
i,jdΩ +

∫
Ω

τmvh
kNA,kρ

fvh
j

∑
B

NB,j∆diBdΩ

+
∫

Ω

NA,jµ
∑
B

(NB,j∆diB +NB,idjB) dΩ +
∫

Ω

τ cNA,i

∑
B

NB,j∆djBdΩ

=
∑
jB

∫
Ω

NAρ
fNBv

h
i,j +NAρ

fvh
l NB,lδijdΩ︸ ︷︷ ︸

kiAjB

∆djB

+
∑
jB

∫
Ω

τmvh
kNA,kρ

fNBv
h
i,j + τmvh

kNA,kρ
fvh

l NB,lδijdΩ︸ ︷︷ ︸
kiAjB

∆djB

+
∑
jB

∫
Ω

NA,lµNB,lδij +NA,jµNB,i + τ cNA,iNB,jdΩ︸ ︷︷ ︸
kiAjB

∆djB (2.41)

∆rv,p
iA = −

∫
Ω

NA,i

∑
B

NB∆qBdΩ +
∫

Ω

τmvh
kNA,k

∑
B

NB,i∆qBdΩ

=
∑
jB

∫
Ω

−NA,iNB + τmvh
kNA,kNB,idΩ︸ ︷︷ ︸

kiA4B

∆qB (2.42)

rp,v
A =

∫
Ω

τ cNA,iρ
f
∑
B

NBdjBv
h
i,jdΩ +

∫
Ω

τ cNA,iρ
fvh

j

∑
B

NB,jdiBdΩ (2.43)

+
∫

Ω

NA

∑
B

NB,jdjBdΩ

rp,p
A =

∫
Ω

τ cNA,i

∑
B

NB,iqBdΩ (2.44)
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∆rp,v
A =

∫
Ω

τ cNA,iρ
f
∑
B

NB∆djBv
h
i,jdΩ +

∫
Ω

τ cNA,iρ
fvh

j

∑
B

NB,j∆diBdΩ

+
∫

Ω

NA

∑
B

NB,j∆djBdΩ

=
∑
jB

∫
Ω

τ cNA,iρ
fNBv

h
i,j + τ cNA,jρ

fvh
l NB,l +NANB,jdΩ︸ ︷︷ ︸

k4AjB

∆djB (2.45)

∆rp,p
A =

∫
Ω

τ cNA,i

∑
B

NB,i∆qBdΩ

=
∑
jB

∫
Ω

τ cNA,iNB,idΩ︸ ︷︷ ︸
k4A4B

∆qB (2.46)

2.5. Mixed Integrator Scheme. In this section the mixed integration scheme
implemented in TAHOE will be examined. Consider the following non-linear Navier
Stokes equations in matrix form:[

Mvv Mvp

Mpv εMpp

]{
V̇n+1

Ṗn+1

}
+
{
Nv(Vn+1, Pn+1)
Np(Vn+1, Pn+1)

}
=
{

Fn+1

Gn+1

}
(2.47)

The mixed integration encompasses the trapezoidal rule, also referred to as the
Crank-Nicolson method, on the fluid velocity and backward Euler on the pressure [8].
These computational algorithms are well-known members of the trapezoidal family [2].
The mixed integration can be explicitly written as:

Vn+1 = Vn + ∆tV̇n+ 1
2

(2.48)

Pn+1 = Pn + ∆tṖn+1 (2.49)

The predictor can be defined as:

Ṽn+1 = Vn +
1
2
∆tV̇n (2.50)

P̃n+1 = Pn (2.51)

Starting with the first iteration, initialize:

i = 0 (2.52)

V̇
(i)
n+1 = 0 (2.53)

Ṗ
(i)
n+1 = 0 (2.54)

V
(i)
n+1 = Ṽn+1 (2.55)

P
(i)
n+1 = P̃n+1 = Pn (2.56)

Following the implementation of the V-from, given by Hughes [2], the following equa-
tions are solved:

[M?]
{

∆V̇
∆Ṗ

}
=

{
R

(i)
v,n+1

R
(i)
p,n+1

}
(2.57)
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where:{
R

(i)
v,n+1

R
(i)
p,n+1

}
=
{

Fn+1

Gn+1

}
−

{
Nv(V (i)

n+1, P
(i)
n+1)

Np(V
(i)
n+1, P

(i)
n+1)

}
−
[
M 0
0 0

]{
V̇

(i)
n+1

Ṗ
(i)
n+1

}
(2.58)

The corrector can be defined as:

V̇
(i+1)
n+1 = V̇

(i)
n+1 + ∆V̇ (2.59)

V
(i+1)
n+1 = Ṽn+1 +

1
2
∆tV̇ (i+1)

n+1 (2.60)

= V
(i)
n+1 +

1
2
∆t∆V̇ (2.61)

Ṗ
(i+1)
n+1 = Ṗ

(i)
n+1 + ∆Ṗ (2.62)

P
(i+1)
n+1 = P̃n+1 + ∆tṖ (i+1)

n+1 (2.63)

= P
(i)
n+1 + ∆t∆Ṗ (2.64)

To find M?, the original equation is linearized:[
Mvv Mvp

Mpv εMpp

]{
V̇

(i+1)
n+1

Ṗ
(i+1)
n+1

}
+

{
Nv(V (i+1)

n+1 , P
(i+1)
n+1 )

Np(V
(i+1)
n+1 , P

(i+1)
n+1 )

}
=
{

Fn+1

Gn+1

}
(2.65)

After substituting the corrector:[
Mvv Mvp

Mpv εMpp

]{
V̇

(i)
n+1 + ∆V̇
Ṗ

(i)
n+1 + ∆Ṗ

}

+

{
Nv(V (i)

n+1 + 1
2∆t∆V̇ , P (i)

n+1 + ∆t∆Ṗ )
Np(V

(i)
n+1 + 1

2∆t∆V̇ , P (i)
n+1 + ∆t∆Ṗ )

}
=
{

Fn+1

Gn+1

} (2.66)

The linearized equation to be solve is now in its final form:[
Mvv + 1

2∆tKvv Mvp + ∆tKvp

Mpv + 1
2∆Kpv εMpp + ∆tKpp

]
︸ ︷︷ ︸

M?

{
∆V̇
∆Ṗ

}
=

{
R

(i)
v,n+1

R
(i)
p,n+1

}
(2.67)

2.6. TAHOE Results. To test the stabilized formulation and finite element
method implementation of the Navier-Stokes equations using the mixed integrator in
TAHOE, a sample problem has been devised. Consider a pipe with a length of 10m
with a square cross-section of length 1m on the side, depicted in Fig.??. The following
initial conditions have been prescribed for all nodes:

vx = 1
m

s

vy = 0
m

s

vz = 0
m

s

In terms of the boundary conditions, constant velocity vx = 1m
s has been pre-

scribed at the inlet and a constant pressure p = 0Pa at the outlet. There is also a no
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Fig. 2.1. Sample 3D problem: square pipe.

Fig. 2.2. Expected Poiseuille flow.

slip and no penetration boundary condition prescribed at the walls of the pipe. The
Reynolds number associated with the depicted problem is roughly 22.63, indicating a
laminar flow.

Prior to analyzing the results, we expect a Poiseuille flow to develop over time,
roughly a diameter length into the pipe, as shown in Fig. 2.2.

A sample problem was ran in TAHOE on one processor employing the SPOOLES
matrix. Looking at time step t = 0 in Fig. 2.3, on the bottom we can see the velocity
field at the cross-section of the pipe. The first graph, on the left, depicts a velocity
field at the cross-section perpendicular to the length of the pipe. The next two graphs
depict the velocity and pressure field at the cross-section parallel to the length of the
pipe, respectively. Examining this figure, we can easily see a uniform velocity inside
the pipe and zero velocity at the walls.

Fig. 2.3. Sample 3D problem: result at time step t=0.

Examining the results at the next time steps, Fig. 2.4 and Fig. 2.5, we can clearly
see that over time a Poiseuille flow is being developed. Furthermore, looking at the
the velocity field at the cross-section of the pipe we can also see the Poiseuille flow
being developed roughly one diameter length into the pipe, as expected. We can also
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see that the velocity field in the center of the pipe increases until it reaches a constant
value and we have a linear pressure drop across the pipe. One can also notice some
oscillation in both the velocity and pressure fields. These oscillations can be further
dampened with a small adjustment of the stabilization parameters.

Fig. 2.4. Sample 3D problem: result at time step t=n.

Fig. 2.5. Sample 3D problem: result at time step t=n+1.

3. Solid Dynamics.

3.1. Introduction. In this section, we discuss in detail the 3D finite element
solid solver used in the IFEM formulation that has been already implemented within
TAHOE’s infrastructure. TAHOE encompassed many solid solvers, which can be
linked with the fluid solver via the RKPM delta functions.

4. Conclusions. During the 10-week program, most of the effort has been de-
voted to implement a fluid solver within TAHOE’s infrastructure. In particular, the
stabilized formulation of the nonlinear Navier-Stokes equations for incompressible
flows using the SUPG and the PSPG method has been implemented. Currently, my
collaborators and I are verifying the implemented fluid algorithm on parallel machines.
The future goal of this project will be to implement a multi-manger within TAHOE
for both solid and fluid sub-domains. Furthermore, RKPM delta functions must be
incorporated to enforce continuity via the interpolation of force and velocity. This
method has been borrowed from meshfree methods, of which some are already imple-
mented in TAHOE. The next step will be to further expand IFEM to the immersed
electrokinetic finite element method (IEFEM). The method couples the electric field
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with hydrodynamics to study the motion and deformation of flexible objects immersed
in a fluid under an applied electric field. This methodology will allow the modelling
assemblies of flexible, arbitrarily shaped nano/bio materials in fluid environments
with complex electrode geometries, under an electric field.
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DIFFUSIVE TRANSPORT OF FLUORESCEIN IN A NANOFLUIDIC
DEVICE

S. RHIEU∗, D. HUBER† , AND S. PENNATHUR‡

Abstract. This paper describes a method to estimate the zeta potential of nanofluidic T-
shaped channels fabricated in quartz substrates with a nominal depth of 800 nm and width of
10 µm. First, simulations are preformed to predict the diffusion of fluorescein (FL) molecules in
nanofluidic T-channels with electro-osmotically driven flow. Then, we calculated the Peclet number
of fluorescein in nanofluidic channels by comparing simulations with experimental images of the
resulting concentration profile. From the Peclet number, we estimate the zeta potential of the quartz
nanofluidic T-shaped channels to be -72 mV.

1. Introduction. In the past decade, microfluidic systems have been extensively
investigated. Such systems manipulate volumes of fluid on the order of nanoliters or
even picoliters. Recently, there has been a growing interest in reducing the scale to
nanometer dimensions. As the channels dimensions of the device become smaller, the
behavior of the liquid in such nanometer-sized channels changes as compared to larger,
micron-sized channels [1–3]. In particular, the electrical double layer (EDL), defined
as an interfacial region between a charged surface and electrolytic medium, plays an
important role in nanoscale systems [4]. As a result, there have been many recent
investigations on a new range of phenomena dealing with the role of the electrical
double layer in affecting fluid motion. In this paper we present continuum-based
numerical simulations and experimental studies of the diffusive transport of fluorescein
in a nanofluidic device. By comparing the experimental results against a series of
simulations, we estimate the zeta potential within the channel.

2. Theory.

2.1. Governing Equations. In this section, we summarize the governing equa-
tions for transport of liquids in nanofludic channel. First, we begin with classical
equations describing electrokinetic flows. The continuity equation and conservation
of momentum equation that describe the flow in a nanofluidic channel can be used to
solve for the velocity term, u. These corresponding continuum equations are

∇ · u = 0 , ρ
∂u

∂t
− η∇2u+∇P = f (2.1)

∇2Φ = 0 , ∇2ψ = − ρe

εεo
(2.2)

where u is the velocity of the liquid, ρe is the charge density, η is the viscosity, ε is the
permittivity, and p is the pressure. Equations (2.1) describes the motion for Stokes
flow subject to a body force term, f, including an electrostatic body force defined as
equations (2.2), Laplaces equation and the potential field associated with the charges
of the EDL.

Considering a charged molecule such as fluorescein in a nanochannel, the overall
transport of the molecule is governed by the following equation.

∂Ci

∂t
+ ~u · ∇Ci = −ziνiF∇ · (Ci∇Φ) +Di∇2Ci (2.3)

∗Brown University
†Sandia National Laboratories
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where C refers to the concentration of the charged species, F is Faradays constant, D is
the molecular diffusion coefficient, and ν is the mobility of a species defined as U/ΦFz,
where U is the net velocity for an ion valence z subject to an electric field Φ. The
velocity obtained from equations (2.1) and (2.2) can be used in the electromigration-
convective-diffusion equation (2.3) to calculate the concentration profile of fluorescein
molecules in a channel.

2.2. Peclet number and Zeta potential. The Peclet number (Pe = UL/D,
where U and L are the characteristic velocity and length scale for the flow, and D is
the molecular diffusivity) is a dimensionless number which characterizes the relative
strengths of diffusive and convective species transport in a flow field [6]. The Peclet
number for fluorescein in our nanofluidic device can be calculated by comparing results
from experiments and simulations. In particular, the effective mobility of fluorescein
under the influence of an electric field, E, is defined as

µeff = −εζE/η +D/ (zFRT ) (2.4)

where −εζE/η is the electroosmotic mobility, D/ (zFRT ) is defined as the electro-
phoretic mobility and where R is the universal gas constrant. Since the characteristic
velocity of fluorescein is determined by the product of the effective mobility and given
electric field, the Peclet number has dependent variables z, D, Φ, and ζ. Therefore,
the calculated Pe can be used to deduce one unknown parameter such as zeta potential
if we are given other parameters.

3. Methods.

3.1. Experimental set up. Nanofluidic devices were fabricated using conven-
tional micromachining techniques in quartz substrates with a nominal depth of 800
nm and width of 10 µm (Figure 3.1). We used a mercury lamp to optically monitor

Fig. 3.1. (a) Schematic of a nanofluidic channel. The dashed box encloses the section of the
device where the diffusive transport of FL was studied. A and B are reservoirs containing 10 mM
sodium borate buffer and buffer with 100 µM FL, respectively. A uniform voltage was applied to A
and B while C was grounded. (b) An atomic force microscopy image of a channel with the 800 nm
deep x 10 µm wide channel.

the intensity of fluorescence of two liquid streams (10 mM sodium borate and 100
µM FL). Images were captured using a CCD camera (Cascade, Roper Scientific) with
a 128 x 128 CCD pixel array and 12-bit digitization (Figure 3.2(a)). The exposure
time was 50 ms and the on-chip gain was 1800. Thirty frames were taken for raw and
background images, and a flatfield image was used for image correction.

3.2. Experimental Conditions. First, all reagents used in the experiments
were filtered using Acrodisc syringe filter with 0.2 µm PVDF membrane (Pall Corpo-
ration). Then, the reservoirs of our nanofluidic device were filled with deionized water
and the channels were flushed for 10 minutes before exchanging the deionized water
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Fig. 3.2. (a) Schematic diagram of the experimental set-up. (b) A magnified figure of the
T-intersaction of the channel where the dyed and undyed streams meet. Six different detection
points (with 5 µm increment from top edge of the channel) were measured from both experiment and
simulation.

Table 3.1
Voltage scheme used for three different electric field. Characteristic E-fields are listed in fourth

column.

Voltage(A, B, E) Voltage(D) Voltage(C) E-fields at detection points

Low-field 400V 400V 250V 14201 [V/m]

Medium-field 800V 800V 500V 28403 [V/m]

High-field 1584V 990V 0V 56238 [V/m]

for 10 mM sodium borate. A high voltage power supply (Sandia’s µChemLabTM)
applied specified potentials to the three chip reservoirs via platinum electrodes. 15
µl of 100 µM fluorescein was loaded at reservoir B. The uniform voltage of 990V was
applied to electrodes in reservoirs A and B while D and E were floating and C was
grounded. The electric fields used in both the experiments and the simulations are
listed in Table 3.1.

3.3. Image analysis. The data from the CCD camera is saved as TIFF files and
image correction is preformed on these images using MATLAB. First, 30 background
images and 30 raw images are obtained and averaged. CCD images are corrected by
applying the following a pixel by pixel operation [5] to each image:

Icorr =
Iraw − Ibackground

Iflatfield − Ibackground
(3.1)

where a background image is subtracted from the raw image, and this difference is nor-
malized by the difference between a flatfield (obtained by imaging of the nanochannel
filled with a homogeneous concentration of fluorescein) and the background image.

3.4. Numerical model. In our simulation approach we used Comsol Multi-
physics 3.2a (Comsol, Inc.) to perform numerical simulations of the governing equa-
tions that are fully coupled. First, we used a MEMS module for Conductive Media
DC corresponding to equation (2.2) above and Electrokinetic Flow corresponding to
equations (2.3) and (2.4) and coupled them with Stokes flow corresponding to equa-
tion (2.1). Second, we compared the experimental results against a series of simulation
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data with different zeta potentials. The same conditions used in the experiments were
applied to the simulations. From the results, we found the simulation that matched
closest to the experimental images and thus determined the zeta potential of the
channel. We typically ran four simulations to obtain an accurate result. . Finally, we
performed the simulations with the determined zeta potential at two other electric
fields and compared simulation data with experimental results for validation of our
method.

4. Results and Discussion.

4.1. Zeta potential estimation. Comparison of fluorescence intensity across
the channel from both experiments and simulations at high electric field of 56200 V/m
is presented in Figure 4.1. To determine the zeta potential found the Pe number that

Fig. 4.1. Comparison of concentration profile across the channel between experimental result
(red dotted line) and simulation data. For high-field, experimental result shows agreement with
simulation data (green line) at zeta potential -0.072 V.

gave a good agreement in concentration profiles between experiments and simulations.
Given a concentration profile of the experiment, we performed simulations by varying
zeta potentials until the best matched case was found. In doing so, we estimated the
zeta potential of our nanofluidic system to be approximately -72 mV.

4.2. Concentration profile across the channel. Figure 4.2 shows three pairs
of concentration profiles comparing experimental image data and simulations at the
junction of the channel for three different electric fields. At the electric field of 56200
V/m, the images of concentration profiles from A and B show a sharp interface be-
tween the fluorescein and background buffer compared to images at lower electric
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Fig. 4.2. Concentration profiles of experimental result (A,C,E) and numerical simulation
(B,D,F) in a 10 µm x 10 µm nanofluidic channel with electrokinecally-driven flow subject to three
different electric fields. Red regions indicate fluorescein while blue regions show sodium borate buffer.
Notice that the asymmetric concentration profiles of flows from fluorescein and buffer sides are shown
at both medium-field and low-field as opposed to high-field. This is mostly due to different gradi-
ent pressures at each reservoirs of fluorescein and buffer or channel clogging which results in flow
resistance.

fields. This is most likely due to the fact that the bulk electroosmotic velocity is
faster as opposed at higher electric fields. In addition, the influence of diffusion is
small in the channel where higher electric field is applied. The images of A and B also
qualitatively show that there is a balance of flow from both the buffer and fluorescein
sides of the well. The experimental data (A) at the high field agrees best with simula-
tion data among three pairs (data not shown) because the magnitudes of the velocity
of fluorescein and buffer from both arms are the most symmetrical. Compared with
the results at high electric field, the interfaces between fluorescein and buffer at both
medium and low electric fields are skewed to the left (buffer side). The discrepancy
between experiment (red dotted line) and simulation (green line) is consistent with
what we previously observed results presented in Figure 4.1. This asymmetric concen-
tration profiles are presumably due to different gradient pressures at each reservoirs
of fluorescein and buffer. Moreover, it is possible that the misaligned filters at sample
reservoirs cause some clogging so that flow resistance changes as the experiment runs.

5. Conclusions. We have presented continuum based numerical simulations and
experimental results from diffusive transport studies of fluorescein in a nanofluidic de-
vice that determines zeta potential of the channels to be -72 mV. Our method is appli-
cable not only for estimating zeta potential of the channel but also determining other
useful parameters that characterize the Peclet number of a molecule in nanofluidic
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systems such as diffusion coefficient, mobility, and viscosity. Future work will include
developing a design strategy to estimate diffusion coefficient of DNA molecules in
nanofluidic devices.
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EVALUATION OF LEVEL SET TOPOLOGY OPTIMIZATION
FORMULATIONS FOR DESIGN OF MINIMUM-DISPERSION

MICROFLUIDIC DEVICES

A.R. TERREL∗ AND K.R. LONG†

Abstract. Applying topology optimization to minimize the sample dispersion of a microfluidic
device is challenging in part because the fictitious permeability used to classify topological regions
tends to a smooth non-Boolean field, in contradiction to the requirement that a valid solution be
Boolean. Imposing the Boolean condition must be done carefully in order to avoid spurious local
minimizers or an excessively smooth solution. Here we investigate the behavior of two different
formulations of level-set based topology optimization on problems where we must find the Boolean
field that best approximates a specified non-Boolean field. We introduce a formulation based on
inequality constraints that can effectively satisfy the Boolean condition.

1. Introduction. The goal in shape optimization is to identify the shape of a
domain I such that when a physical problem is solved on that domain, an objective
function is minimized. The most general form of shape optimization is topology opti-
mization [2], in which the topology of the domain is allowed to vary; i.e., topological
holes and/or islands can appear or disappear. By its nature, topology optimization is
a large-scale boolean programming problem, because each point in a larger, embed-
ding domain is either in I or not. However, in practice it is rarely approached directly
in that form; rather, each point in the domain is characterized by a real number to
be driven, somehow, to the boolean extremes of 0 or 1. Much of the art in topology
optimization is choosing this reparametrization in such a way closely approximates a
boolean field without introducing spurious local minimizers.

In many problems, there is a natural reparametrization that is simple and works
well. In structural topology optimization, for example, if the relationship between
material density and stiffness is taken to be nonlinear and monotonic, then for certain
objective functions there will be no payoff to intermediate material densities. In other
words, in such problems the nature of the physical problem, objective function, and
constraints drives the material density naturally to a boolean solution [2]. In this
case, nothing special has to be added to the method to produce a boolean solution.

Here, though, we are interested in problems where no such lucky accident hap-
pens. The motivating problem for this study is the design of minimum-dispersion
microfluidic sensors; by minimum-dispersion we mean that a sample of particles that
enters the device together will not be dispersed by the flow. We represent the shape of
the channel by introducing an approximately-boolean permeability. The challenging
feature of this problem is that for the physics and objective function under consid-
eration, the solution to this problem is a permeability that varies smoothly between
the boolean values of zero and one, with most of the domain being at intermediate
permeabilities. Such a device cannot be manufactured. In this problem, then, we
must somehow externally – by means of a penalty or constraint – enforce the boolean
condition. The obvious way to do this is with a penalization on any non-boolean
values, but that is easily seen to be non-convex, and indeed, in practice it is found
that such a penalization introduces numerous artificial local minimizers.

An improved formulation was introduced by Cunha in his thesis [4]. Cunha
penalizes the slope of a level set function, which, as will be discussed below, allows

∗University of Chicago, aterrel@uchicago.edu
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Fig. 2.1. Example of a domain Ω with the black representing the exterior E and the white the
interior I.

fine control of the transition region where non-boolean values can occur. We will refer
to this method as the slope penalty method. Penalizing the gradient of a function is
less restrictive than penalizing the function itself, so that we expect (and find) fewer
artificial local minimizers with this method than with a direct penalization of non-
boolean permeabilities. However, the formulation still does have artificial minimizers,
and it is difficult to choose a penalty parameter loose enough to avoid these yet tight
enough to enforce the boolean condition.

We have thus introduced another method, which we call the slope barrier method,
in which a certain inequality constraint (to be described below) is imposed on the level
set function and its slope. This inequality constraint is an even looser restriction on
the problem, suggesting less problem with local minimizers, yet it can more strongly
enforce the boolean condition.

In this paper we will compare the slope penalty and slope barrier method on model
shape-matching problems having the difficult characteristics of minimum-dispersion
microflow. In section 2 we show a level set formulation of the shape optimization
problem. We motivate and describe the two methods to be compared in sections 2.1
and 2.2. We give some details in order to implement and optimize the objective
function in section 3. Finally we give testing methods and results of our comparison
in sections 4 and 5.

2. Formulation of the Problem. The formulation of our problem is the same
as outlined in Cunha’s thesis [4]. For topology optimization, we have a domain, Ω,
in our case this is a square array of pixels, and want to partition it into two different
subsets: the exterior E and the interior I, see Figure 2.1. The interior, I, is used to
represent portion of Ω that will be the domain of a PDE equation such as the flow in
our microfluidics application. The exterior, E = Ω−I, is the rest of Ω. The interface
between the two regions is given by the zero contour of a level set function, φ(x),

φ : x ∈ Ω→ R

The level set function defines a geometric shape one dimension higher than Ω, for
our purposes φ(x) ≥ 0 indicates x ∈ E , and x ∈ I otherwise. Thus our shape is
determined by the distribution χ:

χ(φ) =
{

0 if φ < 0
1 otherwise

To reach the goal of our topology optimization, we are concerned with the values
of the χ distribution. Optimizing on a large boolean problem is quite hard, so we
relax the problem by replacing it with a sigmoid function that maps to the interval
[0, 1] on the reals. The sigmoid function is a smooth interpolation of χ.

σ(φ) =
1
2

(
1 + tanh

(
φ

∆

))
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where ∆ is a given parameter. The parameter ∆ gives some control over the transition
of the sigmoid from values near 0 to values near 1, but this will be discussed further
in Section 2.1 with the introduction of the slope penalty method.

This formulation offers several advantages over a more traditional shape opti-
mization with parametric curves. First, the design variable that we manipulate in
our optimization algorithm is φ and not a boundary of our mesh. This allows us to
avoid remeshing because of topology changes. This also allows us to use a very rich
design space without limits on the curves we produce. Finally, using a smooth sig-
moid function insures that derivatives exist and give us the opportunity to use faster
optimization algorithms.

While there are several advantages with this formulation, the problem is ill posed.
The problem statement uses only the zero contour of the level set function φ, yet
there are infinitely many level set functions that have the same zero contour. Second,
the level set function has no restriction to be smooth. It could be a zig zag of an
infinite number of sinusoidal functions or anything else as perverse. By adding some
regularization to φ, we are able to guide the optimization to use certain types of
functions. We use a Tikhonov regularization for φ, to produce a smooth function [1].
For our applications this regularization will be added by the term:

α1

2

∫
Ω

|∇φ|2dΩ

We add another term for the regularization of σ. In our microfluidics application,
it also was important that we have a smooth shape in order to have a shape that is
manufacturable. To achieve this we use a total variation diminishing regularization
on σ:

α2

∫
Ω

(∇σ2)
1
2

The total variation diminishing regularization is used because Tikhonov is restrictive
of jumps in slope [1].

2.1. Slope Penalty Method. Because we relaxed χ to a sigmoid function,
there is a range for which our results will not be near 0 or 1. Let us call this range the
bandwidth, Λ. In other words Λ is the measure of the set {x ∈ Ω|ε < σ(φ(x)) < 1−ε}
for some given ε. This means that Λ is dependent on both ∆ and |∇φ|. To enforce
the criteria that the resulting shape be as boolean as possible, we prefer to have Λ
small. In order to control this at runtime we wish Λ dependent only on ∆. This could
be achieved by the constraint |∇φ| = 1, but such a constraint would be inhibitive
of the Tikhonov regularization. To balance between these two controls on ∇φ, we
use a penalty method to give an approximate constraint,which is characterized in the
objective function by adding the following term:

β

4

∫
Ω

(|∇φ|2 − 1)2dΩ

This approximate constraint is more a concession that we want |∇φ| ≈ 1. The β
term allows us to control how much to enforce this approximate constraint, when
β > α1 we enforce the approximate constraint more, and when β < α1 we enforce
Tikhonov regularization more. This penalty gives a method to increase or decrease
the bandwidth of σ at runtime with the ∆ parameter, with respect to our level of
Tikhonov regularization.
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2.2. Slope Barrier Method. The slope penalty method controls Λ by setting
a restriction of the slope of φ over all of Ω. However, the slope outside the bandwidth
does not affect the value of σ since it will be closer to 0 or 1 than our tolerance; any
work done in meeting the unit slope condition outside the transition band is therefore
wasted. We therefore introduce an alternative method, in which instead of a penalty
we use an inequality constraint:(

φ

∆

)2

+ (∇φ)2 ≥ 1− ε

This term strictly regulates the slope of φ near the zero contour yet lets it vary freely
elsewhere.

To enforce this inequality constraint we use a barrier method, in which we put a
singular barrier at the boundary between the feasible and infeasible regions. This lets
us use an unconstrained optimization algorithm. Rather than the more conventional
log barrier [7], we use a piecewise but differentiable barrier that goes to zero a small
distance from the constraint surface. The sharpness of the curve for the barrier is a
controlled by the weight factor γ. The larger we allow γ the larger the tail leading up
to the barrier, which will possibly put some control on the size of Λ allowed.

3. Implementation. In the previous section, we have introduced ways of de-
scribing shapes in terms of a level set function, and means of regulating the smoothness
and the sharpness of the boolean transition. We also need to add some measure of
quality of the shape produced, i.e. an objective function. For testing purposes we are
only going to look at matching a specified target shape, E∗, and thus we will use a
Heaviside Distance function to compare our shape with the target shape, that is:

d(E , E∗) =
1
2

∫
Ω

(σ − σ∗)2dΩ

In addition, we will have the terms described above.
Now our full objective function consists of the following terms: a Heaviside Dis-

tance, a Tikhonov Regularization for φ, a total variation regularization for σ, a slope
penalty term. and a slope barrier term. Or in equation form:

minimize the function F where:

F =
1
2

∫
Ω

(σ − σ∗)2dΩ +
α1

2

∫
Ω

|∇φ|2dΩ + α2

∫
Ω

(∇σ2)
1
2 dΩ +

+
β

4

∫
Ω

(1.0−∇φ2)2dΩ

augmented to the inequality constraint:

∇φ2 +
(
φ

∆

)2

≥ (1− ε)

To test our different controls of the slope penalty and the barrier weight we can
adjust β and γ, respectively. Since we are not concerned so much about the level of
the regularization terms, we have fixed both α1 and α2 at 1.0 × 10−4. Doing this
we have a baseline configuration, β = γ = 0, for when the Tikhonov regularization
will be the dominant contribution to the control of φ. Now we turn our attention the
optimization algorithms that we used.
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3.1. Local Optimization. For local optimization we use the adaptive limited-
memory BFGS algorithm of Byrd and Boggs [3].

We tried to use ways of controlling φ and σ so that there would be few artificial
minimizers, that is minimizers that are not physically significant but that have been
introduced by our slope control methods. But it must be noted that there is a trade
off between the matching of our shape and keeping a boolean result. Furthermore,
in many problems there will also be physically significant local minimizers. We have
therefore found it necessary to embed the local optimization routine in an outer global
optimization loop.

3.2. Global Optimization. Generally speaking, our global optimization
scheme is that upon each successful local minimization, we try to “tunnel” in a
randomly-chosen direction to a lower function value. However, doing so blindly would
be a hopeless task with very low probability of finding a fruitful search direction; the
reason for this is that the vast majority of random perturbations one could make to
the function φ are at high spatial frequency, having little macroscopic effect on the
objective function. To find search directions giving a macroscopic effect, we favor
perturbations at low spatial frequencies, which is easily done by means of a truncated
Fourier series.

We generate search directions by updating our design variable φ as follows:

φ← φ+
M,N∑

m=−M,n=−N

Am,ne
−i(πm

L x+ πn
L y).

Here L is the size of one side of our square grid of pixel and we take an M and N
much smaller than the number of pixels per axis. The coefficients Am,n are chosen
at random from different points on the complex plane. This give us a new direction
that is chosen from the subspace of smoothly-varying random fields.

With a direction computed in this way, we can try to tunnel to a better minimizer
by doing a line search in that direction. In practice, searching even in this restricted
subspace has a low probability of finding a better minimizer. Therefore, in practice we
often conditionally accept an uphill step; the probability for accepting an uphill step
can be determined by any convenient distribution; we use a Boltzmann factor. As in
simulated annealing [8], the temperature in the Boltzmann factor can be reduced as
the procedure progresses, thereby allowing frequent uphill steps early on, but more
stringently rejecting them later.

3.3. Software Implementation. The code is implemented using the Sundance
[6] and Trilinos [5] software packages.

4. Testing the methods. In order to test the two methods, we start from a
variety of images and attempt to match a set of target images, of different degrees
of difficulty. To demonstrate some properties of the two methods, we use a host of
target images, see Figure 4.1. These images provide a set of complex and simple
boolean and non-boolean values to compare. One of the target images is a smooth,
non-boolean picture based on the unconstrained solution to a microflow optimization
problem; a challenge will be to satisfy the boolean constraint when matching this
decidedly non-boolean image.

Another factor of interest is the dependence on the initial guess. We tested this
property by running the tests on a series of 1x1, 2x2, 3x3, 4x4, 5x5 grids of circles,
see Figure 4.2. We have discovered that to an extent the more disconnected shapes
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(a) (b) (c) (d) (e)

Fig. 4.1. The target images. (a) Simple boolean image, (b) Complex boolean image, (c) Simple
non-boolean image, (d) Complex non-boolean image, (e) Smooth solution to Unconstrained Minimum
Dispersion Problem.

(a) (b) (c) (d) (e)

Fig. 4.2. The input images. (a) 1x1, (b) 2x2, (c) 3x3, (d) 4x4, (e) 5x5.

initially given to the algorithm, the more accurate the output thus prompting these
initial shapes.

The final property studiedis the speed of convergence of the method to a better
solution. For each test we see how well it is able to handle a single line search to
give a local minimum and a number of additional line searches to find a better global
minimum. The first local minimum gives a sense of how the method responds in a
head to head comparison, whereas using a method of getting an new direction for the
global search will produce quite different directionss to search for each configuration.
One problem with a global search is always how long to let it run, whereas the first
local line search can be give a stopping criteria based on the convergence of the
objective function. For our experiments, we decided to stop the global search if one
of the following conditions were met: 1) the objective function was evaluated more
than 5000 times, 2) there were more than one hundred directions searched, or 3)
after testing 100 directions no direction was found that further reduced the objective
function. These criteria were chosen to simulate an engineer optimizing with limited
time and computational resources.

5. Results. We will see from our experiments that both methods do well at
matching the boolean images. As might be expected, the slope penalty method does
better at matching non-boolean shapes; however, recall that the purpose is not to
match a smooth shape perfectly, but rather to match it well while satisfying the
boolean condition. We expect the output to produce an image that is both a boolean
and conforms, at least in coarse outline, to the shape of the target. As we will show
sometimes it is easy to fulfill either part of this requirement but not both at the same
time. In our results we can differentiate the performance of the different methods by
the number of iterations required to yield a given reduction in objective function.

5.1. Boolean targets. With boolean targets we see that both methods match
the shape very well. The variation between methods comes in the form of global
minimizers, convergence rate, see Figure 5.1, and the transition, Λ, between I and E .

The results show that using only the Tikhonov regulation, see Figure 5.2, pro-
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Fig. 5.1. Sample convergence speed comparison

(a) target (b) baseline

Fig. 5.2. Sample Target and baseline configuration

duced a well matched shape and a small Λ. At the same time it did not produce a
large amount of global minimizers.

The slope penalty method, see Figure 5.3, tended to produce less shapely boolean
contours. Superficially, it also appears to converge more slowly, although that is
difficult to assess because the objective function is altered by the introduction of the
penalty term. The slope barrier method, see Figure 5.4, successfully reproduced the
sharp boolean images.

(a) β = 1.0e− 3 (b) β = 1.0e− 4 (c) β = 1.0e− 5 (d) β = 1.0e− 6 (e) β = 1.0e− 7

Fig. 5.3. Sample slope penalty configurations

5.2. Non-boolean targets. The most important test for our purposes is to be
able to find good boolean approximations to non-boolean images. We use as a target
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(a) γ = 1.0 (b) γ = 0.5 (c) γ = 0.1 (d) γ = 0.01 (e) γ = 0.001

Fig. 5.4. Sample slope barrier configurations

(a) target (b) solution

Fig. 5.5. Smooth target and boolean solution

image the smooth solution to our unconstrained microfluidics problem. The “true”
boolean solution can be found by taking everything that is at least 50% black and
giving it the value 1 and the rest 0, see Figure 5.5. This example almost reversed all
the results of the boolean targets, where the narrow Λ was true to the shape of the
target. We see in Figure 5.6 the results with a slope penalty method. As can be seen,
it fits the target image quite well, but does not satisfy the boolean condition.

For non-boolean problems the slope barrier method converged more slowly than
the slope penalty method and (as expected) for a small ∆ it resulted in a large
Heaviside distance from the boolean solution. The global optimization process also
a large number of global minimizers giving the optimization even more problems to
overcome. As can be seen in Figure 5.8, the solutions are, while sharply boolean, also
quite ugly and plagued by local minimizers.

This performance showed that the small values of ∆, usually 12 pixels, that
we used for the boolean targets were unsuitable for the non-boolean targets. By
increasing ∆ we were able to get performance closer to the slope penalty method,
but this still did not result in a boolean image that we would be able to use in our
application. Therefore we implemented a variable ∆ in the optimization loop, in which
we gradually reduce ∆ after a number of outer iterations. To give a fair comparison
we used a total number of global optimization steps equal to the non-variable ∆. This
method did considerable better that the static version, and was able to achieve a more
boolean shape that was closer to the shape of the solution, see Figure 5.9.

6. Conclusions. For boolean targets, the methods are closely comparable in
performance and in effectiveness. There is a tradeoff between faithfully matching
a non-boolean image and meeting a boolean constraint. The slope penalty method
provides a better “fit”, but does not easily meet the boolean condition. The slope
barrier method does a better job of meeting the boolean condition; in our microfluidics
applications that is the more important consideration. Finally, we observed that a
gradual reduction in bandwidth parameter ∆ is essential to getting clean results from
the slope barrier method.
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(a) 4 circles (b) 9 circles (c) 16 circles (d) 25 circles

Fig. 5.6. Larger slope penalty (β = 1.0e− 4) Final Global iteration

(a) 4 circles, first (b) 4 circles, final (c) 9 circles, first (d) 9 circles, final

(e) 16 circles, first (f) 16 circles, final (g) 25 circles, first (h) 25 circles, final

Fig. 5.7. Smaller slope penalty β = 1.0e− 6, First and Final Global iteration

(a) 4 circles (b) 9 circles (c) 16 circles (d) 25 circles

Fig. 5.8. Slope Barrier γ = 0.001, Final Global iteration

(a) 4 circles (b) 9 circles (c) 16 circles (d) 25 circles

Fig. 5.9. Slope Barrier Reduction Method (γ = 0.001, reduces = 20, opts = 5, reduction = 0.9)
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MULTISCALE METHODS FOR NONLINEAR GAS
CHROMATOGRAPHY

GREG VON WINCKEL∗, LOUIS ROMERO† , AND EVANGELOS A. COUTSIAS‡

Abstract. Gas chromatography attempts to separate the components of a gas mixture in order
to perform chemical analysis. Its current appeal relates to the possibility of miniaturization and
inclusion of gas chromatographs In easily portable field devices. Computational modeling of a gas
chromatograph in general requires solving a nonlinear partial differential equation in three spatial
dimensions and time for a geometry with highly dissimilar scales. In particular the length of a
chromatograph column is typically many times larger than the average cross sectional radius which
is in turn two or three orders of magnitude greater than the microscopic liquid layer which lines
the inside of the column. Solving the full problem is computationally very expensive, however,
the current work aims to determine the long time behavior of a sample in a chromatograph while
considering only the geometry of the cross section. By combining analytical techniques such as the
normal forms reduction and high-order hp curvilinear spectral element discretizations, we reduce the
problem to two linear partial differential equations in two variables.

1. Introduction. Gas chromatography attempts to separate the components of
a gas mixture in order to perform chemical analysis. Its current appeal relates to the
possibility of miniaturization and inclusion of gas chromatographs (GCs) In easily
portable field devices. Obvious application include the fast and reliable detection
of chemical leaks and fast, on-site identification of chemical and biological agents.
However, many theoretical issues arise as the technology is scaled down.

GCs are long capillary tubes, typically of circular or rectangular cross section,
whose inner walls are uniformly coated with a retentive liquid. A carrier gas flows
steadily down the tube and gas packets of the analyte are injected in its stream at
some entry location and are advected along the tube. The carrier velocity has a typical
laminar viscous profile, vanishing at the (unmoving) coating interface. The analyte gas
particles diffuse as they are being transported, and they are adsorbed into the coating.
Assuming the diffusing species are locally in thermodynamic equilibrium, a balance
is established between adsorption and desorption, and the fraction of concentrations
in the two phases at the interface is equal to the partition coefficient, K. The latter
can be assumed to be constant for small enough analyte concentrations in the vapor
phase, but in general it is a nonlinear function of the concentration at the flowing
gaseous phase, Cf . Mathematically, this results in a non-linear boundary condition
at the interface between the liquid and gas phases.

Under desirable operating conditions, a packet spreads while it is being trans-
ported and eventually approaches a symmetrical Gaussian profile. However, if a high
enough concentration of analyte is initially injected into the column, the nonlinearity
in the boundary conditions will cause the packet profile to deviate significantly from
a symmetric Gaussian shape. This steepening of the Gaussian profile is referred to as
column overloading in the gas chromatography community, and can be highly detri-
mental to optimal performance. The understanding of column overloading could play
an essential role in learning how to make reliable gas chromatographs at miniaturized
scales.

2. Modeling: objectives and challenges. The main purpose of our proposed
analysis is to use techniques from dynamical systems theory (normal forms, inertial
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†Sandia National Laboratories, lromero@sandia.gov,
‡University of New Mexico, vageli@math.unm.edu
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manifold reduction) to arrive at a reduced complexity description of Non-linear Gas
Chromatography (NGC), with a particular emphasis on predicting when column
overloading will occur.

Without the use of such techniques the modeling of non-linear GC columns poses
serious computational challenges, stemming principally from the large number of dis-
parate scales: the typical length of the tube, L ≈ 30m, is much larger than the typical
cross section radius, R ≈ .1mm, which is in turn much larger than the typical coating
thickness, d ≈ .1µm. In addition, the spatial extent l(t) of a packet grows as it is
advected, so that R << l << L, at typical velocities of < u >≈ 1m/sec introducing a
third dimensionless length ratio in the problem. The spatial resolution and timestep
requirements imposed by this wealth of scales are severe, as numerical stability dic-
tates employing comparable discretizations in all spatial dimensions. Although some
of these limitations may be addressable by improved numerical techniques that can
circumvent some of the stability issues, full 3D simulations of the time-dependent
initial-boundary value problem at the coating layer length scale can be prohibitive.
On the assumption that as the packet is advected it spreads and its peak concentra-
tion becomes sufficiently low, a usual simplification is to approximate the nonlinear
BC by a linear one. However, it is known that the nonlinearity can indeed affect the
long-time evolution of the packet [4], and modern applications may require operating
the system at overloading conditions.

Previous works have been limited to the analysis of the linear problem for simple
geometries [5]. Even then, the complete analysis requires a deep understanding of
the subtle phenomenon of Taylor dispersion, and can lead to rather surprising results.
Due to the inherent multiscale character of the phenomenon with the balance that
it implies between the very disparate diffusive and advective scales, small perturba-
tions in geometric characteristics of the flow region over long scales can lead to large
deviations in system performance [3].

The problem of determining the extent of column overloading can be stated con-
cisely as the problem of determining the long time asymptotic behavior of an initial
distribution of analyte. For the case of linear GC columns this three dimensional time
dependent problem can be reduced to the problem of determining an effective diffusion
coefficient Deff , and an effective advection rate ueff for the analyte. These quantities
can be determined by solving a two dimensional eigenvalue problem involving a cross
section of the GC column ( [7]).

Using the theory of inertial manifolds, we have outlined a technique that we
believe can rigorously predict the long time asymptotic behavior of non-linear GC
columns. As with the case of linear columns, we can predict this behavior by solving
the proper two dimensional problem for a cross section of the column. The solution
to this two dimensional problem will yield a constant keff (in addition to Deff and
ueff that shows that the long time asymptotic behavior of the solution is governed by
the equation

∂tc+ ueff∂zc = Deff∂zzc+ keffc
2 (2.1)

Once this equation in known, it is straightforward to determine the extent of column
overloading.

It should be noted that the problem of determining keff is challenging both the-
oretically, and numerically. When analyzing real GC columns the two dimensional
problem will still have disparate length scales associated with the thin liquid layer
coating the walls. The technique we are proposing should still be computationally
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intensive when one realizes that our purpose is not to analyze a single GC column,
but actually carry out parameter studies for a whole class of GC columns. We believe
that such parameter studies would be impractical without the use of such reduced
order models.

3. Governing Equations. We give a brief discussion of the governing equations
of NGC for the case of a straight tube. The cross section of the tube is composed
of two regions: the flow region, Ω1, separated by the boundary ∂Ω12 from the thin
annular coating region, Ω2, which is also bounded by the tube wall, ∂Ωwall. The flow
down the tube is assumed steady and laminar. We ignore transverse components of
the velocity. The tube has length L, radius R with aspect ratio ε := R/L << 1.
The coordinate system is chosen with the z-axis along the tube, and the x, y axes in
the transverse direction. Thus the z-component of the velocity, u(x, y) satisfies the
equation

µ4 u =
∂p

∂z
in Ω1 (3.1)

u = 0 on ∂Ω1 := ∂Ω12 (3.2)

where ∂p/∂z is the constant pressure head driving the flow. The velocity assumes the
familiar parabolic profile in a circular tube, while for more general tube shapes the
velocity needs to be solved for numerically. In general the laminar/steady assumptions
are retained, but the geometrical complications associated with shapes of interest, such
as tubes of slowly varying cross section or helical tubes must be accounted for in an
efficient fashion.

The concentrations of a solute advected by the carrier flow (which is assumed to
occur only in Ω2) and adsorbed into the coating are described by the coupled diffusion
equations

∂tC1 + v∂zC1 = D1∇2C1 in Ω1 (3.3)

k1
∂C1

∂n
= k2

∂C2

∂n
C2 = KC1 + αC2

1 =: f(C) on ∂Ω12 (3.4)

∂tC2 = D2∇2C2 in Ω2 (3.5)
∂C2

∂n
= 0 on ∂Ωwall . (3.6)

4. Reduced order model for NGC by systematic normal form reduc-
tion. The fundamental reduction procedure that we propose for the problem is ex-
emplified, in the simplest case where the retentive coating is absent, that is the case of
classical Taylor Dispersion. Although there are many different approaches to deriving
the result for Taylor dispersion, the normal form approach has the advantage that it
can be extended to the non-linear case.

The first step in this approach is to expand the function c(x, y, z, t) using

c(x, y, z, t) =
∞∑

k=0

ak(t, z)φk(x, y) (4.1)

where the functions φk are eigenfunctions of the reduced problem

D∇2φk = σφk , ∂nφk|∂Ω = 0

where Ω = Ω1∪Ω2, with appropriate modifications so that some of the interfacial con-
ditions are automatically satisfied. The expansion is carried out under the assumption
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that the characteristic length R of a cross section of the tube is much smaller than
the length of the tube, that is ε = R/L << 1.

Assuming smallness of z-derivatives, we non-dimensionalize by the scaling z →
lz , (x, y)→ R(x, y), and we introduce

v(x, y)φi =
∑

j

γijφj

to arrive at an infinite system of coupled PDEs for the coefficients a(t, z)

ȧi +
∑

i

γika
′
k = λiai + a′′i

or in vector form

ȧ = Λa + ε2a′′ − εΓa′ .

The mode a0 associated with the eigenvalue λ0 = 0 is the only mode that is not
decaying. However, when determining the long time asymptotic behavior, it is not
sufficient to ignore the coupling of this mode with the other modes. Instead, following
the methodology of normal form theory, a sequence of near identity transforms

a = ξ + εnPnξ ,

is applied that decouples the mode a0 from all of the other modes to any order of ε
that we desire. That is, we can find a transformation that differs from the identitiy
by O(ε) that decouples the equation to order ε; we can then apply a transformation
to the new system of equations that differs from the identity by O(ε2) that decouples
these equations to O(ε2). In practice it is only necessary to decouple the equations
to second order in order to get the long time asymptotic behavior. For the case of
classical Taylor dispersion [1, 2], the result of this normal form reduction is to show
that the first mode obeys an equation of the form

∂tc+ ueff∂zc = Deff∂zzc+O(ε3) (4.2)

where ueff = O(ε2), and Deff = 1 +O(ε2).
Our goal is to carry out a similar reduction in the non-linear case, for arbitrary

shaped cross sections. This is conceptually similar to the normal form reduction for
the case of Taylor dispersion, except the near identity transforms now will be non-
linear. In this case we will be able to decouple the mode a0 from the rest of the modes
to arrive at an equation of the form (2.1) that is valid to order O(ε3). This equation
will be sufficient to predict the long time asymptotics of the nonlinear equations,
and hence predict the amount of solute that can be injected before we get column
overloading.

It is expected that the construction of the successive near-identity transformations
will require the numerical solution of a sequence of two-dimensional boundary value
problems. This is the most computationally intensive stage of this process. For each
cross-sectional profile considered, such problems will need to be solved by a high
fidelity method for each term of the operator P, i.e. O(n2) such problems in order to
decouple the first n equations, with the optimal value of n depending on the profile.

This technique can be thought of as a variant of the Proper Orthogonal Decompo-
sition (POD) method, which employs a Galerkin projection on empirical orthogonal
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eigenfunctions. The POD method is widely used in the study of spatially extended
systems [8], but generally it lacks an adequate theoretical foundation. Here, the suc-
cessive diagonalization of the operator will allow us to tailor our reduced order basis
to the inertial manifold describing the essential dynamics of the NGC. Our results
will help provide a theoretical justification of POD-type methods for problems where
a large disparity exists between the various scales, such as flows in high aspect ratio
domains.

5. Numerical methods. There are two components to numerically solving the
reduced governing equations, the meshing and the PDE discretization. First we per-
form a two-stage meshing of the domain. It is assumed that the inner and outer
boundary curves can be described by parametric functions which need not be ex-
pressed analytically.

Because the outer, liquid, domain is so narrow away from corners, it is undesirable
to mesh it using triangles. The reason being that for a well-conditioned stiffness ma-
trix, triangular elements should have angles as close to 60 degrees as possible. When
meshing a narrow region with triangles, one must either opt for a very large number
of small elements, or use sliver-shaped triangles with one angle close to zero. Quadri-
lateral elements with a large aspect ratio do not similarly suffer from ill-conditioned
stiffness matrices, provided the corner angles are kept close to 90 degrees.

There are complications associated with curvilinear triangles with greater than
cubic mappings. For these reasons, we use curvilinear quadrilateral to mesh the liquid
region where the element size is chosen such that they divide the boundary into pieces
with uniform arc length. A layer of quadrilaterals is also meshed around the interior
side of ∂ΩI so that both smooth boundary curves are only bordered by curvilinear
quadrilaterals. Fortunately, there exists a well-conditioned mapping for quadrilaterals
considering only the 4(n − 1) boundary nodes if we compute the coefficients of the
mapping using a generalized Vandermonde matrix where the modes are constructed
from the Chebyshev-Serendipity functions and the boundary nodes are the zeros of
the Jacobi polynomials P (2,2)

n along the edges plus the four vertices. The condition
of such a Vandermonde appears to grow logarithmically with the number of points.
The basis functions and nodes are depicted in Figure 5.

φ00
φ10 φ01

φ20 φ11 φ02
φ30 φ21 φ12 φ03

φ40 φ31 φ13 φ04
φ50 φ41 φ14 φ05

φ51 φ15...
...... ...

φ jk = Tj(x)Tk(y)

Vandermonde modes (columns) Vandermonde nodes (rows)

(xk,yk)

Fig. 5.1. Modes and nodes associated with curvilinear quadrilateral mapping.

The remaining interior space is then meshed using straight-edged triangles start-
ing with an equilateral grid and then using r-refinement to obtain an spring force equi-
librium mesh similar to the method introduced by Persson [9]. The combination of the
two meshes The PDEs are discretized using a nodal hp-spectral element method [10],
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419 element hybrid mesh

Fig. 5.2. Sample mesh of rounded rectangular geometry where fluid region is thicker in the
corners.

where on the quadrilateral elements, the interpolation points are a Legendre-Gauss-
Lobatto product grid and and on the triangles, we compute nodes to give a small
Lebesgue number [11].

Fig. 5.3. Example solution for the first order correction to the concentration function in a
rectangular column.

Although the methods used presently allow arbitrary polynomial orders in the
Galerkin trial space, in practice quintic polynomials appear to be sufficient to resolve
the solutions well beyond the precision to which the physical parameters are known
for even a moderate number of elements such as in Figure 5. Figure 5 shows depicts
the discontinuity in the first-order correction to the concentration across the the gas-
liquid interface for a simple rectangular column cross section. Although the domain
boundary appears faceted in the plot, this is an artifact or Matlab’s delaunay trian-
gulation surface plotting where the actual numerical approximation is at least globally
differentiable.

6. Conclusions and future work. We have developed analytical means of de-
termining the critical long time behavior of the analyte in the column as well arbitrary
order hybrid spectral elements for numerically solving the relevant PDEs. To date,
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we have validated the numerics for the problem of simple Taylor dispersion in circu-
lar and parallel plate columns. The next phase of the work is to validate the NGC
reduced order model to a full three-dimensional time-dependent code for a simple
geometry and ultimately consider the situations where the column exhibits curvature
or variable cross-sectional area as a function of distance.
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The Nano-to-Micro Interface

The incorporation of nanotechnology into systems with dimensions at the micro-, and
even macroscopic scales is an area of high importance. While it is clear that physi-
cal mechanisms active at atomic dimensions need specialized experimental techniques
and simulation methods in order to be understood and characterized, a degree of
uncertainty exists regarding how nanoscale information can be included within en-
gineering models. In some instances, engineering quantities are ill-defined at this
small scale. Furthermore, even when such translational tools have been developed,
the wise practice of uncertainty quantification has either been performed in a very
limited fashion, or not at all. This section presents articles describing work performed
by NECIS researchers aimed at characterizing and probing the response of advanced
nanoscale materials, often under applied stresses, and integrating the information ob-
tained at the nanoscale into meaningful engineering analysis. For example, the article
by Burgess, Zimmerman and Delph attempts to develop an approach towards model-
ing the nanoscale spatial variation of elastic moduli in materials that contain nanoscale
inhomogeneities. The concept of elastic modulus in inherent to continuum mechan-
ics, but this method, once perfected, should enable engineering materials design to be
performed at the nanoscale. Another example is the article by Vanderzee, Parks and
Knupp, which details work to quantify the bounds associated with the error of using
the quasicontinuum method, a technique for performing coupled continuum (finite
element) and atomistic (molecular statics) analyses. This article presents both accu-
rate estimates on error bounds and new variations on the use of the quasicontinuum
method that minimize these bounds and increase the method’s accuracy. Through
these and other papers, materials models, computational methods, and experimental
capabilities have been developed to convey how physics at the atomic scale impacts
material behavior within continuum and sub-continuum frameworks.

Jon Zimmerman

October 30, 2006
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LOCAL ATOMIC-SCALE ELASTIC MODULI

N. BURGESS∗, J. ZIMMERMAN† , AND T. DELPH‡

Abstract. This paper puts forth a methodology for predicting the elastic moduli in heteroge-
neous materials at the nano-scale via displacement correlation functions calculated from molecular
dynamics simulations. This approach is in the process of being verified for a crystalline material
modeled with the Lennard-Jones inter-atomic potential. The motivation for doing this is to char-
acterize variations in elastic moduli at the nano-scale as well as provide a quantitative measure of
material stability, which can be used to predict the formation of defects.

1. Introduction. The ability to calculate spatial variation of elastic moduli is
essential for providing quantitative measures of when and where defects will occur
in a material as a result of stressing the material. These defects can be inclusions,
voids and crack growth. Calculating the variation of the elastic field at the atomic
scale will also increase the accuracy of continuum material modeling by giving a
mapping of elastic moduli that could be applied to a continuum calculation that would
normally assume the elastic moduli were a constant. A method for calculating elastic
moduli using molecular dynamics (MD) results has already been proposed by Meyers
et al [3]. However, in that work the authors calculate elastic moduli representative
of the entire atomic system. In this paper, we put forth a method to extract locally-
defined material elastic moduli. This method is used to examine systems containing
inhomogeneities. These systems are run with isothermal MD using a Lennard-Jones
inter-atomic potential representative of crystal Argon.

2. Theory. A method for computing the change in elastic moduli for a contin-
uum has been proposed by Yang [7]. We propose to extend this method to the atomic
scale. We wish to determine over what length scale these variations of elastic moduli
are significant. We begin by reviewing equation 6 in [7],

G∗pi (X,x) = Gpi (X,x)−
∫

Ω

[
G∗pj,k (X, r)∆Cjksh (r)

]
,h
Gsi (x, r) dV . (2.1)

In this relation, Gpi (X,x) is known as a Green Function and represents the displace-
ment in the ith direction at material point x due to a unit force applied in the pth
direction at material point X. For clarity, uppercase letters will be used when refer-
ring to the material point at which the force is applied (also called the source point)
while lowercase letters will be used when referring to the material point at which
displacement occurs (also called the field point). G refers to this displacement per
force quantity in the homogeneous material while G∗ refers to the material containing
heterogeneities. The quantity ∆Cjksh (x) is defined as

∆Cjksh (x) = Cjksh (x)− C∗jksh (x) , (2.2)

where C (x) and C∗ (x) are the material tangent moduli evaluated at material point
x in the homoegeneous and hetergeneous materials, respectively.

Equation (2.1) is known as Dyson’s equation, which, upon application of the

∗Lehigh University, nburgess3@mail.gatech.edu
†Sandia National Laboratories, jzimmer@sandia.gov
‡Lehigh University, tjd1@lehigh.edu
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Divergence Theorem and discretization, becomes

G∗pi

(
Xβ ,xγ

)
−Gpi

(
Xβ ,xγ

)
=

Ω
N

N∑
α=1

G∗pj,k

(
Xβ , rα

)
∆Cjksh (rα)Gsi,h (xγ , rα) dV .

(2.3)
In (2.3), the Green’s Functions G and G∗ are now referred to as Lattice Green’s
Functions as they are defined as the tensor field quantifying the displacement of
atom γ due to a unit force applied to atom β. It was shown by Lajzerowicz and
Dobrzynski [2] that Lattice Green’s Functions can be calculated within a molecular
dynamics simulation using the expression

Gij

(
Xα,xβ

)
=

〈
Uα

i u
β
j

〉
kT

, (2.4)

where Uα
i ≡ Xα

i (t)−Xα
i (0), uβ

j ≡ x
β
j (t)− xβ

j (0) and 〈A〉 refers to the time average
of variable A .

While Dyson’s equation is formulated at the atomic scale in (2.3), quantities such
as stress and elastic constants are known to be ill-defined at such scales. We can
recast (2.3) as

G∗pi

(
Xb,xg

)
−Gpi

(
Xb,xg

)
=

Ω
N

N∑
a=1

G∗pj,k

(
Xb, ra

)
∆Cjksh (ra)Gsi,h (xg, ra) dV ,

(2.5)
where ‘a’, ‘b’ and ‘g’ now refer to finite-sized cubic volumes, or cells, that contain an
arbitrary number of atoms. The size of these cells (and the number of atoms contained
within them) can be adjusted such that variations in Green’s Functions and elastic
moduli behave as smoothly varying, continuous functions. It can be easily proven
that these “coarse-scale” Green’s Functions can be defined as

Gij

(
Xa,xb

)
=

〈
Ua

i u
b
j

〉
kT

, (2.6)

where Ua
i = 1

Na

∑Na

α=1 U
α
i , ub

j = 1
Nb

∑Nb

β=1 u
β
j , and Na and Nb are the number of atoms

that lie within cells ‘a’ and ‘b’, respectively.
For this work, the coarse-scale Dyson’s equation is solved to determine elastic

moduli differences within a face-centered-cubic (FCC) material. For all cubic materi-
als, the elastic moduli tensor only contains three independent elements and is known
to have the form

∆Cjksh = ∆λδjkδsh + ∆µ (δjsδkh + δjhδsk) + ∆µ′δjksh, (2.7)

where ∆λ = λ− λ∗, ∆µ = µ− µ∗, ∆µ′ = µ′ − µ′∗, δij is the conventional Kronecker
delta, δ1111 = δ2222 = δ3333 = 1 and δijkl = 0 otherwise.

Combining (2.5)and (2.7) gives a total of 3N unknowns. However, (2.5) makes
it clear that there are 6N2 equations. Therefore the system is inherently overdeter-
mined. Thus, the Least Squares Method [5] is applied in the following way to give
3N equations for 3N unknowns:

[A] · {x} = {b} (2.8)

[A]T [A] · {x} = [A]T {b} (2.9)

Once this has been applied, Gaussian Elimination with partial pivoting is implemented
to invert the coefficient matrix and get the values of the elastic moduli.
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3. Results. Using the code ParaDyn [4], isothermal MD simulations of crystal
Argon (lattice parameter = 5.31Å) were run. These systems were set at a temperature
of 20K, approximately 29% of its melt temperature. A shifted, truncated form of the
Lennard-Jones potential [1, 6] was used for the underlying material model,

φ (r) = φLJ (r)− φLJ (rc)− (r − rc)
∂φLJ

∂r
|r=rc , (3.1)

where

φLJ (r) = 4ε
((σ

r

)12

−
(σ
r

)6
)
. (3.2)

The potential cutoff distance, rc, is set to 8.52055Å. The total system consists of 3,375
unit cells of Argon (15 x 15 x 15), a total of 13,500 atoms. For the homogeneous
system, ε = 0.012023 eV was used for all atomic interactions. For the heterogeneous
system, the central unit cell was designated to contain “stiff” Argon-like atoms, as
compared with the “soft” atoms of the surrounding material. For stiff-stiff atomic
interactions ε = 0.018034 eV, while for stiff-soft atomic interactions ε = 0.014725
eV (the geometric mean of the soft-soft and stiff-stiff ε values). The value of σ =
3.40822Å was used for all atomic interactions.

After bringing the system to equilibrium, atomic positions were output every 20
time steps for 200,000 time steps. At a time step of .001 picoseconds this totals to 200
picoseconds, which should allow for a very large sampling of the phase space of the
lattice. Using the positions as a function of time, the coarse-scale Greens Functions
are generated using a special program developed by the lead author. The spatial cells
used for volume averaging are constructed at the same scale as the FCC lattice unit
cells (5.31Å on a side), and thus contain approximately four atoms each.

For a homogenous system the on-diagonal Greens Functions (G11, G22 and G33

are expected to behave as 1/r from the point of load application. Figure 3.1 indicates
this behavior for the G11 component. For this case, the source point is considered to
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Fig. 3.1. Left: Line plots for G11 with the source cell at the system center. Right: 2-D contour
plot for G11 with the source cell at the system center.

be the central cell. We also anticipate symmetry of the Green’s Functions along any
crystallographic directions. Figure 3.1 also shows a two-dimensional contour plot of
G11 for the homogeneous system evaluated on the z = 0 plane, which indicates that
there is symmetry with respect to the 100 and 010 crystallographic directions. It was



180 Local Atomic-Scale Elastic Moduli

verified that G22 and G33 components displace identical behaviors as well as similar
magnitudes.

Figures 3.2 shows similar line and 2-D contour plots of G12 for the homogeneous
system where the source point is the center cell. These plots no longer display 1/r
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Fig. 3.2. Left: Line plots for G12 with the source cell at the system center. Right: 2-D contour
plot for G12 with the source cell at the system center.

behavior or symmetry with respect to the cubic directions. The reason for this is
unknown, but will be investigated in future work. Also note that the magnitude of
the G12 is an order of magnitude lower than the G11. This may be attributable to a
Poisson-like effect, but needs to be investigated further.

For a heterogeneous system it is unknown how the Greens Functions will behave.
However, we would expect that they will differ only slightly from the homogenous
as we have assumed that the change in elastic moduli goes to zero on the boundary
of the system. In order for this to be true we expect that the heterogeneous Greens
Function be similar to the homogenous Greens Function at and near the boundary.
Figure 3.3 shows line and 2-D contour plots for G∗11, confirming this expectation.
Note that the symmetry of the homogeneous Greens Function (G11) with respect to
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the cubic directions no longer holds. Also, we notice that on the outer edges of the
domain, both the heterogeneous and homogenous Greens Function are approximately



N. Burgess, J. Zimmerman, and T. Delph 181

zero.
The method for computing the Lattice Greens Functions has been proven to

produce reasonable results which leave us to go about the business of solving Dysons
equation. The verification of the lattice Greens Function is a crucial step towards
getting reasonable results for the local elastic moduli. In solving Dysons equation,
(2.5), we have assumed that only the cells surrounding the region of stiffer material
will be affected by its presence and have non-zero values of ∆λ, ∆µ and ∆µ′. Using
a partial pivoting Gaussian elimination technique, values for the elastic moduli were
found for the 27 volumes (cubes) surrounding the defected cell.

Unfortunately the results of the solution of Dysons equation are inconclusive
thus far. Equation (2.2) indicates that because the heterogeneous system contains
stiffer material in the center of the domain, the change in elastic moduli for all cells
should be either zero or negative. However, Figure 3.4 shows some positive changes
in the elastic moduli. In addition, because the inter-atomic potential used for these
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Fig. 3.4. 2-D Contour plots for ∆λ, ∆µ and ∆µ′.

calculations is a summation of strictly pair-wise interactions, the results should display
Cauchy symmetry: λ = µ, λ∗ = µ∗ and ∆λ = ∆µ. However, Figure 3.4 clearly does
not display this symmetry.

4. Conclusions. A method for predicting spatial variations of elastic moduli at
the nano-scale has been formulated, implemented and investigated. The procedure for
computing the Lattice Greens Functions has been verified. However, the method for
computing the change in the elastic moduli still needs improvement and verification.
To date, our predictions for spatial variations in elastic moduli are not consistent with
expectations based on our formulation of the problem. Our calculations show positive
and negative variations in elastic moduli, while the formulation of Dyson’s Equation
presented in the Theory section of this paper indicates strictly non-positive variations
should occur.

The error observed from our calculations could originate from a variety of sources.
The calculations of the coarse-scaled Green’s Functions are based on temporal and
ensemble averages of displacement correlation functions. This statistical method may
contain an inherent flaw. In addition, a single system size (15 x 15 x 15 FCC unit
cells) and cell size (equal to FCC unit cell) were analyzed. Various combinations
of system size and cell size need to be examined. It has not yet been proven that
Green’s Functions are continuous and differentiable at the scale studied thus far.
This assumption needs to be more vigorously verified. Finally, although the line and
2-D contour plots of G11 shown in Figures 3.1 and 3.3 look promising, the lack of
symmetry in the plot of G12 shown in Figure 3.2 may indicate a deficiency in the
formulation of Green’s Functions.
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Once this method is improved, we propose that it could be used to investigate sys-
tems that possess a variety of number and types of heterogeneous defects. Also, maps
of elastic moduli fields could be created for the purpose of conducting a continuum
level analysis to predict material instability.
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PERIDYNAMIC FRAMEWORK FOR SIMULATION OF CRACKS

JOSEPH RIENDEAU∗ AND RICHARD LEHOUCQ†

Abstract. Peridynamics (PD) is a reformulation of continuum mechanics where particles inter-
act with nonlocal pairwise forces. The benefit of using nonlocal forces is that the spatial derivatives
used in continuum mechanics are no longer necessary. This allows us to consider cracks without
prior knowledge of the crack location. PD models have much in common with molecular dynamics
(MD). Our report culminates by demonstrating that PD can be implemented within the MD code
LAMMPS.

1. Introduction. Continuum mechanics makes several fundamental assump-
tion. Some of these assumptions include:

• A ‘point’ has continuous displacement and one stress (where the ‘point’ has
an associated differential area and force)
• Continuous displacement fields
• Tractions inside the body and on the surface must be compatible

Cracking is a phenomena where we can no longer assume that displacement fields
are continuous. The partial differential equations of continuum mechanics require
taking the derivatives of displacement, which may not exist. There are methods that
reformulate the problem, such that the PDEs can still be solved, but this requires
prior knowledge of crack location. In contrast, Peridynamics [2] is a reformulation
of continuum mechanics where particles interact with nonlocal pairwise forces. Since
peridynamics (PD) is a discrete method and traditional continuum mechanics is a con-
tinuous method, we consider some of the differences between discrete and continuous
mechanics.

In the continuum mechanics view, the body has no sub-divisions. This body
consists of differential volumes, where properties are transferred among the differential
volumes by the differential equations that govern the properties. Decomposing the
body into sub-volumes creates elements that have densities of properties that do not
change based on length scale. The discrete mechanics model of the body is a set of
particles connected to each other by potentials. Densities of properties change based
on length scale for discrete systems. For example as the length scale approaches 0 the
mass density of a discrete system is either infinity or 0.

The concept of stress lends itself well to continuum mechanics. Newton’s second
law applied to a bar element for example is

σextAxs +Aσ = 0, (1.1)

where σext is the external force per unit area (stress), Axs is the area the external
stress is applied to, A is the internal area, and σ is the internal stress. Then a
constitutive relation can be used to relate displacement to stress. In a discrete view
the concept of stress is more abstract. Each particle is a point so a force per unit
area is not defined. A pseudo stress can be found by placing a surface in a body and
calculating all of the forces that pass through the surface among particles.

2. Peridynamic Framework. Now we will consider the application of PD to
a 1D system of particles. First we note the major differences between PD and MD. A
PD material has two configurations: the reference configuration, which will generally

∗Renssalaer Polytechnic Institute, riendj@rpi.edu
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be its unstressed state; and the current configuration, which will change with time.
In PD the potential is a function of both of these configurations. In MD potential is
generally a function of only the current configuration, but there are some potentials,
like bonds, that depend on natural lengths as well. In PD if two particles do not
interact in the reference configuration, they will never have an interaction (unless
these particles collide). Two particles that initially interact will no longer interact
if they separate beyond a horizon, or cut-off region. When this occurs these two
particles will no longer interact (unless they collide). Furthermore cutoff distances in
PD are determined in the reference configuration, whereas in MD cutoff distances are
used in the deformed configuration. Another difference is potentials used in PD do
not have to be true inter-atomic potentials. PD, a continuum theory, simulates the
behavior of particles unlike MD that simulates atoms or bonds.

The PD equations of motion are

ρü =
∫

f(η, ξ)dV ′ + b(x, t), (2.1)

where we assume that initial conditions are specified. The vector function f(η, ξ)
denotes the force per unit reference volume squared exerted on a particle x by the
particle x′ in the reference configuration, and the vectors η and ξ denote the rela-
tive displacement and reference position. The following equations summarize these
relationships

y = x + u

y′ = x′ + u′

y′ − y = x′ − x + u′ − u

≡ ξ + η,

where the last vector defines the current relative position between x and x′ in the
Lagrangian or deformed configuration. Refer to Figure 2.1 for an illustration of these
relationships. The vector b(x, t) is the loading force density, and the mass density is
denoted by ρ.

o

PSfrag replacements

η + ξ

ξ

η

x y
x′

u′

u′

u

u

O

y′

Figure 1: Nomenclature of two arbitrary particles at time 0 and time t. O is the origin of some reference system.

and the force density is given as

Lu = µA
∑

x′∈δ(x)

||η + ξ||− ||γ||)
||η + ξ|| (η + ξ)∆L′. (6)

∆L′ is the length associated with the particle and the volume is

∆V ′ = A∆L′ (7)

1 Questions

• How is µ found?

• Is µ related to K (spring stiffness)?

2

Fig. 2.1. Nomenclature of two arbitrary particles at time 0 and time t. O is the origin of some
reference system.
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In order to make this process concrete we fit a simple force equation into the
pairwise force function in Equation (2.1). The potential (per unit volume squared)

Φ(η, ξ) = −µ
2

(||η + ξ|| − ||γ||)2 (2.2)

is used, where µ > 0 is the stiffness per unit volume squared and ||γ|| is the un-
stretched length of this spring. The negative gradient of (2.2) gives a pairwise force
function of

f(η, ξ) = −∇ηΦ(η, ξ) =
µ(||η + ξ|| − ||γ||)

||η + ξ||
(η + ξ). (2.3)

In the equation above γ is set equal to ξ, resulting in the material being pairwise
equilibrated in the reference configuration (f(0, ξ) = 0). This force function acts
within a certain horizon δ in the reference configuration. Any two particles that
separate to a distance larger than δ results in f(η, ξ) = 0.

3. Implementation of 1D Peridynamics. Our example is a bar with a uni-
form cross-sectional area A. This bar has 50 particles that are somewhat arbitrarily
placed throughout the uniaxial length of the bar in the reference configuration. We
associate a volume with each particle. We set the horizon of each particle to be

δ =
3L
50
, (3.1)

where L is the length of the bar. In other words the horizon extends three average
particle distances in any direction. The leftmost particle is forced to have zero dis-
placement. The rightmost particle is free. An approximation to the force density in
(2.1) is ∫

f(η, ξ)dV ′ ≈
∑

x′∈δ(x)

µ
||η + ξ|| − ||ξ||
||η + ξ||

(η + ξ)A∆L′ (3.2)

where ∆L′ and ∆V ′ = A∆L′ are the length and volume, respectively, associated with
the particle x′.

4. LAMMPS Results. Several modifications of the LAMMPS [1] code are
necessary to account for the differences in PD and MD. For this simulation three
changes were made in the LAMMPS code:

• The original locations of particles are stored.
• The bond harmonic potential now uses the reference configuration to deter-

mine the un-stretched length of the springs.
• During the integration step, the pairwise force function is multiplied by the

associated volume.
LAMMPS takes as input: the position of the particles; the volumes associated with
each particle; the initial velocities of each particle; the stiffness per unit volume
squared; the density of each particle; and a list of the interacting particles in the
reference configuration.

Several test cases were run to validate the results of the code. The 1D case
discussed earlier was then simulated. This fairly general case was easy to input and
implement in LAMMPS. The success of the simulation shows that LAMMPS is a
viable tool for PD.
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One might like to run a PD simulation based on data from continuum. Strictly
speaking this is not possible as the PD force function contains information not typi-
cally available in continuum mechanics. If there is already a specified model for the
PD force function, then µ can be specified from stiffnesses. µ is

µ =
κ

∆V∆V ′
, (4.1)

where κ is the spring constant between particles, and ∆V,∆V ′ are the volumes as-
sociated with the two particles. If µ varies for each pair of particles, then LAMMPS
requires separate µ bond types.

5. Conclusions. The similarities and differences between PD and MD have been
discussed. We have demonstrated that PD can be implemented within LAMMPS.
This allows someone familiar with MD to effectively simulate continuum mechanics.
The requirements on the user to run PD code are small, which allows one to quickly
input the required data into LAMMPS for PD simulations. Furthermore the structure
of LAMMPS facilitates user modification of MD potentials or addition of new PD
potentials.

6. Acknowledgements. We thank Michael Parks for his assistance in imple-
menting the changes in the LAMMPS for PD simulations, and Steve Plimpton and
Stewart Silling for helpful discussions.
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CONSTRUCTION OF POLYCRYSTALLINE MICROSTRUCTURES
FOR CRYSTAL PLASTICITY SIMULATION

JOEL STINSON∗, ESTEBAN MARIN† , AND DOUG BAMMANN†

Abstract. This work investigates the use of various geometric tools to create accurate 2–D
and 3–D digital representations of microstructures for use in crystal plasticity simulation. Materials
composed of aggregates of crystalline grains are intrinsically inhomogeneous on mesoscopic and mi-
croscopic scales. In order to numerically simulate these materials accurately realistic representations
of their microstructures are necessary. Existing software is used to create a 2–D mesh using an image
of a real microstructure and three 3–D meshes are created and tested in finite element simulations
using a developed crystal plasticity model. This work represents a mesoscale consideration of poly-
crystalline microstructure and is an initial step towards the use of improved digital microstructures
in crystal plasticity simulations.

1. Introduction. The behavior of polycrystalline materials can be analyzed
based on the consideration of their composition at various size levels. Multiscale mod-
eling attempts to examine materials on small scales and make assumptions that can
be used to simplify simulation on larger scales while still preserving accuracy. Smaller
scales most accurately predict material behavior, but they also require considerably
more computational complexity. Often the increased computation is impractical at
smaller size scales. This work considers crystal plasticity behavior at the grain level,
or mesoscale. At this level, polycrystalline materials are inherently heterogeneous due
to their granular composition and resulting grain boundaries.

Mesoscale studies attempt to create representative volume elements (RVE), which
can be defined as volumes which contain the minimum number of grains required to
accurately predict material behavior. Anything larger and geometrically similar to a
RVE should have the same macroscopic behavior regardless of how many additional
grains are included. Mesoscale crystal plasticity methods explicitly model discrete
grains and slip systems accounting for the anisotropy of single crystal properties and
texture evolution that contribute to the anistropic macroscopic response of crystalline
solids. Slip system level constitutive equations for dislocation glide kinetics and work
hardening are based on phenomenological models. Compared to macroscopic meth-
ods, mesoscopic approaches are more predictive and robust since they take into ac-
count the evolution of crystallographic texture and model both anistropic elasticity
and plasticity. Mesoscale theories use a large number of internal state variables to rep-
resent the material making them more computationally expensive than macroscopic
plasticity models. This has limited their widespread use in the solution of system
level engineering problems. However, as a mesoscale approach these theories provide
a very predictive and robust theoretical framework to better understand polycrystal
behavior and produce improved continuum plasticity models.

When considering materials at the grain level, accurate representation of grain size
and shape, grain boundaries, orientation, and texture can have a significant impact on
the macroscopic behavior of the material. Predictive capability can be improved by
having initial configurations as close as possible to real grain structures when creating
digital microstructures. Most experimentally obtained microstructure information
is in the form of 2–D sections and thin samples. This means that basing a 2–D
digital microstructure on an actual micrograph is relatively straightfoward; software
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is available to create 2–D finite element meshes directly from micrographs. However,
it is more difficult to construct accurate 3–D digital microstructures when only 2–D
micrographs are available. In the construction of a 3–D microstructure sample, the
size and position of the grains, the crystallographic orientation of the grains, and the
boundaries of the grains must all be specified. When using a limited number of 2–D
samples uncertainty will be present in the construction of a 3–D RVE. As a result,
3–D digital microstructures are often created using statistical means to generate the
grain structure rather than using actual micrographs.

2. Microstructure Formulation. The crystal plasticity model used in this
work was formulated to describe the isothermal, quasi-static, large deformation of
polycrystalline materials. The kinematics of this model are based on the elasto-plastic
deformation of single crystals assuming that crystallographic slip is the dominant de-
formation mechanism. The deformation gradient is decomposed into an elastic and
a plastic component with the elastic component being further broken down into an
elastic stress tensor and a rotation tensor. The crystal constitutive equations are com-
posed for finite elasticity and specialized for the case of small elastic strains since FCC
metals usually have elastic strains that are considerably smaller than plastic strains
in well-developed flow. The application of this model to the mesoscale approach used
here can be considered small scale since the materials studied will have significant
heterogeneity of deformation over the dimension of an aggregate of crystals. The final
equations used to formulate the crystal plasticity model are shown below. A detailed
derivation of this model is available [1]. The crystal plasticity model was written as
an abaqus [ABAQUS] user material routine in order to examine the microstructures.

In this work, the OOF2 [OOF2] software developed by the National Institute of
Standards and Technology (NIST) was installed and used in the creation of a 2–D
digital microstructure. OOF stands for “Object-Oriented Finite element analysis of
real material microstructure” and has as its goal the conversion of an image of a
hetergeneous material into a 2–D finite element mesh. With this software, a real or
simulated image of grain structure is used and materials and properties are assigned
to pixels of the image using various color selection algorithms. The real material
micrograph we used is shown in figure 2.1 along with the resulting OOF2 mesh with
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the grains shown in different colors for clarity. This mesh demonstrates the ease by
which an accurate 2–D digital microstructure can be created using a real microstruc-
ture. Unfortunately, we were not able to conduct simulations with this mesh since
our crystal plasticity model is only applicable to 3–D problems. Our intention was
to extrude the mesh elements a small amount to effectively simulate a 3–D mesh and
allow the use of our plasticity model, but this proved to be unfeasible. However, it is
apparent that the mesh closely matches the grain structure of the real material and
should therefore model it accurately. Eventually, methods may be investigated to use
a 2–D mesh of this type based on a real micrograph and extend it to three dimensions
using statistical means to fill the volume.

Fig. 2.1. Real microstructure image and resulting mesh

Three methods were used to simulate 3–D microstructures and create finite el-
ement meshes to be analyzed using the crystal plasticity model. The three meshes
were given the same dimensions of 1 x 2 x 1 in the 1, 2, and 3 directions, respectively,
and were created to have as near the same number of grains as possible. The mesh
with the fewest grains was assigned material properties based on randomly generated
Euler angles given to the abaqus user material routine for the crystal plasticity model.
These materials were then used for the other two meshes of higher grain number with
some materials repeated and assigned to the remaining grains. In this way, all three
meshes were composed of materials of the same Euler angles; however, since the grain
number differs slightly between the three some materials were used more often in some
of the meshes.

The first 3–D RVE was created using simple cubes of brick elements in abaqus
to represent grains. A mesh consisting of 54 cube–shaped grains composed of 2500
abaqus type C3D8 mesh elements was created. This mesh was intended to be the
simplest, least representative digital microstructure. The brick mesh is shown, along
with the other two 3–D meshes, in figure 2.2.

The second 3–D mesh was created using dodecahedra to model grains instead
of simple cube elements. Twelve-sided rhombic dodecahedra of this type are often
used to model materials with equiaxed grain structure due to their ability to fill a
space without voids when stacked. This mesh was created using software from Cornell
University. It consists of 47 grains composed of 480 abaqus type C3D10 elements.

The third mesh was formulated using a voronoi tesselation process and was also
created using software from Cornell University. Voronoi tesselation represents an
attempt to statistically simulate the structure of an aggregate of grains in a poly-
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Fig. 2.2. 3–D RVE meshes (a) Brick (b) Dodecahedra (c) Voronoi

crystalline material. Unlike the brick and dodecahedra meshes, a mesh composed of
voronoi cell elements does not require all the grains to be the same size and shape.
This should make the voronoi elements closer to the inhomogeneous aggregates of
grains in real polycrystalline materials. The cell structure is based on a Poisson point
distribution process in which points are distributed throughout the space and convex
polygons and polyhedra are created around the points to fill the space with simulated
grains. Each point produces a grain that can be assigned material properties and
meshed to the desired resolution. The voronoi mesh used here contains 44 grains
made up of 4500 abaqus type C3D10 mesh elements.

To compare the 3–D meshes, three loading cases were simulated in abaqus using
the crystal plasticity model. The first case was a tensile load applied with a constant
strain rate. This condition was imposed by fixing all the nodes on the lower faces
in the 2 direction. One central node on the lower face was also fixed in the 1 and
3 directions to prevent rigid body movement of the mesh while allowing the base to
deform as a displacement of magnitude 1 was applied to all the nodes on the top face
of the mesh. An amplitude rate input was specified in abaqus for this displacement
to simulate a constant strain rate of 1. The deformed meshes are shown for the brick,
dodecahedra, and voronoi cases in figure 2.3. True stress versus true strain graphs for
these cases are shown in figure 2.4.

The second loading case was a compressive load imposed by again fixing all the
nodes on the lower face in the 2 direction and fixing one central node on the lower
face in the 1 and 3 directions. A displacement of -1 was applied in the 2 direction to
all nodes on the upper face of the meshes again specifying an amplitude rate input to
simulate a constant strain rate, this time equal to -1. The resulting deformed meshes
are shown in figure 2.5, and the true stress versus true strain graphs are shown in
figure 2.6.

The third loading case was intended to simulate shear loading conditions by fixing
all nodes on the lower faces of the meshes in all three directions and applying a
displacement of 1 in the 3 direction to all the nodes on the top face. The deformed
shear meshes are shown in figure 2.7, and the true stress versus true strain graphs are
shown in figure 2.8.

Examination of the true stress versus true strain plots for the different 3–D meshes
and loading cases shows that the brick and voronoi meshes performed similarly. The
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Fig. 2.3. Deformed tensile loaded meshes

Fig. 2.4. True stress vs true strain for tensile loaded meshes

brick mesh showed a slightly higher true stress than the voronoi mesh in all three load-
ing cases, but both appear to model the material’s response with reasonable accuracy.
The difference between the behavior of the voronoi and brick meshes demonstrates
the importance of accurate microstructure representation since simply modeling the
grain structure as simple brick elements changes the resulting behavior of the material
simulation. The dodecahedra mesh appears to be considerably stiffer than the brick
and voronoi meshes producing maximum true stress values from approximately 4 to 6
times higher. The reason for this discrepancy is uncertain and should be investigated
further. The dodecahedra mesh used the same type of mesh element, abaqus type
C3D10, as the voronoi mesh implying that this element type should not have caused
this incorrect result. The dodecahedra mesh did have considerably fewer mesh ele-
ments, only 480, compared to approximately 3500 and 4500 mesh elements for brick
and voronoi meshes; however, it is unlikely that this difference was the sole cause of
the inaccurate behavior of the dodecahedra mesh.

3. Conclusions. Microstructure is an important factor in the determination of
various properties for materials composed of aggregates of crystalline grains. On meso-
scopic and microscopic scales, materials are intrinsically inhomogeneous due to the
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Fig. 2.5. Deformed compressive loaded meshes

Fig. 2.6. True stress versus true strain for compressive loaded meshes

Fig. 2.7. Deformed shear loaded meshes

Fig. 2.8. True stress versus true strain for shear loaded meshes
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presence of grain boundaries. Crystal plasticity theories form the basis of mesoscale
approaches to materials modeling using multiscale strategies. The numerical sim-
ulation and modeling of polycrystalline materials using these theories will be more
predictive if the initial microstructure configuration used resembles realistic grain
structures. Realistic 2–D microstructure information is easily attained experimen-
tally and software is available to generate 2–D RVEs based on real microstructures.
We used the OOF2 software to create a 2–D digital microstructure mesh as an abaqus
type input file. Three different types of 3–D RVE models were also created and were
investigated in abaqus using the developed crystal plasticity model. The brick mesh
and voronoi mesh simulations showed similar behavior producing similar true stress
versus true strain data under tensile, shear, and compressive loading. The dodecahe-
dra mesh exhibited considerably stiffer behavior showing a true stress about 5 times
higher than the other two meshes. The reason for this discrepancy is uncertain at
this time. This work is an initial step toward the use of available geometric tools to
generate and use digital microstructures in our crystal plasticity simulations and to
improve continuum plasticity models through better understanding of polycrystalline
material structure.
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NUMERICAL EXPERIMENTS FOR
LOCAL QUASICONTINUUM ANALYSIS

EVAN B. VANDERZEE∗, MICHAEL L. PARKS† , AND PATRICK KNUPP†

Abstract. The local quasicontinuum method is an important technique for coupling atomistic-
level detail with a finite element method, allowing accurate simulations to be performed on larger
length scales than can currently be modeled with fully atomistic simulation. Though the local QC
method is quite widely used, little work has been done to analyze its error. Here we present some
numerical experiments that assess the accuracy of the local quasicontinuum method and test some
of the existing mathematical analysis. We investigate some of the details of proper implementation
of the local QC method in two dimensions and explore some of the mesh dependencies of the local
QC error. We also suggest the novel concept of using the local QC method near boundaries, demon-
strating that it may be possible to accurately reproduce the atomistic behavior without resorting to
nonlocal QC or full atomistics.

1. Introduction. The local quasicontinuum (QC) method is a popular method
for bridging the gap between the finite element method and nanoscale simulations of
molecular statics [5]. The local QC method has been used to simulate deformation of
solid materials at the nanoscale with some success, but little mathematical work has
been done to analyze the error of the local QC method. Moreover, the mathematical
analysis that has been done is not supported by numerical experiment. We set out
to verify the bounds given in the mathematical analysis that has been done and to
determine whether the actual error is mesh dependent.

2. The One-Dimensional Problem. In one of the initial papers on the nu-
merical analysis of local QC, Ping Lin [2] bounds the error of the local QC method
for a one-dimensional crystal without external forces. In Lin’s model, atoms interact
according to the Lennard-Jones potential

W (α) = 4ε
((σ

α

)12

−
(σ
α

)6
)
. (2.1)

where σ is proportional to the lattice constant of the crystal and ε is a constant de-
termining the strength of the the interaction [1]. The Lennard-Jones potential energy
is a pairwise interaction between atoms, and the variable α represents the distance
between the pair of atoms. Lin introduces the Lennard-Jones potential without the
parameter ε, so we take ε = 1/4 when considering his analysis. For ease of computa-
tion, we take σ = 1, rescaling the units of the lattice constant as necessary.

Lin’s analysis for the one-dimensional problem yields an error bound of the form

‖Uik
− uik

‖ ≤ KNσ
(η

4
F −1

c + F −5
c

)
. (2.2)

Uik
refers to the position of representative atom k (rep. atom k) as computed by the

local QC method, and uik
is the position of the same atom as computed by the fully

atomistic method. The norm, which is either the infinity norm ‖ · ‖∞ or a normalized
2-norm (1/

√
m)‖ · ‖2, is taken over the vector of all rep. atoms k = 1, . . . ,m.

The right-hand side of (2.2) contains a variety of variables defined in Lin [2].
The constant σ is the same that appears in (2.1). η = 2W ′(8σ/5)σ/15 ≈ 0.0262
is a fixed constant — σ cancels out when the expression is expanded. The total
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Fig. 2.1. Local QC Error — Actual vs. Lin’s Bound: (left) m = 12, (right) m = 6.
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Fig. 2.2. Actual Local QC Error

number of atoms in the one-dimensional crystal is given by N . Fc stands for the
cutoff fraction used for local QC. When each representative atom computes its energy
from its 2n nearest neighbor atoms, Fc ≈ n 6

√
2. The constant K is an “arbitrary

constant” that Lin uses in his analysis [2] to quantify the combined effects of several
bounds. For each bound he demonstrates that some constant exists but avoids the
tedium of determining precise values of the constant involved. Lin does not discuss
whether problem parameters influence the optimal value of K. The analysis suggests
that the optimal value of K is influenced by the particular cutoff fraction used, but
there is some upper bound on K independent of cutoff fraction.

Although the mathematical analysis Lin gives of the one-dimensional local QC
method in [2] is quite thorough, he does not check his calculations by performing
numerical experiments. We have implemented the fully atomistic method and the
local QC method in order to compare the results of the two methods and see whether
the bounds he gives hold up in practice. An explicit value for K is necessary for this
endeavor. In Lin’s analysis K ≥ 1.557 is reasonable. In our preliminary experiments
we found that K = 0.05, though much smaller, was more than sufficient to bound
the actual error of the method. Figure 2.1 shows the results of numerical experiments
with N = 96. The number of elements is m = 12 for the graph on the left and m = 6
for the graph on the right. K = 0.05 is used to graph the error bounds.

It is worth noting that Lin’s analysis only bounds the error for the position of
the rep. atoms. The assumption of the local QC method is that all atoms within
an element are equally spaced. This assumption breaks down at the ends of a one-
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dimensional crystal, where surface effects come into play. Because Lin places rep.
atoms at the center of the one-dimensional elements, he does not need to worry much
about the surface effects. The graphs in Figure 2.2 show two different views of the
error of the local QC method, using the assumption of equally spaced atoms within
elements to compare the solution at all atoms. The error is computed as the value of
a quantity as computed by the local QC method minus the value of the same quantity
as computed by the fully atomistic method. For the left the quantity compared is the
position ui of each atoms. The right graph shows the error in ri+1/2 = ui+1 − ui, the
distance between adjacent pairs of atoms. This graph, in particular, shows that the
greatest error is made near the surfaces of the one-dimensional crystal.

Besides being somewhat limited in bounding the error only at rep. atoms, Lin’s
analysis is limited in that it applies only to the case of no external forces. We are
curious about how well the local QC method approximates the solution under moder-
ate external force. Figure 2.3 shows the actual local QC errors when a force of 0.4 is
applied at atom 52, one of the rep. atoms near the center of the crystal. The graphs
are the same types as those in Figure 2.2. The error is significantly greater, but the
local QC solution is still reasonable. It is interesting to note that the largest errors
are not near atom 52, but rather near the atom fixed at the origin.

3. The Two-Dimensional Problem. Lin analyzed the two dimensional case
in [3], and we wanted to check the bounds he gives for this case as well. Thus we
implemented local quasicontinuum and the fully atomistic method in two dimensions.

Most of our tests were performed on a 49 × 49 grid of atoms. It would be good
to use a larger grid for testing as well, and there are plans to do such testing in the
near future, but this grid size allowed us to find solutions fairly quickly using limited
computer resources. The grid, which has a spacing of (r0 + r1)/2, where r0 is the
point at which the Lennard-Jones potential reaches its minimum value and r1 is the
point of inflection of the Lennard-Jones potential, is shown in Figure 3.1 on page 197.
For boundary conditions for the problem we fixed the boundary atoms of this grid in
place. We also used this grid as our initial condition as well, since Lin’s analysis led
us to believe that there was a solution fairly near this configuration.

It should be noted that an unconstrained regular square grid (i.e., with no bound-
ary conditions) is not a stable configuration of the Lennard-Jones potential. A trian-
gular lattice, on the other hand, is a stable configuration. We chose to impose these
boundary conditions and use this initial condition in order to satisfy assumptions of
Lin’s analysis. The algorithm to minimize the energy computed with full atomistic de-
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tail, which uses Newton’s method, converges to a solution in just a few iterations; the
solution of the fully atomistic calculation is very near the initial condition. Looking
at a graph of the location of the atoms at the atomistic solution, it is difficult to see
any difference between the initial condition and the atomistic solution. The atoms do
adjust a small amount, however. Figure 3.2 shows the norm of the difference between
the final and initial locations of each atoms as a function of the initial position of
the atoms. As one might expect, the surface effects near the edges cause the atoms
nearest the edges and corners to move the most.

3.1. Partial Atoms Per Element. When initially implementing the local qua-
sicontinuum for the two-dimensional problem, we used an algorithm that assigned
each atom to a unique mesh element. The representative atom of the element was
considered to represent the energy of every atom assigned to the element. Thus each
representative atom represented an integer number of elements. It seemed from Lin’s
analysis that this is what he intended should be done.

After working with this assumption for quite some time, we discovered, however,
that one can get much more accurate solutions using a fractional number of atoms
per element. Using an idea derived from the quasicontinuum overview of Miller and
Tadmor [4], we changed our local quasicontinuum code such that each representative
atom represented a number of atoms equal to the total number of atoms multiplied
by the area of its element as a percentage of the total area of the domain. The
difference was remarkable. Figure 3.3 compares the norm of the error of the local
quasicontinuum solution for the same mesh using an integer number of atoms (left)
and a fractional number of atoms (right). The largest error is more that five times
larger using an integer number of atoms than using a fractional number of atoms.
The error graphed here and elsewhere in this paper is the Euclidean norm of the
distance between the location of the atom at the local quasicontinuum solution and
the location of the atom at the fully atomistic solution. The quantity is computed
at each atom and graphed as a function of the initial location of the atom (i.e., a
Cartesian grid with spacing (r0 + r1)/2).

The result was not unique to this mesh, either. For every mesh that we tried,
the error was significantly smaller when using a fractional number of atoms than
when using an integer number of atoms per element. In fact, for several fairly refined
meshes, the local QC energy minimization algorithm would not converge when we
used an integer number of atoms, but did converge when we used a fractional number
of atoms. We also observed that for meshes in which every representative atom was
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Fig. 3.3. Integer vs. Fractional Number of Atoms

more than a cutoff radius distance from the boundary, when a fractional number of
atoms was used, the uniform grid of the initial condition was the local QC solution.
We expect this to be universally true. When an integer number of atoms was used,
the initial condition was never the local QC solution, and the maximum error was
more than five times as much as at the initial condition.

Another concern we had with using an integer number of atoms was that the
local QC solution did not reflect symmetry of the underlying mesh. In contrast to the
solution in Figure 3.3(a), the solution shown in Figure 3.3(b) has symmetry across
the x and y axes. The underlying mesh, a more refined version of the mesh shown
in Figure 3.4(b), exhibits the same symmetry. This is an example of the general
observation that the local QC solution does reflect the symmetry of the mesh when
the number of atoms is a fraction assigned according to the area of the mesh elements.

3.2. Mesh Dependence. One purpose of our local QC investigation was to
determine whether the local QC solution depends on the choice of mesh in any sig-
nificant way. Lin’s error bound, though somewhat mesh dependent, does not capture
the influence of the mesh. The error bound he gives can easily be bounded above by
an expression that involves only the largest triangle edge in the mesh and the cutoff
radius. In order to test the mesh dependence of local quasicontinuum, we tried several
meshes based on each of three main triangle shapes.

The coarsest mesh used for each triangle shape is shown in Figure 3.4. Most
atoms of the mesh are shown in blue, but representative atoms are green, and atoms
that are nodes of mesh elements are red. The element edges are drawn in red over-
laying the atomic grids. The cutoff radius we used for our tests was 3r1 ≈ 3.733, so
each representative atom takes into account about three atoms in any direction when
calculating its energy. Note that for meshes one and two at the coarsest level, every
representative atom is more than three atoms distant from the boundary. These rep-
resentative atoms do not sense any surface effects, since their cutoff disk is completely
filled with atoms.

When the meshes are further refined, however, the local quasicontinuum does take
surface effects into account. The position of the representative atoms relative to the
surface and the shape of the elements near the surface are important in determining
how accurately a representative atom reflects the average energy of the atoms it rep-
resents. Figure 3.5 shows the norm of the error per atom at the local quasicontinuum
solution for the finest meshes (twelve elements per boundary edge) of types one and
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Fig. 3.4. Coarsest Meshes of Each Triangle Shape

two.
The results for the mesh composed of right triangles (Figure 3.5(a)) are excellent.

Except for the two corner triangles that are fixed in place at the northwest and
southeast corners of the mesh, the error is quite small. The results are not as good
for the mesh with nearly equilateral triangles (Figure 3.5(b)), but the results are not
terrible either. These are encouraging results, and we suspect that it may be possible,
particularly if the mesh and representative atoms are well chosen, to resolve surface
effects with fair accuracy using the local quasicontinuum method. This would be a
novel result; historically those who use local quasicontinuum have suggested that it is
inappropriate to use the local quasicontinuum method near boundaries and claimed
that resorting to nonlocal quasicontinuum or fully atomistic calculation is necessary.

There still is some concern about the convergence of the local quasicontinuum
method, however. The results shown in Figure 3.5(b) are for a solution that is not
fully converged. The particular implementation of optimization algorithm certainly
influences the convergence properties, and it is possible that a different optimization
algorithm would yield better results. Our local QC implementation used the conjugate
gradient method to minimize the energy, and the energy near the local minimum we
are trying to find is barely changing more than roundoff error. It might be more
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Fig. 3.5. Results for Finest Meshes

effective to use a more explicitly Newton-like method that seeks a zero of the gradient.
The solution shown here is the iterate with minimum norm of the gradient found by
the conjugate gradient method. The norm of the gradient at this point is slightly
smaller than 0.01. Starting from this point and any other point we’ve tried, the
conjugate gradient method converges to a nonphysical configuration of smaller energy
than the local minimum we seek, in each case corresponding to some configuration
that inverts elements and moves most interior atoms outside of the boundary atoms.

This concern about convergence of the local quasicontinuum gives pause with
regard to Ping Lin’s analysis, though. It may be possible to improve convergence
by using a different optimization algorithm. Perhaps it would help even to change
the conjugate gradient implementation to use the standard gradient modification of
Fletcher and Reeves instead of the alternative formula of Polak and Ribiere, which we
used here. Regardless, the difficulty in converging to the local minimum suggests that
there is little local convexity near the minimum. Lin takes great care in his analysis
to make assumptions that lead to the local convexity of the energy, allowing him to
conclude that the minimum we seek exists and is unique. It is unclear where Lin’s
assumptions might break down in this case.

In any case, it is interesting to note the differences between the two solutions
shown in Figure 3.5. With the mesh for shape one, the error is much smoother and
somewhat less than the error for shape two. Although it’s hard to see from 3.5(b), the
largest errors for the shape two mesh are along the north and south boundaries, with
much less error along the east and west boundaries. We do not completely understand
the causes for the differences between these results, but we believe that the placement
of representative atoms and the shape of the elements near the boundary are crucial.
It is likely that some of the thin elements near the north and south boundaries of
the shape two mesh are “overestimating” surface effects. This phenomenon is not as
evident, however, in the shape three mesh result (not shown), so further investigation
is necessary.

3.3. Lin’s Error Bound. One goal of the study was to see how accurate Lin’s
bounds are for a two-dimensional material. The bound Lin gives involves several
constants, and it is nontrivial to determine appropriate values for those constants. It
is possible, though, to compute the error that Lin is trying to bound. Figure 3.6(a)
shows the results of these computations, summarizing the error for the three different
triangle shapes at different levels of refinement.
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Fig. 3.6. Summary of Local QC Errors — Lin’s Error Norm

h in the graph refers to the length of the longest edge in the mesh, shown here
as length in the same units as σ. (Recall that we took σ = 1.) The error Lin uses
is a Euclidean norm scaled by a factor for the number of atoms. Also, his bound
is for a sum of the norm of the positional error with the norm of the error of the
discrete derivatives with respect to x and y. It is interesting to note that the discrete
derivatives he computes for the atomistic solution are mesh dependent. Thus even
though the local quasicontinuum solution is the same (coinciding with the initial
condition) for the largest two meshes for triangle shape one, the error as computed
for Lin’s bound is different.

The errors shown here are not unreasonable according to the bound given by Lin,
especially since the constants he gives may be fairly large. These results are much
less satisfying than the results in one dimension, though. As mentioned earlier, the
bound Lin gives can be bounded above by a simple expression involving the largest
edge of the mesh (i.e., h) and the cutoff radius. Since we have used the same cutoff
radius for all our numerical experiments, this reduces to a linear function of h in our
case. The results, however, are quite irregular. It is impossible to discern any sort of
linear trend in the actual errors. One might suppose that Lin was assuming an integer
number of atoms per element and that the error trend depends on that assumption.
However, Figure 3.6(b) shows the errors for the tests we did in that case, and there is
no obvious linear trend for that situation either. Furthermore, one can compare the
error between the cases of using a fractional number of atoms and using an integer
number of atoms, verifying the earlier claim that using a fractional number of atoms
reduced the error in every case.

4. Conclusion. We have performed some interesting and enlightening experi-
ments for the local quasicontinuum method in both one and two dimensions. The
results in both one and two dimensions suggest that it may be possible to carefully
use the local quasicontinuum method to accurately estimate the atomistic solution
near boundaries and under moderate levels of force. This is an exciting possibility
which we hope to investigate further.

Working in two dimensions it became clear that the local quasicontinuum method
produces a much better result when representative atoms are assigned a fractional
number of atoms according to the volume of the containing element rather than an
integer number of atoms. We also notice some interesting differences between the
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results that depend on the mesh that is used. We wish to study this in more depth
and learn more about how the mesh used affects the accuracy of the results.
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The Nano/Bio Synergy

This target area supports Sandia’s growing efforts in biology, leveraged by its tra-
ditional strengths in engineering and modeling. Bio-inspired solutions to physical
science and engineering problems also fall within this area’s scope.

We note that adding biological cells or molecules to nanosystems creates several
new challenges both for experiement and modeling. First, the systems become more
complex: solids plus fluids, semiconductors plus organic materials, etc. Second, new
kinds of interfaces are formed and must be understood. And third, biological molecules
are big, move at slower timescales, and their atomic-level interactions with other
materials and water are not as well characterized as they are for traditional MEMS
materials (semiconductors, metals, etc).

The papers in this section deal with various aspects of these challenges. The first
paper by Hinze and Bennan describes a lock-in amplifier designed to control a micro-
biodetector used to analzye molecular components of saliva. The paper by Marshall,
Medlin, and Batasz describes work on metal-insulator-semiconductor sensors for hy-
drogen containing gases. The sensors include organic self-assembled monolayer (SAM)
coatings which boost their specificity by controlling surface chemistry.

The final 3 papers are modeling oriented. Mehne and May developed a JAVA-
based took for visualizing the metabolic networks of cells and the output of their
dynamic simulation in the Xyce electronic circuit simulator. Mukherjee and Crozier
describe rigid-body dynamics algorithms they added to the LAMMPS molecular dy-
namics package via RPI’s POEMS toolkit to enable large protein molecules to be
simulated in a coarse-grain fashion at longer timescales. Finally, the paper by Shut-
tleworth, Howle, Long, Templeton, and Tuminaro discusses a class of numerical meth-
ods (block preconditioners) used to speed-up the solution of the Navier-Stokes fluid
equations for electro-osmotic systems. This kind of fluid flow is of particular relevance
for micro-fluidic channels that transport biological molecules and cells.

Steve Plimpton

October 30, 2006



204 NECIS Summer Proceedings 2006



NECIS Summer Proceedings 2006 205

QUANTUM DOT BIOCONJUGATES FOR CANCER DETECTION
USING µCHEMLABTM

O. ELBOUDWAREJ∗ AND V. VANDERNOOT†

1. Introduction. The use of quantum dots (QDots) as fluorophores in biomed-
ical research is rapidly expanding due to their unique optical advantages over tradi-
tional fluorescent dyes. QDot properties include strong resistance to chemical- and
photo degradation, large extinction coefficients (∼10-100x that of organic dyes) that
allow for excitation at low light intensity, high resistance to photobleaching over min-
utes or hours, and broad absorption with narrow emission spectra [1]. This offers a
significant advantage over organic fluorophores that tend to have narrow absorption
spectra, broad absorption/emission profiles, and low photobleaching thresholds.

Given that in vitro studies have shown QDots to be relatively non-toxic in an-
imal cells, these fluorophores can be used to study cellular activity and detect the
presence of enzymes. One promising application of QDots is the detection of cer-
tain proteases that play a role in cancer progression. Specifically, cancer cells use
proteolytic degradation of the extracellular tissue matrix as a means of migrating to
neighboring healthy tissues; since proteases allow cancers to metastasize, high levels
indicate poor clinical outcomes for patients.

The detection of the protease is done indirectly through the formation of a
QDot bioconjugate. The water-soluble surface of QDots allows for binding to tar-
get molecules and stable complex formation. The molecular rearrangement created
by binding of the QDot to an organic dye molecule leads to a shift in the emission
profile of the QDot that indicates conjugation. The presence of a protease that cleaves
the peptide linkage between the two fluorophores would diminish the emission shift
over time and create free QDot molecules that would fluoresce at their conventional
wavelengths. The narrow emission spectrum of free QDots minimizes overlap with
the conjugate compound and allows greater sensitivity for protease detection.

In order to really make use of the Qdot approach for protease profiling and cancer
staging, we need to have an instrument to assay for protease activity. The chemical-
analysis system being used to detect QDot fluorescence is Sandias µChemLabTM

since the natural fluorescence of these agents makes a fluorescent platform like the
µChemLabTM ideal (see Figure 1.1). This microfluidic system is smaller than bench-
top-sized CE instruments and its portability allows for bedside medical diagnosis of
patients. The advantage of the µChemLabTM for protease detection is that as little
as 5-10 µL of sample are required for analysis and the speed of the sample analysis
(the µChemLabTM has the ability to run currents of up to 100 µA at 5000 V) makes
it possible to get accurate results for protease activity without worrying about the
effects of enzyme denaturation at room temperature [2]. Unlike commercial benchtop-
sized microfluidic instruments that require the microfluidic chips to be replaced after
several analyses, there is no limit to the number of analyses that can be run on
theµChemLabTM on a daily basis. All of these µChemLabTM characteristics make
the QDot approach to cancer detection a practical technique in the real world.

2. Materials and Methods.

∗University of California at Berkeley
†Sandia National Laboratories
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Fig. 1.1. TheµChemLabTM system which combines electrophoretic separations with sensitive
laser induced fluorescence detection.

2.1. Quantum Dot synthesis. The quantum dots used are colloidal nanocrys-
tals prepared by adding a tri-butyl phosphine buffer containing Cd(CH3)2 and Se to
a flask containing tri-octyl phosphine solvent (TOP) and tri-octyl phosphine oxide
(TOPO) ligand. The mixture is heated to 360◦C and the precipitate that forms is a
QDot with a highly crystallized CdSe core and a protective ZnS shell that prevents
oxidation and creates a quantum confinement effect. Since these QDots are not in-
trinsically water soluble, surface functionalization is required through the addition of
hydrophilic ligands. Specifically, a silane shell can be created in which the thiol end
binds to the QDot and the opposite polar end favorably interacts with water. This
silanization process not only increases water solubility but the silane groups also serve
as points of attachment for other functional groups (i.e. amines, carboxylic acids) that
can create a charged surface. The QDots used in this study were negatively charged
with phosphate groups.

2.2. QDot Bioconjugate. Rhodamine 6G (R6G) was the organic dye molecule
the QDot was complexed with. The R6G was covalently bonded to an antigen and
the antigen-R6G complex was attached to the QDot through a cross-linker. The
QDot was added to the cross-linker in NaPi buffer (pH= 7.45) and allowed to react
for one hour. A buffer exchange was then performed in which free cross-linker was
separated from the QDot-cross-linker conjugate through a microfilter. The antigen-
R6G complex was then added to the concentrated solution of 1 µM QDot-cross-linker
and allowed to react overnight before doing any analysis (Figure 2.1). The protease
used to cleave the antigen-R6G complex from the bioconjugate was an enzyme specific
for the antigen.
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Fig. 2.1. Formation of the QDot bioconjugate.

2.3. Detection system. The samples were pressure injected onto a fused-silica
microfluidic chip to perform capillary zone (CZE) and capillary gel electrophoresis
(CGE) separation using laser-induced fluorescence (LIF) detection. LIF detection
sensitivity of QDots was at nanomolar (10−9) concentrations, but detection limits for
the protease were not determined at the time of this writing. The free QDot molecules
were initially tested in the µChemLabTM to create a library of their migration times.
There is a different fluorescence for each class of QDots depending on size of the
particle; increasing size tends to redshift the emission spectrum. The four detectors
used for the different QDots were the purple (∼400 nm), 488 nm, 532 nm, and the
red (∼635 nm).

3. Results and Discussion. Individual sample analysis of the QDot and R6G
was done using CGE because of the negatively charged nature of the molecules. Thus,
movement was determined primarily by particle charge since the viscosity of the
sodium dodecyl sulfate buffer minimized the effects of electro-osmotic flow:

Detector Analyte Migration Time (sec)
Purple/488 nm QD490 210

Purple QD465 204
488 nm QD515 185
488 nm Rhodamine 6G 191
532 nm Y41 351
532 nm QD600 192
532 nm QD630 200
532 nm G55 345

Red 675 blank result
Red 625 blank result

QD490 was used to make the QDot bioconjugate. Gel electrophoresis revealed
that the negative charge of the QD490 was negated when complexed with the PSA-
R6G. This problem was overcome by using CZE for sample testing so that the electro-
osmotic flow would transport the bioconjugate through the channel in the microfluidic
chip. To test if there was a shift in the emission profile, the sample was first tested
on a fluorimeter and a shift in the emission spectrum was detectable, indicating that
the bioconjugate was functioning. The sample was then diluted to 40 nM and tested
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on the µChemLabTM (see Figure 3.1). The sharp peak at 49 sec appears to be free

Fluorescence of 40 nM Qdot490 bioconjugate in 532 nm detector
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Fig. 3.1. QDot bioconjugate migration in µChemLabTM

PSA-R6G dye that failed to complex while the small broad peak at 57 sec corresponds
with the QDot bioconjugate. The sample was not tested with PSA enzyme at the
time of this writing to see if there was a shift in the relative magnitudes of each peak
that would indicate protease activity.

4. Conclusions. Research done up to this point indicates that the QDot bio-
conjugate works and that the emission shift can be detected on the µChemLabTM.
Additional research needs to be done with PSA enzyme to see if protease activity can
be detected and what the sensitivity levels are on the µChemLabTM. The indirect
detection of such proteases is appealing because such information could lead to earlier
cancer detection, especially given that certain proteases are expressed before tumors
are visible. Other uses include assessing the stage of cancer development and deter-
mining the effectiveness of protease inhibitors as a class of cancer drugs. There is also
the possibility of developing “multichannel” assays where multiple enzymes may be
detected if there is minimal spectral emission overlap. Current migration times would
tend to obscure individual behavior.
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LOCK-IN AMPLIFIER FOR THE NIH BIODETECTOR

B. HINZE∗ AND J. BRENNAN†

Abstract. I have developed a small embedded lock-in amplifier for the NIH Biodetector. The
lock-in controls the laser stimulus, processes the signal, and communicates digitally with the other
electronics and computer. The heart of the lock-in is a 100 MHz TMS320F2808 DSP chip which
interfaces with the main board using an I2C bus, and controls the 16 bit ADC and digital poten-
tiometer through a SPI. The parameters of analog offset and gain are controlled digitally from the
computer. Once the signal is converted from analog, all signal processing remains digital thus reduc-
ing analog circuit noise. Although the lock-in is not yet field tested, preliminary simulations indicate
that overall processing delay is 0.1 seconds, and the signal to noise ratio is improved 300 times.

1. Introduction. The lock in amplifier that I am designing will work in the
NIH Biodetector used to detect diseased molecules in a patients saliva. In the Biode-
tector fluorescent tagged antibodies mix with saliva and flow through a channel in
a microchip under electrophoresis. The antibodies attach themselves to biomarkers
present in the sample. These pairs separate from other molecules as they flow through
the channel. A blue laser excites the pairs into producing a green fluorescence. A
PMT receives this fluorescence and converts it to a voltage signal. The magnitude
of this voltage ultimately determines the concentration of biomarkers in the sample,
therefore indicating if the sample is diseased [2].

Fig. 1.1. NIH Biodetector

Fig. 1.2. Fluorescence experimental apparatus

The fluorescence from the sample can be very weak, with a great deal of optical
and electrical noise present. This can make an accurate reading difficult. Using the

∗San Jose State University
†Sandia National Labs
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techniques of a lock-in amplifier the signal quality is greatly improved. A lock-in
modulates the experimental stimulus at a given frequency, and then demodulates the
response, thereby eliminating noise at other frequencies.

2. Noise and the Lock-In. Noise can be separated into two main categories.
Deterministic noise is caused by known voltage signals and EM fields in the lab and
typically has a discrete frequency spectrum. Random noise is caused by thermal and
electronic randomness and is spread out through the frequency domain.

• Deterministic Noise: Effects of stray electromagnetic fields
◦ Line noise from lights and outlets at 60Hz and harmonics
◦ Capacitive coupling from switched mode power supplies, pulsing lasers,

or other time varying voltage or EM field
◦ Stray light incident on the PMT from laser or other source

• Random Noise: Inherent in natural and electrical systems [4]
◦ Vnoise(rms) = α/f 1/f noise
◦ Vnoise(rms) =

√
4kTR∆f Johnson noise

◦ Inoise(rms) =
√

2Iq∆f Shot noise
Deterministic noise can be reduced by careful design of the experimental equip-

ment. The 60Hz line noise is reduced by isolating the power supplies and lights from
the experiment. Separating signal and control lines and filtering stray light will also
reduce this noise.

Random noise is more difficult to deal with. The greatest noise voltage is at low
frequencies. As seen in Figure 2.1, (for the random noise in an op-amp) flicker noise
is dominant at low freq and decreases with 1/f until the broadband white noise takes
over. This can cause problems because the fluorescence signal changes very slowly,

Fig. 2.1. Random noise in an op-amp [1]
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having a frequency on the order of 1 Hz.
But, using the lock-in technique the signal is raised to a higher frequency. A Lock-

In modulates the experimental stimulus at a given frequency, and then demodulates
the response, thereby eliminating noise at other frequencies.

3. Lock-In Design Goals.
• Highest Signal/Noise possible
• Small as possible
• Precise digital control of analog gain and offset
• Digital data out through I2C bus
• Automatic laser modulation

4. Design Choices.
• Analog section uses precise, low noise components:

◦ Low noise amplifier for analog gain: LT6234
◦ Digital potentiometer to control gain and offset: AD5235
◦ Anti-aliasing filter to condition signal for ADC: LTC1569

• Analog to digital converter is the 16 bit ADS8327 sampling at 10kHz with a
range of 4.096 volts
• Microcontroller is the 100MHz, 32 bit TMS320F2808 DSP chip

◦ Pulses laser at 220Hz
◦ Communicates with ADC and digipot through SPI
◦ Communicates to the main board through I2C
◦ Digitally demodulates and filters response with 2000th order FIR filter
◦ Fully programmable using C and Assembly language
◦ Processor runs at 50Mhz and consumes around 400mA power

• Goal is to eventually fit the circuit on a 2X1.5 or smaller board

Fig. 4.1. Lock-in block diagram

5. Lock-In Simulations. My lock-in design began with a number of Matlab
simulations [3]. These show how the lock-in works as well as the predicted improve-
ments on the signal to noise ratio. Figure 5.1 and Figure 5.2 below show an ideal
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signal, and the same signal as it appears lost in noise. In order to transform the

Fig. 5.1. Ideal output signal

Fig. 5.2. Signal with noise more than 4 times greater

response out of the noise the microcontroller modulates the pulsing of the laser at
220Hz. Figure 5.3 below is a close-up view of the pure response signal after modu-
lation. The signal travels through the analog gain and offset and anti-aliasing filter.
The job of the analog components is to prepare the signal for the 16 bit ADC. The
TI chip receives the digital signal from the ADC through an SPI. The TI chip then
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Fig. 5.3. Close up view of modulation

digitally demodulates the signal by multiplying it by a 220Hz sine wave. In accor-
dance with equation (5.1) below, components of the signal around 220Hz are mapped
to DC, and other frequency components are mapped elsewhere.

Vsig cos (ωs)Vdem cos (ωd) = VsigVdem [cos (ωs + ωd) + cos (ωs − ωd)] (5.1)

After the demodulation a low pass filter cancels all higher frequencies to yield the

Fig. 5.4. Frequency Domain plot of the demodulated signal showing the transformation of DC
noise to 220Hz and the 220Hz signal back to DC.

original signal. Im using a 2000th Order Finite Impulse Response Low Pass Filter.
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It multiplies the last 2000 points of the input by coefficients, as shown in Figure 5.5
below, to pass only a narrow bandwidth around the signal.

Fig. 5.5. The 2000th order FIR DSP Filter.

6. Conclusions. Shown in Figure 6.1 is the final output, filtered from noise.
The signal to noise ratio is improved ∼300 times. Delay of signal reception due to

Fig. 6.1. The final output; signal to noise is improved 300 times.

the filtering is 0.1 seconds. Data points are produced 50 times a second.
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Improvements: Lock-In performance can be improved by keeping noise around
220Hz to an absolute minimum. Therefore, the pulsing laser and control wires should
be isolated from the output.

Trade-offs: Noise takes time to filter out. A more accurate reading will require
more time. Also, if the experimental signal itself has a large bandwidth then it can
be difficult to resolve with accuracy.
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DESIGN AND FABRICATION OF ROBUST GAS SENSORS USING
METAL-INSULATOR-SEMICONDUCTOR DEVICES

STEVE MARSHALL∗, WILL MEDLIN† , AND ROBERT BASTASZ‡

1. Overview. The ability to selectively detect gases in mixed environments us-
ing inexpensive tools is a highly sought after venture. Transformer headspaces, hydro-
gen fuel cells, and hydrogen plasmas are just a few environments where the detection
of hydrogen and hydrogen containing compounds by a robust sensor would be very
valuable. Metal-insulator-semiconductor (MIS) sensors represent a potential means
to cheaply allow for the real-time detection of these gases. These devices were first
discovered in the 1970s and have been the topic of ongoing research today.

MIS sensors utilized are thin film capacitors which consist of a layer of doped
silicon and a layer of a catalytic gate metal separated by a thin (< 100nm) layer
of silicon dioxide. For the work described here, n-type silicon is utilized; however,
p-type silicon would work as well. When a gate metal is used that can dissociate
hydrogen, such as Pd, Pt, or Ir, hydrogen atoms adsorbed on the surface can diffuse
to the metal-SiO2 interface and cause a shift in the capacitance-voltage (CV) curve
for the device. Responses are commonly characterized by measuring the change in
voltage required to maintain a constant capacitance at the inflection point of the CV
curve. Previous work has shown that the change in the CV curve is related to the
hydrogen partial pressure for many decades of hydrogen pressure [3]. Due to the high
sensitivity of these devices, large surface areas are not required, which makes the use
of MIS sensors amenable to gas sensing within small spaces in machinery such as
transformers and reactors.

Despite the sensitivity of these devices for hydrogen, numerous drawbacks have
prevented their widespread use. A major drawback is in the nature of the catalytic
gate metal. Metals such as Pd and Pt excel at dissociating hydrogen; however, they
also excel at catalyzing less desirable reactions. Species such as oxygen, CO, and
unsaturated hydrocarbons can react with hydrogen or directly react with the surface
to change the response. In some cases, this action allows for detection of gases other
than hydrogen; however, it adds complexity to interpreting sensor response and can
mask the presence of hydrogen. Many solutions to this problem have been proposed
including the use of thin oxide coatings [1] and polymers [6] to filter out the effect
of contaminant gases. Current work focuses on the use of alkane thiol self assembled
monolayer (SAM) coatings and bimetallic gate metals to tailor surface chemistry and
control these effects.

2. Sensor Fabrication. Sensors are prepared by evaporating material via a
dual electron beam evaporator (Angstrom Sciences, EBES-67369) at Sandia. In this
system, metals are evaporated using a high power electron beam. The beam is pro-
duced using a 10kV filament with a typical power output around 300W and positioned
onto metal inside a crucible using magnetic and electric fields. The use of these fields
allows the beam to be bent out of the trajectory of ionized and accelerated atoms,
preventing sputtering and contamination of the sample. Electrons striking the metal
impart energy and cause the metal to melt and evaporate. Close monitoring of the

∗University of Colorado at Boulder
†University of Colorado at Boulder
‡Sandia National Laboratories
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filament current allows for control of the deposition rate with precisions of approxi-
mately 0.5 A/s. The system at Sandia contains two electron beams to allow for the
simultaneous depositions of two metals to form disperse alloys. Controlling the de-
position rate of one metal in relation to the other allows for the creation of precise
weight percentages.

The deposition rates and thicknesses are measured using a system of three quartz
crystal microbalances (QCM, Inficon XTC/2): one for each of the individual metal
contributions and one for the substrate. The QCM works by measuring changes in the
resonant frequency of a quartz crystal. In the simplest case, the change in resonant
frequency of the quartz crystal on addition of metal to the crystal surface is linearly
related to the mass of material added. This relation allows for the simple calculation
of the thickness of the layer (assuming uniform deposition) and the rate of deposition.
Both of these operations are performed automatically within the Inficon device.

Substrates consisting of a 4” diameter n-type (10 ohm-cm) Si wafer with 50nm
SiO2 on top and a 200 nm ohmic contact (Al) on back are utilized for the initial
deposition and then diced to 1/8” x 1/8” squares to make individual sensors. Met-
als deposited on these substrates include Pd, Pd/Ni, Pd/Cu, Pd/Ag, and Pd/Au.
Contacts on the deposited metal side are formed using conductive epoxy. Sensors
prepared at Sandia will be tested with a custom flow cell device and a variety of
surface techniques at the University of Colorado such as temperature programmed
desorption (TPD), Auger electron spectroscopy (AES), and atomic force microscopy
(AFM).

3. Selectivity Modification Through Self Assembled Monolayer Coat-
ings. Recent work at the University of Colorado has shown that C18SH alkane thiol
self assembled monolayers (SAMs) deposited on the surface of a Pd-MIS sensor cause a
signification increase in the sensitivity to acetylene. Whereas uncoated sensors showed
no observable response to acetylene at 50 C, thiol coated sensors showed a significant,
60mV response. To test whether the effect of the SAM was due to Pd-S bonds or the
hydrocarbon tail of the alkane thiol, sensors were also prepared with sulfur on the
surface by dissociative adsorption of hydrogen sulfide. This sulfur coated sensor also
showed an increased response to acetylene; however, it was not as dramatic as the
thiol coated sensor. An additional test was performed with a sensor saturated with
CO to determine if the primary mechanism for the increased acetylene hydrogenation
was site blocking. The lack of response to acetylene with the CO saturated sensor
indicates that sulfur and thiol coatings give heightened acetylene response through
a more complex mechanism. This work highlighted the unique benefits of the SAM
coating; however, there was a significant drawback.

When exposed to oxygen, both the thiol coated and sulfur coated sensors showed
a significant degradation in performance. Whereas the thiol coated sensor before oxi-
dation may be able to detect acetylene concentrations lower than 40ppm, the oxidized
detector cannot do so with such precision. XPS studies suggest that this degradation
is the result of sulfur on the metal surface oxidizing to sulfonate or sulfate in air [7].
Preventing this oxidation would create a highly sensitive acetylene detector.

4. Bimetallic Gate Metals for Surface Modification. Current work fo-
cuses on the use of bimetallic alloys in conjunction with alkane thiol self assembled
monolayers to design more selective and robust sensors for hydrogen and acetylene
detection. Sensors containing alloys of palladium with nickel, silver, gold, and copper
are being prepared with varying weight percentages of palladium. These sensors will
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be tested with and without SAM coatings to determine their response to gases such
as hydrogen, acetylene, oxygen, hydrogen sulfide, carbon monoxide, and ethylene.

Significant work has been performed in the use of bimetallic alloys to catalyze
reactions with greater rates and selectivity than their monometallic counterparts. We
drew upon this body of literature to select nickel, silver, gold, and copper to alloy
with palladium to create a more effective gate metal.

Density functional theory (DFT) studies have suggested that nickel may be more
reactive to acetylene than palladium by more strongly binding hydrocarbons [8]. Re-
cent studies have suggested via a density of states analysis that palladium-nickel alloys
may lower the acetylene hydrogenation barrier and raise the ethylene hydrogenation
barrier, improving selectivity [2]. Although this work modeled the metal surface as
a 2x2 unit cell three layers deep, which will not account for any long range or relax-
ation effects, palladium-nickel is still an interesting candidate for a gate metal. Silver
was selected for its common use as a promoter in industrial acetylene hydrogenation
catalysts [4]. In addition, SAMs deposited on silver has been shown to have increased
resistance to oxidation [7]. Palladium-gold bimetallic alloys have been shown to in-
crease catalytic activity for reactions involving sulfur [9]. Finally, previous work has
shown that palladium-copper alloys can resist restructuring effects from sulfide expo-
sure [5] which may enable higher coverages and dosages of sulfides to tailor response.
In addition, current work at the University of Colorado in thin film membranes and
previous work with SAMs [7] suggests that sulfur binds tightly to copper and resists
oxidation, which may lead to a more robust sensor.

5. Conclusions. MIS sensors represent a viable means of achieving gas sensing
in mixed environments. These devices are inexpensive and easy to fabricate. Never-
theless, difficulties in tailoring selectivity and elucidating the sensing mechanism have
limited their implementation. Through the work explained above, we hope to create
a well-characterized, highly selective, and highly sensitive gas sensor for use in many
environments. Sensors prepared at Sandia will be tested with a variety of techniques
at the University of Colorado to gain greater understanding of the sensing mechanism
and effect of these alloys.
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VISUAL SIMULATION OF BIOLOGICAL PATHWAYS

MATTHEW MEHNE∗ AND E.E. MAY†

Abstract. An important stratum among the many layers that make up the inner-workings of
living cells and organisms is that of the metabolic network, a complex array of chemical reactions
controlled by genes and the presence or absence of different enzymes, cofactors, and other regulatory
components. It is common for biologists to visualize metabolic reaction networks graphically, repre-
senting them with metabolic maps-collections of flow charts showing interconnecting reactions and
pathways. By simulating the dynamics of the metabolic pathways, we can add another dimension to
the standard metabolic map by visually representing time dependant properties such as metabolite
concentration, activation of genetic regulatory controls, and reaction rate. We model these dynamics
using the Xyce electronic circuit simulator, equating the flow of metabolites in a biological system
to the flow of charge in an electrical circuit. In order to illustrate the circuit model in a biological
context, we have developed a visual interface to display the simulation data as an animated biological
schematic. Our JAVA-based visualization tool draws a dynamic metabolic map and correlating gene
network based on Xyce simulation data. The interface is designed to provide access to relevant and
useful analysis tools that help integrate the simulation data quickly and efficiently.

1. Introduction. Biological systems are extremely complex and they can be
described and analyzed at many different levels of abstraction. The inside of a living
cell can be compared to a massive chemical factory where products are continuously
imported and exported, and chemical procedures are managed rigorously by genes and
their constituents. Having the right chemicals available at the right time is vital to
the survival and function of all living cells. When we study the flow of chemicals that
occurs from one reaction to the next, we find that more than a steady assembly line
of processes, what we have is an intricately dynamic network of reaction pathways,
where, based on the state of the cell, different processes are prioritized and at times
they are shut on or off. We find that chemical functions shift based on metabolite
availability and cellular supply and demand.

In order to begin to conceptually grasp the complex dynamics that manipulate
the seemingly countless processes that occur in the cell, we must abstract their overall
function from the intricacies of the chemical reactions that drive them. One simpli-
fication is to think of the flow of chemicals as running through a giant network of
interconnected pipes of different shapes and sizes, regulated by a variety of valves,
pumps, and other control devices. Continuing with this analogy, we can illustrate
researchers in bioinformatics as sort of forensic plumbers; the research involves recon-
structing, from laboratory evidence, how the networks are put together. More and
more data is becoming available, including values on specific reaction rates as well as
properties of different gene interactions in biological systems. Some networks have
been studied so well that there is enough data for one to attempt to actually recreate
the chemical flow and regulation that occur in those networks with a representative
model made up of water pipes, pumps, and valves. The motivation to consider at-
tempting such a feat would probably not be too different from what motivated Watson
and Crick to experiment with models made from metal rods and balls to complement
incomplete experimental data, a technique that lead them to discover the structure
of DNA.

Similar to pipes and valves, but at a smaller and much more practical scale,
we model the flow and control of biological networks as electric currents running
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through electronic circuits. This model provides a very useful parallelism that we use
to recreate the dynamics of biological pathways. Using the Xyce electronic circuit
simulator to replicate the dynamics of the reaction pathways, we are able to provide
a useful glimpse in real time of how metabolic networks interact with constituent
genes and the environment. It could be said that one disadvantage of using electronic
circuits instead of plumbing components in our model is that we cannot actually see
the flow of material or the opening and closing of valves as it occurs, instead we have
immense tables of simulation data listing changes in voltage and current over time.
To solve this, we develop a method to visually recreate the flow and dynamics of our
models, using the Xyce output to animate the simulated network behavior over time.
This provides a way, in a sense, of experiencing the simulated network–to get a feel
for the dynamics and timing of the system. The hope is that this will help us gain a
deeper understanding of why and how biological pathways function the way they do.

2. Goals. The primary goal of this project has been to facilitate the data analysis
of biological pathway simulations run on the Xyce circuit simulator by implementing
an interface that integrates the data into a descriptive visual representation, not
only to further BioXyce research, but also to provide the data in a format that is
accessible and useful to anyone studying biological pathways. Before this project,
most analysis of the Xyce simulation data involved drawing time plots of the data
to examine the concentration values of the simulated metabolites in the network.
Plotted BioXyce data is often obscure to anyone without a thorough understanding
of the network being represented. Even though an engineer with a solid background in
electronic circuits could reconstruct the connectivity of the circuit design prescribed
in the netlist file, knowledge of bioinformatics would still be vital to understanding
the circuit’s significance in the originally intended biological context. The layout and
dependencies of the underlying biological pathway must be understood in order for
the simulation data to be relevant to anyone other than the designer of the circuit.
Therefore, we have found it useful when analyzing circuit simulations to have a method
of portraying the corresponding biological pathway.

Part of the basis of our visualization approach was to adhere as much as possible to
current trends in biological network drawings. Bioinformatics is still a relatively new
field, and there is still no set standard on how to draw and lay out metabolic pathways
and gene networks; however, there are some common patterns that can be followed
to make the visualization more recognizable to the general academic community. Our
goal has been to integrate the simulation data without deviating too much from
the static layouts biologists use and are familiar with. We also aimed to keep the
animation aspect of the visualization as simple and intuitive as possible so that even
the untrained eye can get a fairly accurate feel for the concentration flow that is being
represented.

3. Methods. In order to meet the visualization needs for the BioXyce project,
a tool was developed in Java that automates the data representation starting from
raw Xyce data, and then draws out the data in a biological context. The program is
called XMAP1, and being based in Java, it is supported by multiple platforms. It has
been successfully run on both Windows and Macintosh machines.

XMAP was designed to try to make BioXyce simulation data as accessible as

1Xyce Metabolic Analysis Program; the X also represents the crossing between the electrical and
biological circuit domains, while MAP is a reference both the visual representation of the biological
maps as well as the process of mapping simulation data onto biological network data.
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Fig. 3.1. Time-plot and pathway visualization in XMAP

possible. The most basic way to view simulation results in XMAP is through the
automated graph plotter, which can instantly draw time plots for data points in
the simulation output file (see Figure 3.1). Beyond drawing time plots, XMAP’s
main feature lies in its tools for drawing pathways that can then be automatically
animated by XMAP based on loaded simulation data. Xyce runs simulations based
on given time intervals; Xmap visually recreates the changes that occur during these
time intervals either in real time or at a faster/slower pace as specified by the user.
The hope is that dynamic aspects of the simulated networks can be assimilated more
effectively by viewing the biological events as they occur in real time.

In order to represent the simulation data in a pathway context, we design an-
imated network nodes that visually represent changes in concentration. We have
found that changes in both size and color provide good visual queues to represent
concentration changes. Growing and shrinking the metabolite nodes based on their
concentration changes works best for mentally gauging the rate at which an elements
concentration is increasing or decreasing. The average viewer can instantaneously
recognize whether an animated object is growing or shrinking. Using color intensity
to represent values has several advantages. In a static context, we seem to perceive
colors faster than sizes; and visually, color changes tend to have a more intense psy-
chological effect. When viewing pathways in XMAP with dozens of nodes, the color
contrast becomes very useful, since it allows the viewer to asses the general state of the
whole network at a glance. Color changes can be noted peripherally in a large network
with much more ease than size changes, and patterns can be noticed by observing the
overall color localized around different areas of the map.

The animated nodes in XMAP allow very small changes to be perceived since
they have four layers of different colors that grow and shrink independently based
on their concentration values. By identifying which sphere is growing, one can be
completely certain of what intensity is being represented within 25%. An accustomed
user can fairly easily refine their perception to the point where they can recognize a
value within 10% or less. It should be mentioned that placing the mouse over any
animated element allows the user to view the exact concentration value at any given
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Fig. 3.2. Simulation view in XMAP

Fig. 3.3. XMAP simulation mode toolbar

time in the simulation.
XMAP has two views or user modes. The simulation view is where simulation

data is analyzed; it is the context in which the animated visualization and time-plots
are displayed. The layout design view is where biological layouts can be drawn and
edited. Users can switch views by clicking on the tabs near the bottom of the XMAP
window. The interface was designed to allow switching between the two views quickly
and easily-which is useful, because often while running an animation based on a given
biological layout, the user will want to change the layout to focus on different aspects
or behaviors of the simulated data. For example, when observing a network with
dozens of elements, one might need to focus momentarily on just two elements of
interest. The user can proceed, while the simulation is running, to edit the layout as
needed, perhaps erasing metabolites that don’t need to be viewed at that moment,
or dragging metabolites of interest so they are adjacent to one another. As soon as
the layout is saved, changes are instantly reflected in the simulation view and are
animated accordingly.

As shown in Figure 3.2, the simulation view allows multiple internal windows with
different visual representation of the same simulation. Each window updates itself
based on the current simulation time and loaded simulation data. The simulation
time can be changed by dragging the progress bar, clicking on the plot, or by clicking
the run button, which is on the toolbar represented by a green arrow (Figure 3.3).

The visualization can be run at different speeds and frame rates. If a speed
or frame rate is selected that is not compatible with the simulation data (e.g., if a
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Fig. 3.4. The layout design view in XMAP

simulation is being run that only provides ten data points for every simulated second,
and the frame rate is set to 24 frames per second) XMAP automatically interpolates
the data. Also, for very large simulations (some data files can reach the gigabyte
range), XMAP allows the user to skip lines of data or load subsets of the simulation
for analysis.

Figure ?? displays a screenshot of XMAP’s layout design view. The right panel
contains the palette of objects that can be drawn on the layout canvas.After an object
is drawn, it must be assigned a datapoint in the Xyce simulation data for it to be
animated in simulation view.

Although some features were implemented to help automate the layout drawing
process, the current version of XMAP relies mostly on the user to draw and edit
the schematic representations of the simulated networks to be visualized. The most
prominent advantage behind this is that the visual network layout can be customized
to suit the user’s preferences and analysis needs. As stated previously, there is no rec-
ognized standard in biological research prescribing how to draw metabolic networks,
though users may want to draw the network in a way consistent with other schemat-
ics portrayed in academic literature. Manually drawing the network takes a small
amount of time compared to the work involved in setting up a Xyce simulation. Once
a network layout has been drawn, it can be saved and used with other simulation
data sets. Our hope is to eventually establish a library of layouts that can be reused,
edited, and shared among XMAP users.

As explained previously, XMAP is very good about allowing layout changes to
be made on the spot. This is especially useful at moments when seeing the layout
animated by simulation data provides an insight which inspires improvements to the
layout design. Much more frequently the reverse will happen: seeing the visualized
simulation data calls for a change in the Xyce simulation. What would be desirable
is if the user could use the XMAP interface to make changes in the Xyce netlist file
and then seamlessly rerun the simulation and load the data into XMAP. This has
yet to be fully implemented, but it is now possible to load a simulation in XMAP,
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Fig. 4.1. Tryptophan circuit representation

and from the drawn layout, change the initial concentration values of metabolites and
rerun the Xyce simulation from within XMAP. The user can Ctrl-Shift click on a
metabolite to bring up a dialog with the current initial concentration value. The user
can then set a new value; when the value is submitted, the Xyce circuit simulator is
automatically initiated and run in the background as an external process. When the
Xyce simulation finishes, XMAP reloads the data file and the visualization windows
are refreshed to represent the new data.

4. Results. We ran various BioXyce simulations that were then visualized us-
ing XMAP. Each simulation focused on different aspects of XMAP’s features and
capabilities. Our simulation of tryptophan biosynthesis in the Escherichia coli bac-
teria provided an ideal model of a small hybrid metabolic/gene network. Another
simulation, developed by Richard Schiek, of multicellular differentiation in drosophila
embryos, was the initial basis for the implementation of multicellular visualization
capabilities in XMAP.

4.1. Tryptophan Biosynthesis. The tryptophan biosynthesis pathway was
simulated as a series of five primary reactions, starting with chorismate and the last
one producing tryptophan (see Figure 4.1). Each reaction is ultimately regulated by
a gene that is activated in the absence of tryptophan. The pathway is an example of
a genetic feedback loop, where the absence of tryptophan promotes the production
of more tryptophan and vice versa. The pathway functions in E. coli as a way of
maintaining proper tryptophan levels in the cell.

Figure 4.2 shows the simulation in its initial state. Chorismate is at its maxi-
mum concentration while the rest of the metabolites are at their minimum. None of
the main reactions are occurring since the genes regulating the pathways begin in a
deactivated state and they experience an activation delay.

At just under three seconds (Figure 4.3) the genes have been activated and the
flow of the reactions has begun. Note that more intense arrow colors represent faster
reaction rates. The reaction flow has yet to reach the last two metabolites: indole-3-
glycerol-phosphate and tryptophan.

Four seconds later (Figure 4.4), it can be observed that the reaction flow has
shifted down the pathway. At this point chorismate is nearly depleted, and tryptophan
is at its highest concentration and continues to degrade (degradation is symbolically
labeled on the layout as consumption by other pathways).
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Fig. 4.2. Tryptophan biosynthesis simulation at T = 0 seconds, visualized in XMAP

Finally at the 14 second mark (Figure 4.5), the inhibitory influence of trypto-
phan on the genes has propagated enough to deactivate them. All of the reactions
have stopped since the genes have stopped activating the production of the necessary
enzymes to catalyze the reactions. The only flow left is the degradation of tryptophan.

The graph in Figure 4.6 shows chorismate sharply dropping while tryptophan in-
creases slowly. After seeing the simulation data represented in the biological context,
we understand this occurs because the metabolites between chorismate and trypto-
phan act like a buffer between the two metabolites.

4.2. Drosophila Multicellular Differentiation. One of the later capabilities
added to XMAP was the ability to represent multi-cell systems. One of the primary
goals driving the BioXyce project is to continue simulating larger and more complex
networks, including entire cells. When simulating a multicellular scenario, there exist
two network levels: the lower level is made up of the metabolic and gene pathways
within the cells, and on top of that we have a network of multiple cells interacting
with each other. In these scenarios, both internal and external processes affect the
system as whole.

The first multiple cell simulation using BioXyce modeled multicellular differen-
tiation occuring in drosophila embryos. Since we are simulating a 10 x 10 grid of
cells, we would need to display 100 layouts to represent the inner network of each
cell. Instead, XMAP displays a grid containing all the cells. The inner network of
any particular cell can be displayed on demand by Ctrl-clicking a cell on the grid. A
new internal window pops up showing the inner network. To help keep track of which
inner network corresponds to what cell, XMAP provides the option of drawing anchor
lines that map each cell to its inner layout (if open).

As seen in Figure 4.7, the inner networks of two drosophila cells on the grid are
being displayed in new windows. The windows may be rearranged as needed. They
remain easy to keep track of since they are visually anchored to the cell they represent.
XMAP also has the ability to automatically generate custom cell grids such as the
one in the figure.
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Fig. 4.3. T = 2.75 seconds

Fig. 4.4. T = 7.75

Fig. 4.5. T = 14 seconds
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Fig. 4.6. Chorismate and tryptophan concentration values compared against one another. The
graph lists ’Voltage’ as the Y domain because in Xyce, voltage values across capacitors represent
metabolite concentrations.

Fig. 4.7. Multicellular visualization in XMAP of differentiation in embryonic drosophila cells

5. Conclusions. Currently, XMAP provides a functional and versatile visual-
ization interface for Xyce biological pathway simulations. The hope is that it will aid
future BioXyce users by providing a quick and effective way to examine simulation
output. It is also hoped that it will provide an effective means of presenting simulation
results in an understandable manner to general academic audiences.

Ideally, in the future, XMAP can be fully expanded to function as a complete
Xyce interface for simulating biological pathways. The idea is that, potentially, a
person with no background at all in circuit simulation could still make use of Xyce
by having XMAP automatically generate Xyce net-list files and run the simulation
based on a schematic drawn in XMAP that has been annotated with reaction rate
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information and metabolite concentrations. With this feature, any biologist wanting
to visualize the dynamics of a pathway, or an entire network, could do so at the click
of a button. Researchers in biology would be able to take advantage of the powerful
capabilities that Xyce has to offer without having to know the difference between a
capacitor and a resistor. The framework has been set for this, and it is a very feasible
goal for the future of XMAP.
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SUB-STRUCTURED BIOMOLECULAR DYNAMICS SIMULATIONS
USING MULTIBODY DYNAMICS ALGORITHMS THROUGH

LAMMPS POEMS COUPLING

RUDRANARAYAN M. MUKHERJEE† AND PAUL CROZIER‡

Abstract. In this paper we outline a method of reduced order modelling of biomolecular systems
as sub-structured multi-rigid body articulated systems and the integration of a molecular dynamics
software with a multibody dynamics software to facilitate this modelling effort. We use a recursive
O(n) method based on Kane’s method for generating and solving the equations of motion. The
methodology is verified by simulating several biomolecular systems. The method shows good en-
ergy conservation in NVE ensembles and preserves the essential dynamics of the system. We have
developed an open-source computational tool by combining a classical molecular dynamics software
LAMMPS and a multibody dynamics research code called POEMS. This tool is freely available to
all researchers and gains on the complementary nature of the two codes by coupling the efficient
force calculation algorithms in LAMMPS with the efficient algorithm in POEMS for generating and
solving the coupled equations of motion.

1. Introduction. Molecular dynamics (MD) simulations provide the methodol-
ogy for detailed fine scale modelling on the molecular level. MD in the most traditional
sense can be viewed as a process by which one generates atomic trajectories of a sys-
tem of particles by direct numerical integration of Newton’s equations of motion for
each particle, with the appropriate initial and boundary conditions. This type of
procedure has the advantage that as the integration/simulation progresses, the sim-
ulation yields important information not only about the intermediate states and the
mechanisms which produced them, but also the rates at which these processes occur.
Additionally, not just these states, but the predicted rates serve as valuable means for
validating the models. Unfortunately MD simulation using standard atomistic models
quickly run into significant challenges for all but the most elementary systems. This
is because classical molecular dynamics (MD) propagates the motion of molecular
models by solving the equations of motion for all the atoms in the model. In the
fully atomistic case, (i.e. the Newton’s equations of motion are derived and solved
for every atom of the system), we have the most direct application of the physics
involved, with the associated implementation being in many regards conceptually the
simplest and easiest to apply. Unfortunately, due to the nature of the molecular in-
teractions, specifically the stiffness of the bonds and other interaction, solving these
equations (though straight forward) requires very fine time steps in order to maintain
temporal integrator stability (the highest frequency of the systems must be accurately
captured). Depending on the temporal integration method used, at least one system
wide force determination (to drive the equations of motion) must be performed and
this determination is extremely expensive (often the most costly aspect) for large sys-
tems. Thus, though conceptually simple and easy to implement, such simplistic brute
force methods grind to an effective halt under the burden of their sub-femtosecond
(< 1015 sec.) required time steps and associated expensive force determinations.

Due to these difficulties many approaches have been developed in an attempt ac-
celerate the simulations. Many efforts have focused on overcoming the strict time step
limits in MD simulations. If larger stable integration time steps can be taken, then
fewer expensive force determinations (which generally dominate the overall cost) are
needed. This accelerates the simulation because the CPU time required is roughly
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proportional to the number of systems level force determinations executed. These
efforts have primarily focused on removing (or at least not considering) the high fre-
quency components of the system. It is these highest frequency components which
govern the required temporal integration step size [1]. Examples of these approaches
include: Constrained Dynamics Through Explicit Constraints [2], Constrained Dy-
namics Through Implicit Constraints via Generalized Coordinates [3], Reduced Com-
putational Order (Cost) Algorithms [4], Multirate Temporal Integration [5] [6], Eigen-
vector (Modal) Schemes [7], Implicit integration schemes [8], Reduced Cost Force
Determination [9] and the use of Multibody Dynamics Algorithms [4] among others.

Each of these approaches offers it own advantages and real disadvantages. Out-
wardly these methods appear to have little in common other than the shared objective
of performing accurate integration of the equations of motion in less time. Each in fact
represents a form of model reduction. In this paper we outline a method of reduced
order modelling of molecular systems as sub-structured multi-rigid body articulated
systems and the integration of a molecular dynamics software with a multibody dy-
namics software to facilitate this modelling effort.

2. Modelling Approach. The fundamental idea behind this work is the coarse-
graining of select spatial domains in a molecular dynamics simulation into uncoupled
and coupled rigid body systems. This process can be viewed as aggregation where
a large number of discreet particles such as atoms or molecules are constrained to
move as either a single rigid body or a system of articulated rigid bodies connected
by kinematic joints. This modelling approach is a valid if the in the spatial domain
in consideration, the relative motion of these discreet particles is limited or localized.

2.1. Kinematic Model. The dynamics of a single rigid body as modelled us-
ing Newton-Euler equations of motion would include three degrees of translational
motion and three degrees of orientational change. The translational degrees of free-
dom are easily those associated with the three Cartesian coordinates of the center
of mass of the body. The time derivatives of these degrees of freedom give rise to
the translational velocity and acceleration of the body. Similarly the time deriva-
tives of the orientational degrees of freedom (or some combination of the same) may
give rise to the angular velocity and angular acceleration of the body. However the
choice of the orientational degrees of freedom can be tricky and result in numerical
difficulties. The easiest way to model the orientation would correspond to the three
Euler angles with each angle associated with a rotation about each of the Cartesian
directions. Although commonly used, this choice of degrees of freedom can result in
numerical singularities arising from dependency in the kinematic equations relating
the orientation angles. To overcome this singularity, quaternion or Euler parameters
are used in modelling the orientation. Euler parameters are a set of four parameters
related to each other through a constraint equation. Use of these parameters result in
robust kinematic equations which never suffer from numerical singularities. The time
derivative of the Euler parameters are related to the angular velocity of the body.
The angular velocity of the body is the time rate of change of orientation of the body
and modelled as having a component about each of the Cartesian directions.

There are two different representations of these reduced order models. The first
are single rigid bodies where there are no kinematic coupling between the dynamics
of the bodies. The interactions between these rigid bodies are modelled explicitly
through the use of force-fields such as all atom or unified atom interactions. The
second type are coupled rigid bodies. Two rigid bodies are coupled when they share a
common atom. This common atom is treated as a kinematic joint location. In these
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models, along with the force-field interactions, there exist constraint inertial loads
between bodies. This is because the bodies are coupled at the common atom location
and a kinematic constraint exists between any two bodies in the coupled system. A
set of coupled rigid bodies are hence forth referred to as chains. A system may have
any number of chains in it. Different chains interact only through the force field
interactions as there are no inertial coupling between different chains.

Another type of reduced order model which again reduces to an articulated chain
topology is the axial bond constrained systems. The fully atomistic representation of
these systems consist of atoms or beads connected to each other by stiff joints. In the
reduced order model, the axial stiff spring is replaced by a constant length massless
rigid link. Each link and the next bead it is attached to is treated as a single body
with unit mass and negligible inertia. The successive bodies are connected to the base
body by joints allowing only rotational degrees of freedom.

In our model, the chains are free floating. The base body is modelled as con-
nected to the inertial reference frame by a six degree of freedom joint allowing relative
translational and rotational degrees of freedom. Each joint is modelled using Euler
parameters to avoid any singular configurations. Unlike the SHAKE or RATTLE
formulations which require additional nonlinear equations to be solved to impose the
constraints, our model does not require solving any additional equations for main-
taining the constraints. Further while SHAKE and RATTLE impose the constraints
iteratively and only to a specified tolerance, our modelling approach enforces the con-
straints non-iteratively and exactly with no constraint violation. The constraints are
imposed implicitly through the use of relative (internal) coordinates which reduces
the formulation to a minimum set of ordinary differential equations.

2.2. Generating the rigid body properties. The calculation of the the total
mass, position of the center of mass and the velocity of the center of mass of any rigid
body is a simple from the properties of all the atoms that are aggregated into that rigid
body. However calculating the inertia matrix and the angular velocity of the bodies is
more involved. The calculation of the inertia matrix of the body involves taking the
second moment of the mass of each atom about the center of mass of the rigid body. As
this inertia matrix would vary with the motion of the body, the temporally invariant
principle moments of inertia are calculated by solving an eigen value problem from the
calculated inertia matrix. The eigen value problem also produces the three principle
directions associated with the principle moments. These directions are treated as the
basis vectors of the body based reference frame thereby forming the transformation
matrix from the body basis to the Newtonian basis. To calculate the angular velocity,
the angular momentum of the system of atoms is calculated about the center of mass
of the body by summing the first moment of momenta of each atom. It is then
converted to the body basis. This now equals the product of the diagonal inertia
matrix and the unknown angular velocity, which can now be easily calculated by a
scalar division.

3. Algorithm Overview. In this section an overview of the recursive O(n)
algorithm is presented. This algorithm uses the projection method as promoted by
Kane and others [10] and uses internal coordinates instead of the Cartesian coordinates
to formulate and solve the equations of motion. The algorithm begins by generating a
topology or connectivity map of the chains in terms of relative coordinates, joints and
body fixed reference frames. Each body is associated with its own body fixed dextral
set of unit vectors. The joint locations, inertia values and the generalized velocities
are expressed with respect to the body fixed reference frames. One end of the chain
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is chosen as the base body and it is connected to the inertial reference frame by a
kinematic joint. Each successive body is connected by two kinematic joints, one to
an inward body and the other to the outward body on the chain. The orientation
and motion of a body is expressed in terms of the admissible degrees of freedom of
the joints. The linear and angular velocities of a body are expressed as invertible
linear combinations of the generalized speeds i.e. time derivatives of the relative
degrees of freedom. The algorithm works in three recursive sweeps or traversals. The
first sweep begins at the base body and moves outwards to the tip while recursively
generating the kinematic preliminaries like partial velocities [10], inertias and applied
forces from the known states of the system. The second traversal then begins at the
tip and recursively moves inwards towards the base body. This is a triangulation
traversal and it recursively generates the articulated compound inertias and forces.
This traversal is equivalent to successively shifting the inertias and the forces inwards
towards the base body. Since the boundary conditions are known at the base body, at
the end of the triangulation sweep the equations of motion for the base body can be
solved to generate the state derivatives of the base body. Starting at the base body
the third traversal works outward while recursively solving for the state derivatives of
each successive body. By the time the sweep ends at the tip, the state derivatives are
all solved in an efficient O(n) complexity.

3.1. Mathematical Preliminaries. To aid in the subsequent development,
consider the notation associated with the description of an arbitrary set of inter-
connected rigid bodies shown in figure (3.1). For this system, proximal (parent) body
Pr[k] is connected to its child body k through joint-k, via joint points k− and k+

which reside in bodies Pr[k] and k, respectively. Similarly, the distal (child) bodies
of body k are given as members of the set of bodies Dist[k]. The position vector s k

locates joint-k relative to the mass center of body Pr[k], while the position vector r k

locates the mass center of body k with respect to the outboard end of this same joint.
It will also prove convenient to describe the position of child mass center k∗ relative
to proximal mass center Pr[k]∗ by the vector ~γ k.

Fig. 3.1. Notation Associated with an Arbitrary Set of Interconnected Rigid Bodies

The angular velocity of any body k with respect to the Newtonian reference frame
N , and velocity of its associated mass center k∗ may always be written in terms of
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the generalized speeds as

ωωωk =
n∑

r=1

ωωωk
rur +ωωωk

t (3.1)

and

vk∗ =
n∑

r=1

vk∗

r ur + vk∗

t . (3.2)

In these expressions ωωωk
r and vk∗

r are termed the rth partial angular velocity of body
k and rth partial velocity of point k∗, in N , respectively. These quantities may be
thought of as basis vectors for the space of admissible system velocities and angular
velocities, while the associated generalized speeds are the velocity space measure
numbers. Additionally, the terms ωωωk

t and vk∗

t appearing in equations (3.1)–(3.2), are
referred to as the angular velocity remainder term of body k and velocity remainder
term of point k∗, in N , respectively. These quantities are most often associated with
specified/prescribed motion, and thus are not associated with the time derivative of
a system degree of freedom.

When deriving this method it is often convenient to express quantities in a scalar
matrix, as opposed to a tensor (vector and dyadic) form. For this purpose an arbitrary
vector ϑk will be represented in matrix form as ϑk, which is associated with the local
dextral orthogonal unit vectors k̂1, k̂2, k̂3, fixed in body k. One may then define the
velocity, partial velocity, and velocity remainder term matrices as

Vk =
[
ωk

vk∗

]
, Pk

r =
[
ωk

r

vk∗

r

]
, and Vk

t =
[
ωk

t

vk∗

t

]
. (3.3)

With these matrices so defined, equations (3.1) and (3.2) may be expressed as

Vk = Vk
+ Vk

t =
n∑

r=1

Pk
rur + Vk

t . (3.4)

One can similarly represent the generalized acceleration matrix of an arbitrary body
k as defined in previous works [11], [12], as

Ak =
[

Nαk

Nak∗

]
, (3.5)

where Ak may also be divided into two portions. One is Ak
, which contains all terms

which are explicit in the unknown state derivatives u̇ and the other is the acceleration
remainder term Ak

t , which represents all of the other acceleration terms (and may be
calculated directly from the system state), giving

Ak = Ak
+Ak

t . (3.6)

4. O(n) Forward Dynamics Analysis. The basic recursive O(n) algorithm
for performing forward dynamics simulation associated with tree-structure systems
consists for three principal steps, or “sweeps”. These steps are the Kinematics Sweep,
the Triangularization Sweep, and the Back Substitution Sweep.
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4.1. Recursive Kinematic Relationships. The Kinematic sweep starts at the
base body and works outward to the tip while recursively using the kinematic rela-
tions to generate the partial velocities, transformation matrices, translational and ro-
tational velocities and state dependent acceleration terms in the body basis. With the
generalized velocity, generalized acceleration, and generalized acceleration remainder
term matrices as represented above, it is possible to compactly represent the recursive
relationships necessary for determining all system kinematic quantities. As has been
demonstrated in [11] we have

Vk =
[
(S k)TVPr[k]

+ Pk
kuk

]
+ Vk

t , (4.1)

and

Ak =
[
(S k)TAPr[k]

+ Pk
ku̇k

]
+Ak

t . (4.2)

The quantity S k appearing in equations (4.1)–(4.2) is the basis consistent linear
transformation matrix

S k =

[
C k C kγ k

×
0 C k

]
6×6 .

(4.3)

Within this expression C k ≡ Pr[k]C k is the direction cosine matrix which relates the
body k basis vectors to those fixed in its parent body Pr[k]; 0 is a 3× 3 zero matrix;
and γ k

× is the skew symmetric matrix equivalent to the vector cross product operation

γγγk×. The shift matrix transformation S k converts a system of forces and moments
acting through the center of mass of k, to an equivalent force system, acting though
a point of k which is instantaneously coincident with the center of mass of Pr[k].

At this time, it is also convenient to define the body k generalized inertia I k and
the body k generalized force F k matrices

Ik =

[
Ik/k∗ 0

0 Mk

]
6×6

, (4.4)

F k =

[
T k − (I k/k∗ α k

t + ω k
× I

k/k∗ ω k)
Rk −M k a k

t

]
6×1

. (4.5)

Within these expressions, Ik/k∗ is the 3× 3 central inertia matrix of body k, and Mk

is the diagonal translational mass matrix of this same body. By comparison T k and
Rk represent the resultant force system of all moments and forces, respectively, acting
on body k through its center of mass k∗.

4.2. Triangularization. The triangularization procedure works recursively in-
ward to compute the articulated inertia mass matrix Ik

3 and the articulated general-
ized active force Fk

3 expressing as

Ik
3 = Ik

1 +
∑

j ∈Dist[k]

T jIj
3

(
Sj
)T

, (4.6)

Fk
3 = Fk

1 +
∑

j ∈Dist[k]

T jF j
3 , (4.7)
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whereDist[k] is the distal (children) set associated with body k. The triangularization
operator T j and the basis consistent shifting operator Sj used in (4.6)-(4.7) are
defined as

T j =
(
Sj
)T [

U − 1
Mj

Ij
3 Pj

j

(
Pj

j

)T]
, (4.8)

Sj =
[
Cj 0
0 Cj

] [
U γj

×
0 U

]
. (4.9)

In (4.8) and (4.9), matrix Cj is the direction cosine matrix relating to local basis vector
of body Dist[k] to k, U is an identity matrix, and γj

× is the matrix representation of
the vector cross product. The quantities Mk is also given by

Mk =
(
Pk

k

)T Ik
3 Pk

k , (4.10)

with Pk
k defined as

Pk
k ≡

[
Nω k

k
Nv k

k

]
. (4.11)

4.3. Back-Substitutions. At the base body, information associated with an
entire set of outboard bodies has all been accumulated and is explicitly available such
that the equation M1u̇1 = P1

1F
1
3 can be isolated and yields the solution of u̇1. The

solution for u̇1 is then substituted into the next equation to solve for u̇2. Proceeding
in this manner, a generalized function expression for the solution of each generalized
acceleration u̇k is given as follows

u̇k =

(
Pk

k

)T
Mk

[
Fk

3 − Ik
3

(
Sk
)T Ak−1

]
, (4.12)

with Ak computed from

Ak =
(
Sk
)T Ak−1 + Pk

k u̇k . (4.13)

5. Time Integration. Velocity-Verlet temporal integration scheme for tempo-
rally advancing a dynamics simulations has been extensively used for atomistic simu-
lations. Velocity-Verlet algorithms are symplectic and gives very good energy conser-
vation characteristics. However for reduced order models involving coupled bodies,
the performance of the Velocity-Verlet is not as good as with atomistic simulations.
This is because the velocity dependent inertial forces such that the gyroscopic and
Coriolis forces come into play for the reduced order models. Further, the motion of
individual bodies in the articulated system are coupled and the motion of one af-
fects all others resulting in constraint forces acting on the bodies. Also, as compared
with an atomistic simulation, the integrands are not the cartesian accelerations and
velocities but the time derivatives of the generalized coordinates. For these reasons,
the multibody dynamics equations of motions have been traditionally integrated by
high order methods such as the Runge-Kutta 4-5 schemes. These schemes have tra-
ditionally been highly accurate and give good energy conservations for macroscopic
problems like aerospace applications. However when applied to reduced order molec-
ular dynamics simulations, these methods quickly become computationally expensive
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as they require four expensive force calculations per integration step. For the systems
studied in our work, the Lobatto III a-b partitioned Runge-Kutta integration scheme
has been used. It is a second order method which iteratively calculates the velocities
at the half step. The iteration quickly converges in one or two steps. The method
efficiently accommodates for the velocity dependent inertial forces and requires only
one force calculation per integration step.

6. Applications and Results. Discussed in this section are the test cases sim-
ulated to verify the validity of this development. The primary objective of simulating
these test cases is to be able to reproduce the previously published results, and vali-
date the stability of the simulations. Because of space constraints, the details of the
results are not shown and can be found in an upcoming journal article.

6.1. Water Box. The fundamental test case to check the coupling of the two
softwares is a box of waters consisting of 512 water molecules in NVE ensemble using
different time steps of 0.5, 1 and 2 fs for a total simulation length of 100 ps. Each
water molecule is treated as a single rigid body and the mass properties are calcu-
lated using the method outlined above. All atom force fields are used under periodic
boundary conditions. The dynamics of the rigid bodies is simulated using POEMS
and compared with the results obtained by imposing holonomic constant bond length
constraints using SHAKE. While in SHAKE the Newton-Euler equations of motion
are solved directly to generate the dynamics, in POEMS, Kane’s [10] equations of
motion are used. In either case each rigid body is modelled as having three degrees
of translational freedom modelled using Cartesian displacements and three degrees of
rotational freedom modelled using body based reference frames and Euler parameters.
In SHAKE the temporal integration was carried out using Velocity Verlet while the
Lobatto III A-B scheme was used in POEMS. The energy conservation in the simula-
tions is calculated using the ratio of standard deviation in energy to the mean energy
value as the comparison metric. The simulations at different time steps showed good
energy conservation with smaller time steps giving better energy conservation. To an-
alyze the simulation results we calculated the mean square displacement of the water
molecules and the coefficient of diffusion using Einstein’s equation. We also compared
the thermodynamic properties using the POEMS and SHAKE approach. The results
between the two sets of simulations were found to be in very good agreement.

6.2. Alanine Dipeptide. This molecule, CH3CONHCH(CH3)CONH, is small
enough to avoid complexities of structure and yet has interesting dynamic behavior
which makes it a prime candidate for initial simulation test to validate the method.
The molecule has been sub-structured into two rigid bodies each corresponding to
the -CONH unit while the remaining atoms are treated as bond constrained particles.
All atom forces were calculated using LAMMPS while solving the multibody dynam-
ics equations of motion of the sub-structured articulated system and the temporal
integration were handled by POEMS. The simulation results, including energy con-
servation, structural properties and configurational parameters were found to match
with those generated using atomistic simulations. Further, because of the coarse-
graining, an improvement of an order of magnitude in the integration time step was
achieved.

6.3. DNA simulations. In these simulations we modelled the bond constrained
dynamics of tethered DNA strands of lengths of 16 and 32 atoms. The fully atom-
istic interactions consist of FENE bonds and truncated Lennard Jones and Coulomb
interactions. The DNA strands are tethered to a membrane which is modelled using
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a 9-3 Lennard Jones wall potential. In the reduced order model, the FENE bonds are
constrained to fixed lengths modelled as massless rigid links. This reduces it to an
articulated serial chain system modelled using POEMS. The simulation results were
compared and validated against an atomistic simulation and an improvement in the
integration time step of up to a factor of 6 was achieved.

6.4. Box of alkanes. We simulated a box of alkanes to validate the perfor-
mance of the modelling scheme with an united atom potential. The systems under
consideration were three boxes containing 216 chains of alkanes each of chain lengths
8,16 and 32 modelled under periodic boundary conditions in a NVE ensemble. The
united atom Trepp3 force field was used in these simulations. The axial vibrations of
the beads were constrained by modelling the stiff bonds as fixed length massless rigid
links. This rendered the model as articulated chains of point masses connected by rigid
links and kinematic joints. Three different time-steps of 1fs, 5fs and 10fs were used in
the simulations. For these simulations too we used the energy metric discussed above
to compare the simulations results with those obtained using SHAKE. The united
atom force fields are smoother than the Lennard Jones potential and hence a better
energy conservation at larger time steps were expected using the articulated rigid
body representation. We were able to achieve stable simulations with good energy
conservation with increase in time steps by an order of magnitude.

6.5. C-Terminal of Ribosomal. This is a larger problem which provides better
understanding of the performance of the methodology for complex biological systems.
The C-terminal fragment (1CTF) of the L7/L2 ribosomal protein from E.coli is used
for this simulation. This system has been simulated in several references with different
substructuring schemes. In this method the system is sub-structured into 31 small
rigid bodies with hinges at the φ or ψ angles. The simulation was monitored for
energy conservation and preservation of essential dynamics.

6.6. C-Terminal of Rubisco. We have built a model of the RuBisCO (Ribu-
lose-1, 5-Bisphosphate Carboxylase/Oxygenase) enzyme for simulation using our cou-
pled LAMMPS POEMS simulation software. The fully atomistic model of the C-
terminal of RuBisCo consists of 510 atoms modelled using harmonic bond potentials,
CHARMM angle and dihedral potentials and non-bonding CHARMM Lennard-Jones
and Coulomb force fields with cut offs at 8 and 10. In the sub-structured model,
the system consists of 11 rigid bodies connected together to form an articulated se-
rial chain topology. All atom explicit force calculations are supported by this model.
However intra-body interactions between the atoms that make up a rigid body are
ignored as these would sum to zero. This is a modest sized problem which is a good
example to validate the modelling approach. Using this model, NVE simulations were
run for 1 nano-second. Different time steps were used to determine the drift in energy
as a function of time-step. Ignoring the intra-body atomistic interactions give an im-
mediate computational saving. Further, by using a rigid body model, an increase in
the integration time step by an order of magnitude was observed.

6.7. Rhodopsin. Rhodopsin is a G-protein coupled receptor with a defined ter-
tiary structure. It is a good example to study transduction and a large amount of
experimental results are available about its structure and function. We have gen-
erated a sub-structured articulated rigid body model of the rhodopsin protein and
have simulated the same with the LAMMPS-POEMS coupling. This is a fairly large
system with the fully atomistic model consisting of about 5000 atoms. This atom-
istic model is sub-structured into 26 connected rigid bodies that form an articulated
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serial chain topology. Similar to the RuBisCo model, the Rhodopsin model was sim-
ulated in NVE ensemble for 1 nanosecond at different time steps. The simulations
showed good energy conservation at larger time steps. The coarse-graining provided
significant computational savings in the calculations of the force interactions as the
intra-body interactions were not calculated. Further using this model, we were able to
obtain stable simulation with an increase in the time step by an order of magnitude.

7. Software Development. In this section the generation of the open source
computational tool is discussed. The two research codes that are fundamental in this
work are the LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator
software from Sandia National Laboratories and the multibody dynamics software
POEMS: Parallelizable Open-source Efficient Multibody Software. LAMMPS is an
open source code, with a GPL type license. Under development by the primary au-
thor, Steve Plimpton, and others since the mid 1990s, LAMMPS is a general purpose
classical molecular dynamics code [13]. The POEMS code [14] is also open source,
with a BSD type license. This is a general purpose multibody dynamics research code
being developed by Rudranarayan Mukherjee and other members of Prof. Anderson’s
research group at Rensselaer Polytechnic Institute. The two softwares have different
functionalities which are complementary in nature. While LAMMPS is a classical
molecular dynamics code with emphasis on atomistic simulations, POEMS is a multi-
body dynamics code with an emphasis on modelling dynamics of reduced order or
coarse-grained models. A brief overview of both these softwares is presented in the
next section.

LAMMPS is a classical molecular dynamics code that models an ensemble of par-
ticles in a liquid, solid, or gaseous state. LAMMPS can model atomic, polymeric,
biological, metallic, or granular systems using a variety of force fields and boundary
conditions. It runs efficiently on single-processor desktop or laptop machines, but is
designed for parallel computers. In classical molecular dynamics, inter-particle force
calculations are the most expensive part of MD simulations and hence have been
carefully optimized and made more efficient as MD codes have matured. Among
the many force fields (FF) currently available in LAMMPS are the commonly-used
CHARMM [15] and AMBER [16] biomolecular FF. LAMMPS also has all of the capa-
bilities commonly required in biomolecular simulation, including full long-range elec-
trostatics capabilities using Ewald or particle-particle/particle-mesh (PPPM, similar
to particle-mesh Ewald), SHAKE bond and angle constraints, rRESPA [17] hierar-
chical timestepping, and NVE, NVT, and NPT integrators. LAMMPS also has the
capability to simulate hybrid bio/non-bio systems through the superimposing of force
fields.

Though significant speedup can be gained from efficiently calculating the forces,
which is the forte of LAMMPS, further substantial computational gains can be realized
if the systems are coarse-grained by enforcing kinematic constraints. This is because
imposing kinematic constraints can efficiently eliminate high frequency components
thereby allowing larger temporal integration time-step. This results in a multiplying
effect on improving simulation speed through combining larger integration step sized
and reduce force calculation costs. However, generating and solving the equations
of motion of reduced order models particularly those which represent coupled multi-
body systems can be challenging and unless some efficient formulation is resorted to,
the computational cost can be as high as O(n3) where n is the number of degree
of freedom in the system. LAMMPS integrates Newton’s equations of motion for
collections of atoms, molecules, or macroscopic particles and does not include any
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efficient formulations for effectively formulating and solving the equations of motions
of reduced order models.

This aspect has been addressed in POEMS. POEMS was written as a generic
multibody simulation code which can efficiently handle the dynamics aspect of the
reduced order models. POEMS is an object-oriented C++ research package for sim-
ulating the forward dynamics of multibody systems. Its emphasis was also placed on
application to large (n � 1) systems, i.e. coupled systems involving many general-
ized coordinates. Majority of the effort in algorithm development has been oriented
toward methods that perform well with applied to coupled systems involving many
generalized coordinates. This code features libraries of different dynamics formu-
lations for efficiently generating and solving the equations of motion of articulated
system as well as different time integration schemes for advancing a simulation tem-
porally. Commonly used kinematic and dynamic identities, organization of multibody
topologies, and data structure with matrix manipulations which are generic to most
multibody algorithms are built into the software using an object oriented design.

The software in its current form has three algorithms for solving equations of
motion of articulated multi-rigid body systems in chain and tree topologies.

• KaneSolver() : The O(n3) complexity solver based on Kane’s method [10].
• OnSolver() : The O(n) complexity recursive solver based [12].
• DCASolver() : The Divide and Conquer method of O(log(n)) complexity [18].

It also contains an implementation of a generalized impulse momentum formulation
for correct kinematic coarse-graining of the reduced order models. This is a novel
feature that enforces the correct initial conditions required to preserve the essential
dynamics of the systems. No other research package has a comparable formulation
and it is a significant development as it allows smooth transition between models of
different resolutions. Because of space constraints this algorithm is not discussed here
and presented in another upcoming research paper.

Along with the solution of equations of motion, the software has temporal inte-
gration algorithms for temporal simulations. These include the following algorithms.

• Runge Kutta 4-5
• Predictor Corrector
• Verlet and Velocity Verlet
• Lobatto Patitioned III a-b Runge Kutta 4-5

By coupling together these two software we have created a synergistic simulation
tool which is freely available to all researchers working in molecular dynamics. The
inherent features of these code are complementary, with LAMMPS focussed more
on the efficient generation of force field and potential calculations while POEMS is
aimed at efficiently handling the dynamics aspect of the reduced order models. This
two fold approach is instrumental in accelerating molecular dynamics simulations and
be applicable to a wide variety of problems in biomolecular and materials modelling.
POEMS is built into LAMMPS as an external library and is distributed along with
LAMMPS.

8. Conclusions. A novel method based on sub-structured coarse grained mod-
els of molecular dynamics systems is developed, implemented and validated. This
method uses efficient O(n) complexity multibody dynamics algorithms for modelling
the forward dynamics of these sub-structured models. A new computational tool is
developed and released for public use under open source licensing. This computational
tool culminates from coupling together the molecular dynamics code LAMMPS with
the multibody dynamics software POEMS.
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BLOCK PRECONDITIONERS APPLIED TO INDUCED-CHARGE
ELECTRO-OSMOSIS

R. SHUTTLEWORTH∗, V. HOWLE† , K. LONG‡ , J. TEMPLETON‡ , AND R. TUMINARO‡

Abstract. Over the past several years, considerable effort has been placed on developing effi-
cient solution algorithms for the incompressible Navier–Stokes equations. The effectiveness of these
methods requires that the iterative solution techniques for certain linear subproblems exhibit robust
and rapid convergence. We begin by introducing methods that have recently been developed for
solving incompressible flow problems, which are based on an approximation of the Schur comple-
ment technique developed by Elman, Howle, Shadid, Shuttleworth, and Tuminaro [3], Kay, Loghin,
and Wathen [7], and Silvester, Elman, Kay, and Wathen [12]. Then we describe how we apply these
techniques to solving a flow over a diamond obstruction generated by the stablilized finite element
code, MPSalsa, then expand this work to a fixed ‘induced-charge electro-osmosis’ (ICEO) microfluidic
problem posed in the high level symbolic differentiation finite element code, Sundance.

1. Introduction. We consider flow problems where the microscale mixing of
fluids must occur without the help of turbulence, but by molecular diffusion alone.
From a modeling perspective, our flow problems have a length scale between 10-100
µm with a mixing time in the hundreds of seconds. Moreover, the fluid volume is very
low (several nanoliters) and the Reynolds number is far less than 100 and normally
less than 3. This results in laminar flow and can be commonly found in modeling
blood samples, bacterial cell suspensions, or protein/antibody solutions.

In this model, the flow is pumped by either a pressure driven flow or by electroki-
netic means. For pressure driven flow, the fluid being studied is pumped via positive
displacement. We focus our efforts on electrokinetic displacement, where the walls of
the microchannel are charged, generating a “double layer” of ions on the walls of the
channel. Then, when an electric field is applied to this channel the double layer moves
to the opposite polarity, thus creating motion of fluid near the walls. This motion
is transferred to the bulk of the fluid creating mixing and movement of fluid in the
channel.

We numerically model this phenomenon using the incompressible Navier-Stokes
equations with an electric field equation used in the boundary conditions of the prob-
lem in question. Accurate, robust, and scalable solutions of the Navier-Stokes equa-
tions is an active and open research topic. Previous work in this area has developed
solution methods that generate iteration counts independent of the size of the mesh.
We hope to expand this recent work [3] for use in microfluidic applications.

Section 2 gives a brief background on our techniques for solving these problems.
In Section 3, we detail the algebraic approach to our preconditioning operator. Section
4 provides a brief discussion of the implementation of the linear and nonlinear solvers.
Details of the numerical experiments and the results of these experiments are discussed
in Section 5. Concluding remarks are provided in Section 6.

2. Background. We can model the microfluidic behavior described above using
the incompressible form of the Navier–Stokes equations

αut − ν∇2u + (u · grad)u + grad p = f
−div u = 0 (2.1)

∗University of Maryland, College Park
†Sandia National Laboratories
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in Ω ⊂ Rd(d = 2 or 3). Here the velocity, u, satisfies suitable boundary conditions on
∂Ω, p represents the hydrodynamic pressure and f the body forces. For the electroki-
netic problem, which drives the flow, the boundary condition is modeled by Poisson’s
equation, i.e.

∇2φ = f, (2.2)

where φ is the electric potential to be determined from a given charge distribution, f .
We will be concerned with solution algorithms for the algebraic system of equa-

tions that result from Newton or Oseen linearization and discretization of these equa-
tions. The coefficient matrices have the form

A =
(
F BT

B̂ −C

)
(2.3)

where F is the convection-diffusion-like operator, BT the gradient operator, B̂ is (a
perturbation of) the divergence operator, and C is the operator that stabilizes the
finite element discretization. The operator C can be zero or nonzero depending upon
the stabilization and boundary conditions used in the discretization of the problem.
The strategies we employ for solving (2.3) (which we will also refer to as the Jacobian
or saddle point system) are derived from the LDU block factorization of this coefficient
matrix,

A =
(

I 0
B̂F−1 I

)(
F 0
0 −S

)(
I F−1BT

0 I

)
, (2.4)

where

S = C + B̂F−1BT (2.5)

is the Schur complement (of F in A). They require methods for approximating the
action of the inverse of the factors of (2.4) (the action of the inverse of S), which, in
particular, requires approximation to the actions of F−1 and S−1. Use of the exact
Schur complement is not feasible, but replacement of S with carefully derived approx-
imations leads to efficient preconditioning strategies for use with iterative solvers for
a Krylov subspace method, such as GMRES.

3. Definition of Preconditioning Operator. We will develop our precondi-
tioning strategy by lumping together the diagonal and upper triangular factors of
(2.4). A discussion of the merits of choosing other combinations of factors can be
found in [4]. The efficacy of choosing the diagonal and upper triangular factors as a
preconditioner can be seen by analyzing the following generalized eigenvalue problem:(

F BT

B̂ −C

)(
u
p

)
= λ

(
F BT

0 Ŝ

)(
u
p

)
.

If Ŝ is the Schur complement, the eigenvalues of the preconditioned matrix are identi-
cally one. Further, this operator contains Jordan blocks of dimension at most 2, and
consequently at most two iterations of a preconditioned GMRES iteration would be
needed to solve the system [9].
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To apply the preconditioner Q (i.e. the upper triangular and diagonal factors of
(2.4)) in a Krylov subspace iteration, at each step the application of Q−1 to a vector
is needed. By expressing this operation in factored form,(

F BT

0 −S

)−1

=
(
F−1 0

0 I

)(
I −BT

0 I

)(
I 0
0 −S−1

)
(3.1)

the computational issues involved for the particular choice (3.1) can be seen. Two
potentially difficult operations are required to apply Q−1 to a vector: S−1 must be
applied to a vector in the discrete pressure space, and F−1 must be applied to a vector
in the discrete velocity space. The application of F−1 can be performed relatively
cheaply using an iterative technique, such as GMRES preconditioned with algebraic
multigrid. However applying S−1 to a vector is too expensive. An effective precon-
ditioner can be built by replacing this operation with an inexpensive approximation.
Our approach will be called the pressure convection-diffusion (P-CD) strategy and
will begin by defining a new operator, denoted Fp, used in approximating the Schur
complement, using the following premise:

Suppose that we begin with a discrete version of a convection-diffusion operator de-
rived by linearizing the Oseen version of the nonlinear term in (2.1),

(ν∇2 + (w · grad)).

Here w is viewed as an approximation to the velocity from a previous nonlinear
iteration. Suppose that there is an analogous operator defined on the pressure space,

(ν∇2 + (w · grad))p.

Consider the commutator of these operators with the gradient:

ε = (ν∇2 + (w · grad))∇−∇(ν∇2 + (w · grad))p. (3.2)

Supposing that ε is small, and multiplying on both sides of (3.2) by the divergence
operator and the inverse of the convection-diffusion operator, we get

∇2(ν∇2 + (w · grad))−1
p ≈ ∇ · (ν∇2 + (w · grad))−1∇. (3.3)

In discrete form, this becomes

(Q−1
p Ap)(Q−1

p Fp)−1 ≈ (Q−1
p B)(Q−1

v F )−1(Q−1
v BT )

S = (BF−1BT ) ≈ ApF
−1
p Qp

where here F represents a discrete convection-diffusion operator on the velocity space,
Fp is the discrete convection-diffusion operator on the pressure space, Ap is a discrete
Laplacian operator, Qv the velocity mass matrix, and Qp is the pressure mass ma-
trix. This suggests a suitable Schur complement approximation for a finite element
discretization when C = 0. In the case of pressure stabilized finite element discretiza-
tions, the approximation is

C +BF−1BT ≈ ApF
−1
p Qp. (3.4)

A further discussion of this choice can be found in [2]. Applying the action of the
inverse of ApF

−1
p Qp to a vector requires solving a system of equations with a discrete
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Laplacian operator, Ap, then multiplication by the matrix Fp, and solving a system of
equations with the pressure mass matrix. Both the convection-diffusion-like system
(with coefficient matrix F ), and the Schur complement system (with coefficient matrix
ApF

−1
p Qp), can be solved approximately using multigrid with little deterioration of

effectiveness.

4. Implementation. Our implementation of the preconditioned Krylov sub-
space solution algorithm uses Trilinos [6], an effort at Sandia National Laboratories
to develop parallel solution algorithms in an object-oriented collection of software
packages for large-scale, parallel multiphysics simulations. One advantage of this is
the capability to seamlessly use other Trilinos packages for core operations. We use
the following components of Trilinos:

1. Meros - This is a preconditioning package that provides scalable block pre-
conditioning for problems with coupled simultaneous solution variables. The
pressure convection-diffusion preconditioner detailed in this study is imple-
mented in this package. Meros uses the Epetra package for basic linear algebra
functions and Thyra as an abstract interface to other Trilinos packages and
for composed operations.

2. Epetra - This package provides the fundamental construction routines and
operations needed for serial and parallel linear algebra libraries. Epetra also
facilitates matrix construction on parallel distributed machines. Each proces-
sor constructs the subset of matrix rows assigned to it via the static domain
decomposition partitioning generated by stand-alone library, CHACO [5], and
a local matrix-vector product is defined. Epetra handles all the distributed
parallel matrix details (e.g. local indices versus global indices, communica-
tion for matrix-vector products, etc.). Once the matrices F , B, B̂, and C
are defined, a global matrix-vector product is defined using the matrix-vector
products for the individual systems. Construction of the preconditioner fol-
lows in a similiar fashion.

3. AztecOO - This package is a massively parallel iterative solver library for
solving sparse linear systems. All of the Krylov methods (i.e. those for
solving the Jacobian system, the F , and Schur complement approximation
subsystems) are supplied by AztecOO [14].

4. ML - This is a multilevel algebraic multgrid preconditioning package. We use
this package with AztecOO to solve the F and Schur complement approxi-
mation subsystems.

5. NOX - This is a package for solving nonlinear systems of equations. We use
NOX for the inexact nonlinear Newton solver.

Once all of the matrices and matrix-vector products are defined, we can use Trilinos to
solve the incompressible Navier–Stokes equations using our block preconditioner with
specific choices of linear solvers for the Jacobian system, the convection–diffusion, and
Schur complement approximation subproblems.

For solving the system with coefficient matrix F we use GMRES preconditioned
with three levels of algebraic multigrid, and for the pressure Poisson problem, we use
CG preconditioned with four levels of algebraic multigrid. For the convection-diffusion
problem, a block Gauss Seidel smoother was used, and for the pressure Poisson prob-
lem, a multilevel smoother polynomial was used for the smoothing operations [1]. For
the coarsest level in the multigrid scheme, a direct LU solve was employed. To solve
the linear problem associated with each Newton iteration, we use GMRESR, a varia-
tion on GMRES proposed by van der Vorst and Vuik [15] allowing the preconditioner
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to vary at each iteration. GMRESR is required because we used a multigrid precon-
ditioned Krylov subspace method to generate approximate solutions in the subsidiary
computations (pressure Poisson and convection-diffusion-like) of the preconditioner,
so the preconditioner is not a fixed linear operator.

In our experiments, we compare methods from pressure correction and approxi-
mate commutator with a one-level Schwarz domain decomposition preconditioner [11].
This preconditioner does not vary from iteration to iteration (as the block precondi-
tioners do), so GMRES can be used as the outer solver. Domain decomposition meth-
ods are based upon computing approximate solutions on subdomains. Robustness can
be improved by increasing the coupling between processors, thus expanding the origi-
nal subdomains to include unknowns outside of the processor’s assigned nodes. Again,
the original Jacobian system matrix is partitioned into subdomains using CHACO,
whereas AztecOO is used to implement the one-level Schwarz method and automati-
cally construct the overlapping submatrices. Instead of solving the submatrix systems
exactly we use an incomplete factorization technique on each subdomain (processor).

We have tested the fluid methods discussed above using MPSalsa [10], a code
that models chemically reactive, incompressible fluids, developed at Sandia National
Laboratory. The discretization of the Navier-Stokes equations provided by MPSalsa
is a pressure stabilized, streamwise upwinded Petrov Galerkin least squares finite ele-
ment scheme [13] with Q1-Q1 elements. One advantage of equal order interpolants is
that the velocity and pressure degrees of freedom are defined at the same grid points,
so equal order interpolants for both velocity and pressure are used. For these experi-
ments, we used an ILUT with no fill-in to compare with the approximate commutator
methods. Therefore, the ILU factors have the same number of nonzeros as the original
matrix with no entries dropped [11].

We have modeled the microfluidic simulations, using Sundance [8], a high-per-
formance code for parallel finite-element solutions of partial differential equations.
Sundance uses an autodifferentiation engine, so we can write out the symbolic ob-
jects we wish to differentiate in a high lever manner. This gives us flexibility in the
formulation and discretization of our model problem.

5. Results. We will begin by giving some preliminary results in MPSalsa to
show that this solution approach is valid for an incompressible flow problem. Then,
we will show results for an incompressible microfluidic problem.

5.1. Backward Facing Step. We frist apply our method to a two-dimensional
flow over a diamond obstruction. We consider a rectangular region with width of
unit length and a channel length of seven units, where the fluid flows in one side of a
channel, then around the obstruction and out the other end of the channel. Velocities
are zero along the top and bottom of the channel, and along the obstruction. The
flow is set with a parabolic inflow condition, i.e. ux = 1 − y2,uy = 0, and a natural
outflow condition, i.e. ∂ux

∂x = p and ∂uy

∂x = 0.
For the diamond obstruction problem, we terminate the nonlinear iteration when

the relative error in the residual is 10−3, i.e.∥∥∥∥(f − (Fu +BT p)
g − (B̂u− Cp)

)∥∥∥∥ ≤ 10−3

∥∥∥∥(f
g

)∥∥∥∥ . (5.1)

The tolerance for the solve with the Jacobian system, is fixed at 10−3 with zero initial
guess. For both problems, we employ inexact solves on the subsidiary pressure Poisson
type and convection-diffusion subproblems. For solving the system with coefficient
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Fig. 5.1. Model of a flow over a diamond obstruction.

matrix Ap, we use six iterations of algebraic multigrid preconditioned CG and for the
convection-diffusion-like subproblem, with coefficient matrix F , we fix a tolerance of
10−2, i.e. this iteration is terminated when

‖(y − Fu)‖ ≤ 10−2‖y‖. (5.2)

We compare this method to a one-level overlapping Schwarz domain decomposition
preconditioner that uses GMRES to solve the Jacobian system at each step using
the same tolerances. For both preconditioners, we use a Krylov subspace of 300 and
a maximum number of iterations of 3000. The results were obtained in parallel on
Sandia’s Institutional Computing Cluster (ICC). Each of this cluster’s compute nodes
are dual Intel 3.6 GHz Xenon processors with 2GB of RAM.

We compare the pressure convection-diffusion preconditioner to the domain de-
composition preconditioner on the flow over a diamond obstruction problem generated
by MPSalsa. In the first column of Table 5.1, we list the Reynolds number followed
by the number of unknowns for four problem sizes in column two. In columns three
and four we list the total CPU time and the average number of outer linear iterations
per Newton step for the pressure convection-diffusion and domain decomposition, re-
spectively. We see iteration counts that are largely independent of mesh size for a
given Reynolds number and an increase in the computational time as the mesh size
is refined. The domain decomposition preconditioner does not display mesh indepen-
dent convergence behavior as the mesh is refined. For Re 10 and Re 25, the pressure
convection-diffusion preconditioner was faster in all cases. For Re 40, it was faster for
all meshes except for the small problems with 62,000 unknowns run on one processor.
Note that the GMRES solver preconditioned with domain decomposition stagnated
before a solution was found for the problems with 4 million unknowns. The pres-
sure convection-diffusion preconditioner converged without difficulty on this problem.
On modest sized problems where both methods converged, the pressure convection-
diffusion preconditioner ranged from 4 to 15 times faster than domain decomposition.



M. R. Shuttleworth, V. Howle, K. Long, J. Templeton, and R. Tuminaro 247

Table 5.1
Comparison of the iteration counts and CPU time for the pressure convection-diffusion and

domain decomposition preconditioners for the flow over a diamond obstruction. NC stands for no
convergence.

Re Number Unknowns p Convection-Diffusion DD One-level Procs
iters time iters time

Re = 10 62K 20.5 138.8 110.8 186.6 1
256K 22.5 266.2 284.6 1657.4 4
1M 22.9 501.0 1329.0 7825.5 16
4M 29.4 1841.7 NC NC 64

Re = 25 62K 32.9 248.0 101.7 198.8 1
256K 35.9 480.6 273.8 1583.1 4
1M 38.3 956.9 1104.8 7631.5 16
4M 52.0 4189.8 NC NC 64

Re = 40 62K 54.6 565.8 70.4 267.2 1
256K 70.1 1280.9 203.9 1420.7 4
1M 65.4 2011.7 997.1 8188.2 16
4M 79.8 9387.9 NC NC 64

5.2. Induced-charge electro-osmosis (ICEO). For the two-dimensional in-
duced-charge electro-osmosis (ICEO) problem, we consider an enclosed region with
unit length width and length, with an obstruction in the center of the region. Velocities
are zero along the top and bottom of the channel, and along the obstruction is set
by solving (2.2). We have used Sundance to discretize the problem and to setup the
necessary boundary conditions.

We terminate the nonlinear iteration when the relative error (5.1) is 10−3. The
tolerance for the solve with the Jacobian system, is fixed at 10−3 with zero initial
guess. For both problems, we employ inexact solves on the subsidiary pressure Poisson
type and convection-diffusion subproblems. For solving the system with coefficient
matrix Ap, we use six iterations of algebraic multigrid preconditioned CG and for the
convection-diffusion-like subproblem, with coefficient matrix F , we fix a tolerance of
10−2 (5.2). In 5.2, we give some preliminary iteration counts and timings on using
the P-CD to solve this microfluidic problem. Further scaling studies and refinements
are needed to show the efficacy of this method on this new class of problem.

Table 5.2
Iteration counts and CPU time for the pressure convection-diffusion preconditioners for the

ICEO problem.

Re Number Unknowns Iters Time
Re = 10 50K 20.5 138.8
Re = 25 50K 32.9 248.0

6. Conclusions and Future Work. We have shown how new preconditioning
strategies based off of the approximation of the Schur complement generate iteration
counts and CPU times that are better than other current strategies for solving the
incompressible Navier-Stokes equations. We have shown that the iteration counts are
independent of the mesh with competitive CPU times to other preconditioning strate-
gies. We also show preliminary work on expanding these preconditioning strategies to
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a fixed ‘induced-charge electro-osmosis’ (ICEO) microfluidic problem. Future work is
still needed to show that these methods are truely applicable to microfluidic problems,
but the preliminary results are promising.
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Enabling Computational Nanoscience

The Enabling Computational Nanoscience target area encompasses a wide variety of
research spanning several disciplines. All of them share the goal removing obstacles
to performing computational nanoscience in the future. The first several papers work
towards improving computational design capabilities. Bashir et al. in a collaboration
between SNL, MIT, and UT Austin, develop a novel method for generating reduced
order models which is tailored to accelerating design calculations. Benavides et al.
presents work on JAVA-based visualization tools for atomistic simulations so that
materials experts can query the results of energy minimization calculations. Bichon
et al. investigates a new approach to reliability assessment that uses global optimiza-
tion techniques to look at multiple potential points of failure. The work of Crobak
and Berry motivates the use of novel computational architectures for running graph
algorithms with a diverse set of nanoscale applications. Johnson and Brewer present
research into mesh quality optimization methods with a focus on improved scalability
to very large meshes, which Parrish et al. work on algorithms for conformal mesh
refinement. The final set of papers fall in the computer science arena. The work
of Frost-Murphy et al. explores many issues in the area of reversible computing in
support of the successful development of Quantum-dot Cellular Automata (QCA)
microarchitectures. Rupnow and Underwood investigate the use of Reconfigurable
Functional Units to accelerate a wide range Sandia application codes, including Molec-
ular Dynamics and Electronic Circuit codes. Finally, Vance and Underwood look at
the parallelization of massively multithreaded algorithms which will be needed for
successful exploitation of nanoscale QCA computers. Well beyond the specific results
of these papers, the full impact of these works will come from the propagation of the
valuable research experiences represented by these papers into the careers of students
who performed the work.

A.G. Salinger

October 30, 2006
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REDUCED-ORDER MODEL CONSTRUCTION FOR
HIGH-DIMENSIONAL SYSTEMS

O. BASHIR∗, K. WILLCOX∗, B. VAN BLOEMEN WAANDERS† , J. HILL∗, AND O.

GHATTAS‡

Abstract. Reduced-order models which are able to approximate full-scale outputs over a wide
range of input parameters have an important role to play in making tractable large-scale optimal
design, optimal control, and inverse problem applications. We pose the task of determining appro-
priate training sets for reduced-basis construction as a sequence of optimization problems and show
that these problems have a closed-form solution under certain assumptions. We present an efficient
model-construction algorithm that scales well to systems with initial conditions, i.e. states, of high
dimension.

1. Introduction. Linear, time-invariant (LTI) systems are commonly used to
predict the evolution of system state from a certain initial condition in many appli-
cations such as circuit simulation, micro- and nanoscale flow calculation, and image
processing. As the number of state variables in a system grows, though, the computa-
tional cost of doing so increases non-linearly; depending on the application, the cost
can become great enough such that solving large-scale problems in reasonable time
becomes intractable. Model-order reduction methods have been devised which cap-
ture the dominant modes of large LTI systems with few state variables. The resulting
reduced-order models can be used to quickly approximate full-order predictions.

Model-order reduction for prediction is straightforward if the set of possible initial
conditions is both known and small. Given a single initial condition u0, a full-scale
LTI system can be simulated in time to determine the state u(t). A common method
of constructing a reduced-order model is to excite the full system with the initial
condition u0 and take ”snapshots” of the state at different time instants. This data
can be used to form a basis which transforms the full system into a reduced system,
but the resulting reduced system will only be valid for initial conditions similar to u0.

If the initial condition u0 is not known a priori, construction of a basis for re-
duction is more difficult. Snapshots of the full solution must then be taken for some
set of seed initial conditions, not just a single initial condition. For any system which
has an initial condition with many degrees of freedom, this process is considerably
more expensive than for systems with low-dimensional states. Simple systems with
straightforward dynamics lend themselves to intuitive choices for seed initial condi-
tions. In the abscence of this simplicity, though, the common way to construct a
robust basis is to use many different combinations of seed initial conditions. For ex-
ample, consider a small LTI system with only five state variables, each of which can
take initial values between 0 and 100. With no understanding of the system dynamics,
we might select 10 values between 0 and 100 as possible initial values for each state,
and collect data for all possible combinations. This would correspond to a set of 105

seed initial conditions or forward simulations. Clearly, for large systems, or even for
systems with a larger range of initial values, forming a reduced basis in this manner
can be prohibitively expensive due to the curse of dimensionality.

To solve this problem, Grepl [2] introduced the greedy algorithm, which seeks to
adaptively build a basis by finding the location in input parameter space where the

∗Massachusetts Institute of Technology
†Sandia National Laboratories
‡University of Texas at Austin
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error in the reduced model is maximal. This approach requires solution of a series of
optimization problems: one per location in parameter space which is used to augment
the basis. In this paper, we provide a closed-form solution to the greedy optimization
problem which holds under certain reasonable assumptions. This solution eliminates
the need for iteration in basis formation and thus dramatically decreases the offline
cost of using the greedy approach to construct a reduced model.

Below, we present a method of constructing a basis for reduction which is appro-
priate for systems with initial conditions that have many degrees of freedom. First,
we review reduced-order dynamical systems; we then present the theoretical approach
leading to a basis-construction algorithm; finally, we use numerical experiments to
demonstrate the utility of the algorithm.

2. Reduced-order Dynamical Systems. Consider the general linear, time-
invariant (LTI) dynamical system

Mu̇+Ku = 0, (2.1)
g = Gu, (2.2)

with initial condition

u(0) = u0, (2.3)

where u(t) ∈ IRN is the system state, u̇(t) is the derivative of u(t) with respect to time,
and the vector u0 contains the specified initial state. The matrix G ∈ IRQ×N defines
the Q outputs of interest, which are contained in the output vector g(t). In general,
we are interested in systems of the form (2.1) that result from spatial discretization
of PDEs. In this case, the dimension of the system, N , is very large and the matrices
M ∈ IRN×N and K ∈ IRN×N result from the chosen spatial discretization method.

A reduced-order model of (2.1)–(2.3) can be derived by assuming that the state
u(t) is represented as a linear combination of n basis vectors,

û = Φur, (2.4)

where û(t) is the reduced model approximation of the state u(t) and n � N . The
projection matrix Φ ∈ IRN×n contains as columns the basis vectors φi, i.e., Φ =
[φ1 φ2 · · · φn], and the vector ur(t) ∈ IRn contains the corresponding modal ampli-
tudes. This yields the reduced-order model with state ur(t) and output gr(t)

Mru̇r +Krur = 0, (2.5)
gr = Grur, (2.6)

Mrur0 = ΦTMu0, (2.7)

where Mr = ΦTMΦ, Kr = ΦTKΦ, Gr = GΦ, and ur0 = ur(0).
After discretization in time, the general LTI system (2.1) and (2.2) can be written

as

Au = Tu0, (2.8)
g = Cu, (2.9)

where u ∈ IRNT contains the system state u(t) discretized over T time instants. The
vector u0 ∈ IRN contains the specified initial state. The matrices A ∈ IRNT×NT and



O. Bashir, K. Willcox, B. van Bloemen Waanders, J. Hill, and O. Ghattas 253

T ∈ IRNT×N are functions of M and K (2.1) and result from the particular choice of
temporal discretization scheme. The output vector g ∈ IRQT contains the Q outputs
in g(t) at each of the T time instants, and is defined by the matrix C ∈ IRQT×NT ,
which has as block diagonal entries the matrix G in (2.2).

In discrete form, the reduced order model of (2.8) and (2.9) can be written as

Arur = Tru0, (2.10)
gr = Crur, (2.11)

where Ar = V TAV , Tr = V TT , and Cr = CV . The reduced-order discrete state is
ur ∈ IRnT and the basis V ∈ IRNT×nT contains T copies of Φ on its block diagonal
entries.

3. Hessian-based Model Reduction. In this section, the proposed model re-
duction methodology is presented. The approach is motivated by the greedy algorithm
of Grepl [2], which seeks to adaptively build a basis by finding the location in input
parameter space where the error in the reduced model is maximal. The solution at
that parameter location is then added to the basis, and the procedure is repeated. For
the finite-time-horizon problem considered here, we will show that the optimization
problem solved at each iteration of the greedy algorithm has a closed-form solution
in the form of an eigenvalue problem.

3.1. Theoretical Approach. In applications such as source inversion, we re-
quire a reduced-order model that will provide accurate outputs for any initial condition
contained in some set U0. Using the projection framework described above, the task
therefore becomes one of choosing an appropriate basis so that the error between
full-order and reduced-order outputs is small for all possible initial conditions. We
define an optimal basis, V ∗, to be one that minimizes the maximal error between the
full-order and reduced-order outputs of the fully discrete system,

V ∗ = arg min
V

max
u0∈U0

1
2

(g − gr)
T (g − gr) (3.1)

s.t. Au = Tu0,

g = Cu,

Arur = Tru0,

gr = Crur.

For this formulation, the only restriction that we will place on the set U0 is that
it contain vectors of unit length. This prevents unboundedness in the optimization
problem, since otherwise the error in the reduced system could be made arbitrarily
large. Because the system is linear, the basis V ∗ will still be valid for initial conditions
of any finite norm.

A suboptimal but computationally efficient approach to solving (3.1) is inspired
by the greedy algorithm of Grepl [2]. The greedy approach in this context is sum-
marized as follows: given a temporary (non-optimal) reduced-order model defined by
the matrices Ar, Tr and Cr, we propose to find the initial condition u∗0 ∈ U0 that
maximizes the error in (3.1); that initial condition will then be used to augment the
reduced basis with new snapshot data. These steps are performed at each iteration of
the greedy algorithm to adaptively improve the reduced basis. The key step above is
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finding the worst-case initial condition u∗0 ∈ U0, which is done by solving the modified
optimization problem

u∗0 = arg max
u0∈U0

1
2

(g − gr)
T (g − gr) (3.2)

s.t. Au = Tu0,

g = Cu,

Arur = Tru0,

gr = Crur.

After some assumptions and a series of steps beyond the scope of this paper, (3.2)
becomes

u∗0 = arg max
u0∈U0

(
u⊥0
)T 1

2
(
CA−1T

)T (
CA−1T

) (
u⊥0
)
, (3.3)

where u⊥0 is the part of the initial condition not spanned by the temporary basis which
exists at a given iteration of the greedy algorithm. By inspection it can be seen that,
since the only restriction placed on U0 is that it contain vectors of unit length, the
optimal solution to (3.3) is obtained by choosing u∗0 to be the dominant eigenvector
of H0 =

(
CA−1T

)T (
CA−1T

)
, which happens to be the Hessian operator associated

with (3.3) [1].
This result motivates the following efficient basis-construction approach for the

initial condition problem. This method does not solve the optimization problems (3.1)

1. For the Hessian matrix, H0, find the p eigenvectors z1, . . . zp with largest
eigenvalues λ1, . . . λp.

2. For i = 1, . . . , p, set u0 = zi and compute the corresponding solution ui.
3. Form the reduced basis as the span of the solutions ui, i = 1, . . . , p.

or (3.2) exactly, but provides a very good approximate solution to (3.2) under the
reasonable conditions discussed above. Note that the eigenvectors are all computed
from a single Hessian matrix. Algorithm 3.1 can be implemented very efficiently using
a sparse eigenvalue solver. The Hessian matrix need not be formed explicitly; rather,
the dominant eigenvectors can be computed via a set of solves of the system (2.8),
(2.9).

4. Numerical Results. Above, we have provided the theoretical background
for an algorithm which should be able to form a reduced model of a large, LTI system
which effectively replicates outputs for any initial condition. We now set out to
demonstrate the validity of the proposed method. In the process, we hope to gain
an understanding of the effects of varying the number of eigenvectors of the Hessian
operator used in the algorithm, as well as the effects of varying the size of the reduced
basis. The general framework for numerical experiments in this paper is as follows:

1. Form a large LTI system with relatively few outputs and an initial condition
with many degrees of freedom, i.e., many state variables.

2. Using Algorithm 3.1, form a reduced model of the full LTI system.
3. Randomly construct a set of initial conditions with which to test the reduced

model. Use each of these initial conditions to simulate the full and reduced
systems in time.
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4. For each test initial condition, compare the full outputs and the reduced
outputs to assess the quality of the reduced model.

These experiments were performed using MATLAB. Steps 1 and 2 above are detailed
further in the following sections.

4.1. Formation of Large LTI Systems. A finite-element approximation of
the convection-diffusion equation in a two-dimensional domain provides a suitable
LTI system for experimentation. At t = 0, each node can have any real, non-negative
concentration, so the initial condition is indeed of high-dimension.

Thus, we generate full systems for the experiments by using a finite-element dis-
cretization in a rectangular domain with a uniform and constant velocity field. The
velocity is directed in the positive x-direction as defined by Figure 4.1. Below is the
convection-diffusion equation along with the boundary condition used in the experi-
ments.

∂u

∂t
+ U · ∇u− κ∇2u = 0 in Ω (4.1)

u = 0 on Γin,

where U is the velocity vector field, κ is the diffusivity, and Γin is the inflow boundary,
defined by the x = 0 segment in Figure 4.1. Homogeneous Neumann boundary
conditions were applied on the remaining boundaries. The same spatial discretization,
with triangular elements and N = 1860 unknown nodal values, was used for all
experiments.

The mass matrix M and stiffness matrix K in (2.1) are dependent on the velocity
field and Peclet number, which is defined as Pe = vc`c

κ . In this paper, the characteris-
tic velocity was taken to be the maximum velocity magnitude in the domain, while the
domain length was used as the characteristic length scale. The uniform velocity field
decribed above was used in all experiments, but Pe was varied. Peclet numbers of 10,
100, 1000, and 10,000, in order of increasing convective nature, were used to generate
different full-scale systems. Streamline Upwind Petrov-Galerkin (SUPG) stabilization
was introduced to allow for higher Pe.

The matrix G which relates system states to outputs in (2.2) is dependent on
which nodal values or combinations of values are chosen as the Q outputs of interest.
Experiments were performed for both Q = 2 and Q = 10, and in both cases, each
output was defined as the concentration at a certain nodal value in the domain.

4.2. Construction of Reduced-Order Models. We rewrite Algorithm 3.1
here in a form specific to the implementaion used in the experiments.

1. For the Hessian matrix, H0, find the p eigenvectors z1, . . . zp with largest
eigenvalues λ1, . . . λp.

2. For i = 1, . . . , p, set the initial condition u0 = zi and compute the corre-
sponding solution ui(t) by simulating forward in time with timestep ∆t from
time t = 0 to t = Tf .

3. Aggregate all N -by-1 solution snapshots from all p forward solutions in a
snapshot matrix X ∈ IRN×Tnp, where Tn is the number of timesteps from
t = 0 to t = Tf .

4. Form the reduced basis as the span of the solutions by using proper orthogonal
decomposition (POD): take the n most dominant eigenvectors of

(
XXT

)
to

be the n reduced basis vectors. The basis can then be used to form the
reduced model in (2.5), (2.6), and (2.7).
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Fig. 4.1. The computational domain and locations of output nodes for the two-output case.

For all experiments, the timestep used was ∆t = 0.02 and the time limit, set
approximately by the maximum time of convection across the length of the domain,
was Tf = 1.4. Each forward solution was computed using the implicit Crank-Nicolson
method.

The only two parameters other than timestep and time limit that influence re-
duced model construction are p, the number of eigenvectors of H0 used as seed initial
conditions; and n, the number of reduced basis vectors. Values for p of 5, 10, and 20
were tested.

Unlike the selection of p, the determination of n was automated by choosing
λ <

Pn
i=1 λiPTnp
j=1 λj

. The fraction of the sum of the eigenvalues of the n POD basis vectors

included in the reduced basis over the sum of the eigenvalues of all candidate POD
basis vectors was bounded from below by λ. Two different values, λ = 0.999 and
λ = 0.999999, were chosen for the experiments. Use of the latter was expected to
include more POD vectors in the reduced basis in order to meet the aforementioned
criteria.

4.3. Results: Two-output Case. The set of results presented in this section
was generated for the Q = 2 configuration pictured in Figure 4.1. The first output
g1(t) was made to represent the concentration over time at the first output node. The
second output follows a similar convention.

Before analyzing the performance of a reduced model construced by the algorithm
above, we can examine the eigenvectors zi of H0 which serve as the seed initial condi-
tions. Figure 4.2 shows only the dominant eigenvector for four different values of Pe.
What we see is rather intuitive: the more convective the flow is, the greater the con-
centration is upstream of the outputs. The reduced model requires more information
from nonzero upstream initial conditions if the flow is convective. If the flow is more
diffusive, then initial conditions which are localized at the output nodes dominate the
basis formation.

4.3.1. Representative Output Comparison. A reduced system constructed
using the algorithm above should provide reduced outputs gr,i(t) which effectively
approximate the full outputs gi(t) for any initial condition. To test this, each reduced
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Fig. 4.2. Dominant eigenvectors of H0 for different Peclet numbers. Note the smoothing of the
eigenvector upstream for more convective flows (higher Pe).
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Fig. 4.3. A typical comparison of full and reduced outputs. The initial condition was formed
by superimposing 3 randomly chosen Gaussian distributions. Pe = 100, p = 20, λ = 0.999999.

model formed was excited with an initial condition involving a random combination
of Gaussian distributions. Figure 4.3 shows a typical comparison of full and reduced
outputs generated by these experiments. This result demonstrates that a reduced
model of size n = 118 formed using Algorithm 3.1 can effectively replicate the outputs
of this particular full-scale system of size N = 1860.

4.3.2. Effect of Variations in λ. As discussed above, λ is the parameter which
controls the number of POD vectors chosen for inclusion in the reduced basis. If it
is too small, the reduced basis might not span the space of all initial conditions
for which it is desired that the reduced model be valid. Figure 4.4 illustrates the
effect of changing λ. The curve corresponding to a greater value of λ shows a clear
improvement over the other result. The pointwise sum of |g(t)− gr(t)|, a measurement
of the modeling error, is equal to 1.1507 for λ = 0.999 and 0.1338 for λ = 0.999999.
This improvement comes with a price, though: the number of basis vectors, and
therefore the size of the reduced model n, increases from 72 to 154.

4.3.3. Effect of Variations in p. Another way to alter the size and quality of
the reduced model is to change p, the number of eigenvectors of H0 which are used as
seed initial conditions for basis creation. The effect of doing so is illustrated Figure
4.5. An increase in reduced model quality clearly accompanies an increase in p. For
p = 5, the pointwise sum of the modeling error is 2.3968, while for p = 20 it is only
0.2348. The size of the reduced model n grows from 44 to 82 to 129 for p values of
5, 10, and 20 respectively. This is expected, since greater p implies more snapshot
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Fig. 4.4. The plot above shows a comparison between full and reduced solutions at a certain
location for two different values of λ. The initial condition was formed by superimposing 7 randomly
chosen Gaussian distributions. Pe = 100, p = 10.
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Fig. 4.5. The above plot illustrates that increasing the number of Hessian eigenvector initial
conditions p used in basis formation leads to more accurate reduced-order output. The test initial
condition for this result was formed by superimposing 3 randomly chosen Gaussian distributions.
Pe = 1000, λ = 0.999.

data with which to build the reduced basis, effectively uncovering more full system
modes and decreasing the relative importance of the most dominant POD vectors
(eigenvectors of XXT ). In general, for the same value of λ, more POD vectors are
included in the basis if p is larger.

Figure 4.6 shows a case which is difficult for the reduced order model to treat.
Even though p and λ are relatively high in the first trial, the reduced model does not
seem to accurately replicate the full output at the second output location. This is
because the test initial condition for these trials was a single Gaussian distribution
unlike any of the p seed eigenvectors. Despite this, the first plot (p = 20) shows that
the maximum modeling error is only 2% of the maximum magnitude of the initial
condition. Increasing p dramatically to 50 shows, in turn, a dramatic improvement
in the reduced order output: in fact, the model even captures the small perturbation
in the full output which, at its peak, has a magnitude of just 2 × 10−4 times the
maximum magnitude of the initial condition. Whether increasing p so sharply is
necessary depends on application demands, since doing so increases the size of the
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Fig. 4.6. Another example of increased p leading to more accurate reduced-order output, even
for initial conditions difficult for the reduced-order model to treat - in this case, a single Gaussian
distribution centered far from the output locations. Pe = 1000, λ = 0.999999.
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Fig. 4.7. The computational domain and locations of output nodes for the ten-output case.

reduced system n from 275 to 524.

4.4. Results: Ten-output Case. To understand how the proposed method
scales with the number of outputs in the full LTI system, we repeat the experiments
for systems with Q = 10 outputs. Figure 4.7 shows the locations of the nodes which
correspond to each output. The locations were all randomly generated, except for
one, which was intentionally placed at the same location as the first output node in
the two-output case.

4.4.1. Representative Output Comparison. Figure 4.8 illustrates that the
reduced basis formation method is effective for ten outputs as well. With a reduced
model of size n = 168, all ten outputs are replicated closely. The reduced basis for
the same configuration in the two-output case was of size n = 118, so the five-fold
increase in number of outputs is not reflected in basis size.

The only noticeable case of modeling error can be seen in the fifth comparison plot,
in which the t = 0 value of g5/u0,max is close to 0.04 according to the reduced model,
but only 0.01 as computed by the full model. Although the reduced model predicts
a concentration four times too great, the error associated with this overprediction is
only 3% of the maximum value of the initial condition in magnitude.
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Fig. 4.8. A comparison of all ten full and reduced outputs. The initial condition used to
generate this data was created by superimposing 7 random Gaussian distributions. Pe = 100,
p = 20, λ = 0.999.

Table 4.1
Comparison of modeling error for the same output node, two-output model versus ten-output

model. The initial conditions were generated with 1, 3, and 7 random Gaussian distributions.

Q = 2 Q = 10
1-Gaussian 0.4483 0.07519
3-Gaussian 0.2348 0.1254
7-Gaussian 0.1626 1.355

4.4.2. Comparison to Two-output Case. The first outputs g1(t) in both the
two-output case and ten-output case were intentionally chosen to correspond to the
same node in the computational domain. We can exploit this choice to examine the
change in quality of the reduced approximation of g1(t) due solely to the inclusion of
other outputs. To do this, we compare reduced models of two systems with identical
physical properties (same M and K, but different G) built with the same values of p
and λ.

Table 4.1 shows the modeling error for two similar reduced models (p = 20,
λ = 0.999) of the same system (Pe = 1000), ignoring the difference in the G matrix
in (2.2) related to the number of outputs Q. Each row of the table corresponds to a
different randomly-generated initial condition. As seen above, the size of the reduced
model n = 224 for the ten-output case is larger than that of the two-output model,
n = 129. This is expected since the span of the reduced basis must be larger to
capture the behavior at the increased number of output nodes. Interestingly, though,
the addition of outputs increases the error for the 7-Gaussian initial condition but
has the opposite effect for the other two test initial conditions. This suggests no
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Fig. 4.9. Certain initial conditions, such as that used to generate this data, are handled better by
the two-output reduced model than by the ten-output reduced model. Pe = 1000, p = 20, λ = 0.999.

direct relationship between Q and the modeling accuracy for a given output: adding
additional output nodes to the full system might actually improve accuracy for the
previously existing outputs. The 7-Gaussian case, for which the error does indeed
increase when more outputs are introduced, is shown in Figure 4.9.

4.5. Summary and Recommendations. The results above demonstrate that
reduced models formed by the proposed method are indeed effective in replicating full-
scale outputs. At this point, we can use the results to make recommendations about
choosing p and λ, the two parameters which control reduced-model construction.

In practice, one would like to choose these parameters such that both the reduced
model size n and the modeling error for a variety of test initial conditions are minimal.
The size of the reduced model is important because n is directly related to the online
computational cost; that is, n determines the time needed to compute the reduced
output approximations, which should be minimal for real-time applications. However,
the offline cost of building the reduced model cannot be ignored.

Let us first consider λ, the parameter which directly controls how many basis
vectors n are chosen to represent the reduced basis. For implementations in which all
POD basis vectors are calculated at once, as in MATLAB via singular value decom-
position (SVD), there is no additional offline cost associated with increasing the value
of λ. The online cost, though, scales with n as mentioned above. Thus, increasing
λ might appreciably improve modeling accuracy, but doing so can only increase the
time needed to compute reduced output approximations.

Changes in p affect the offline cost more strongly. Each additional eigenvector
of H0 adds the cost of one additional forward solution of the full model to generate
snapshot data. In addition, in some implementations, computing p eigenvectors of H0

is more expensive than computing p− 1 eigenvectors. Finally, the snapshot matrix X
grows by Tn if p is incremented by one: performing POD becomes more expensive.
If these increases in offline cost can be tolerated, though, the results suggest a clear
improvement in reduced-model accuracy for a relatively small increase in online cost.

Figure 4.10 illustrates the details presented in the previous two paragraphs. For a
single full LTI system with 10 outputs, six different reduced models were constructed
with different combinations of p and λ. Consider one of the three plots, which cor-
responds to a single test initial condition. The sum, over all 10 outputs, of the
cumulative pointwise modeling error is plotted versus reduced-model size n. Ideally,
a reduced model should have both small error and small n, so we examine those
models whose points reside closest to the origin. Ignoring differences in offline model
construction cost, increasing p should be favored over increasing λ if more accuracy is
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Fig. 4.10. A measure of the error in six different reduced models of the same system plotted
versus their sizes n. The initial conditions used to generate the data for each of the three plots were
formed with 1, 3, and 7 random Gaussian distributions. The error shown is the sum, over all ten
outputs, of the cumulative pointwise difference between the full and reduced models. Pe = 10000, 10
outputs.

desired. This conclusion is reached by realizing that for a comparable level of error,
reduced models constructed with larger p are much smaller.

In the case that forward solves of the full system are expensive, making basis con-
struction with large p undesirable, there should be at least as many H0 eigenvector
initial conditions as the number of outputs Q. Figure 4.11 shows the H0 eigenvalue
spectra for the two-output and the ten-output cases. If we assume that the magni-
tude of each eigenvalue is related to the importance of including the corresponding
eigenvector as a seed initial condition, then the sharp decrease near Q in each case
supports the assertion that Q serves as a lower bound for p. The value of p should,
in practice, be set considerably higher than Q to provide desirable results.

5. Conclusion. In this paper, we proposed a new method for constructing
reduced-order models of LTI systems with initial conditions of high dimension. The
models are intended to provide effective replication of full-scale, time-dependent out-
puts for any possible initial condition. The algorithm proposed leads to the construc-
tion of a reduced basis, which alone defines the reduced model via projection of the
full system.

The method involves using eigenvectors of the Hessian matrix to directly solve an
optimization problem inspired by the greedy algorithm. Each of these eigenvectors is
used as a seed initial condition to train the reduced system. Above, we demonstrated
the utility of the method by performing a series of experiments on a 2-D finite-element
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Fig. 4.11. A comparison of the eigenvalue spectra of H0 for the two- and ten-output cases.

system; recommendations were made regarding the proper quantity of Hessian eign-
evectors and POD basis vectors to obtain. Given its success, the method can be
used to produce real-time output approximation if a reduced model is constructed
beforehand.

Future work might involve a more rigorous means of finding the proper number
of eigenvectors of the Hessian and basis vectors to use in the method. The method
might also be tested on different types of LTI systems. Furthermore, a similar method
might be applied to forced-response problems, in which an LTI system accepts inputs
of high dimension. Finally, the proposed algorithm could be even more powerful if
extended to large-scale, nonlinear systems.
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JAVA-BASED ATOMISTIC VISUALIZATION TOOLS

NICK BENAVIDES∗, CYNTHIA A. PHILLIPS† , AND JEAN-PAUL WATSON†

Abstract. We consider visualization tools for comparing two conformations of the same small
set of atoms. We motivate the application and document a set of useful tools and references for
researchers wishing to learn Java and apply it to this application.

1. Introduction. In this paper we consider tools for visualizing differences be-
tween two conformations of the same set of atoms. Such tools will help researchers
understand the space of conformations with nearly-minimum energy and help re-
searchers understand why some conformations form local minima.

Given a placement of atoms in three dimensional space one can calculate the
Lennard-Jones potential between each pair of atoms [10]. We define the energy of
a configuration to be the sum of the pairwise Lennard-Jones potentials, taken over
all pairs of atoms. We assume that in nature, a stable configuration will be a local
minimum for this potential energy and it will be approximately optimal globally.

Researchers wish to better understand the nature of these local minima as well
as the relationships between them. It may be difficult for a configuration to “escape”
from a local minimum if there is a strong energy barrier. It may be almost impossible
to transform directly from one local minimum to another. However, it can be possible
to go from one minimum to another through a series of small steps, some of which will
increase the energy. Specifically, there is a path of configurations C1, C2, . . . , Ck, where
configuration Ci can transform to configuration Ci+1 reasonably easily. Frequently
this consists of a series of small changes in energy to enable a configuration change
with a large drop in potential energy.

A tool for visualizing differences between two configurations could help researchers
explore the space of configurations with locally minimum, near-globally minimum po-
tential energy. In this case, one could use pairwise comparisons as a starting point
for the more complex comparisions among elements of the entire set. A pairwise
comparison tool could be especially helpful for path analysis, studying the steps of
small changes necessary to move from one local minimum to another. In this case
there are specific configurations with clear pairwise relationships that one must un-
derstand. Even small problems with 20–40 identical atoms are relevant scientifically
and potentially small enough for a human, with proper assistance, to visualize the
whole ensemble.

We selected Java programming environment for the visualization tool. Java is
a modern object-oriented language with powerful libraries to support graphics. Fur-
thermore, we would like to interface this tool with the DAKOTA optimization toolkit
(to obtain the configurations to visualize). Since DAKOTA uses Java, it is a nat-
ural choice. Looking ahead to other uses of the visualization technology, there are
other optimization codes within the DOE complex and for exteral customers that will
require a Java interface.

Learning Java does require some start up time. This paper is a guide to Java-
based tools that might be helpful for this particular atom visualization project (how
to visualize) and a guide to possible visualization methods (what to visualize).

∗Albuquerque Academy & Santa Clara University
†Sandia National Laboratories
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2. Representing Conformational Differences. There is considerable room
in this application for artistic creativity. Tufte gives a number of compelling examples
where showing people data in the right way can make critical data characteristics
obvious [7–9]. These books are worth skimming for possible ideas.

A first step to visualizing differences, especially for one not familiar with Java,
does not require complex spherical clusters or animiation. One can simply draw a
matrix.

Consider the 2D matrix where each column and row represents an atom. Each
matrix entry (i, j) is the Lennard-Jones potential between atom i and atom j. Each
conformation has such a matrix. Of course, one need only consider half the matrix
above the diagonal, since it is symmetric and presumably self-comparisons are not
relevant. Given matrices from two configurations M1 and M2, we can compare the
matrices via the difference matrix Md = M1 −M2. We can display the matrix color
coding each entry by magnitude and sign. Gray scale is a reasonable starting point.

3. Java-based tools and references. This section gives some guidance on
references useful for getting started with Java for this application. We then describe
some built-in Java types and tools relavant to the project. We conclude with some
code with useful pieces that we hope will serve as a starting point for the next phase
of development.

The the first several chapters of the book Java In A Nutshell [3] provides an
overview of Java syntax syntax and how to compile and run a Java program. Java
2D Graphics [4] has a section on using grayscale and other color themes. Ultimately,
one will likely need 3D graphics for this application. Chapter 14 of Killer Game
Programming in Java [2] has a nice introduction to Java 3D. The single most useful
book we found on Java 3D is Java 3D Programming [6].

Eventually the visualization tool will need a GUI (graphical user interface tool).
Swing is a GUI toolkit for Java, capable of handling large software projects. A good
reference for this tool is the book Java Swing [5]. We found no code fragments in
this book useful for our immediate needs, but we expect a friendly user interface
for experimenting with visualizations will become increasingly important as our tools
mature.

Here are some tips for controlling color, particularly gray scale for a first develop-
ment [4]. The java.awt.color.ColorSpace class encapsulates a given color space.
A particularly useful color space type is;
public static final int TYPE_GRAY

According to Knudsen: “This constant represents a grayscale color space type.
This color space type defines colors that are evenly spaced between black and white.”
There are other built-in color spaces, but gray scale is a simple first-pass method and
it may even be completely sufficient for some tasks.

Any future 3D system may be able to use the Java Molecular Viewer (JMV) [1],
developed by the Theoretical Biophysics group at the University of Illinois and the
Beckman Institute. This code is freely available. Users can customize the way
molecules appear. It’s possible a comparison system could build upon this foun-
dation. We were unable to run the latest version of JMV (0.85) through a browser
on a solaris machine. The browser hung/froze. This problem occurred with mozilla
and netscape. This could be a problem with the browser configuration. It’s possible
the standalone application would work better or perhaps one could use a browser on
another platform.

Finally, here are two works of code with detailed examples. They are archived
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here to provide a single start-up source for the next developer on this project. These
are examples collected from various sections of [6] most relvant to the project.

/**

* Render a 3D shape using a 3D rendering engine

* that was written from scratch using AWT for

* graphics operations.

*/

public class MyJava3D extends JFrame

{

private static int m_kWidth = 400;

private static int m_kHeight = 400;

private RenderingEngine renderingEngine = new AwtRenderingEngine();

private GeometryUpdater geometryUpdater = new RotatingGeometryUpdater();

private RemderingSurface renderingSurface;

public MyJava3D( )

{

// load the object file

Scene scene = null;

Shape3D shape = null;

// read in the geometry information from the data file

ObjectFile objFileloader = new ObjectFile( ObjectFuke.RESIZE );

try

{

scene = objFileloader.load( "hand1.obj" );

}

catch ( Exception e )

{

scene = null;

System.err.println( e );

}

if( scene == null )

System.exit( 1 );

// retrieve the Shape3D object from the scene

BranchGroup branchGroup = scene.getSceneGroup( );

shape = (Shape3D) branchGroup.getChild( 0 );

// add the geometry to the rendering engine...

renderingEngine.addGeometry( (GeometryArray) shape.getGeometry() );

// create a rendering surface and bind the rendering engine

renderingSurface = new RenderingSurface( renderingEngine,

geometryUpdater );

// start the rendering surface and add it to the content panel

renderingSurface.start();

getContentPane().add( renderingSurface );
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// disable automatic close support for Swing frame.

setDefaultCloseOperation( WindowConstants.DO_NOTHING_ON_CLOSE );

// add the window listener

addWindowListener(

new WindowAdapter()

{

// handle the system exit window message

public void windowClosing( WindowEvent e )

{

System.exit( 0 );

}

}

};

}

public static void main( String[] args )

{

MyJava3D myJava3D = new MyJava3D();

myJava3D.setTitle( "MyJava3D" );

myJava3D.setSize( 300, 300 );

myJava3D.setVisible( true );

}

}

import java.applet.Applet;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.geometry.*;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.image.TestureLoader;

/*

* This example builds a simple Java 3D application using the

* Sun utility classes: MainFrame and SimpleUniverse.

* The example displays a moving sphere, in front of a

* background image. It uses a texture image and one light

* to increase the visual impact of the scene.

*/

public class SimpleTest extends Applet

{

/*

* Create a simple Java 3D environment containing:

* a sphere (geometry), a light, background geometry

* with an applied texture, and a behavior that will

* move the sphere along the X-axis.

*/

public SimpleTest()

{

// create the SimpleUniverse class that will

// encapsulate the scene that we are building.
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// SimpleUniverse is a helper class (utility)

// from SUN that is included with the core Java 3D

// distribution.

SimpleUniverse u = new SimpleUniverse();

// create a BranchGroup. A BranchGroup is a node in

// a Tree data structure that can have child nodes

BranchGroup bgRoot = new BranchGroup();

// create the Background node and add it to the SimpleUniverse

u.addBranchGraph( createBackground() );

// create the behaviors to move the geometry along the X-axis.

// The behavior is added as a child of the bgRoot node.

// Anything added as a child of the tg node will be affected by the

// behavior (will move along the X-axis.)

TransformGroup tg = createBehaviors( bgRoot );

// add the Sphere geometry as a child of the tg

// so that it will be moved along the X-axis.

tg.addChild( createSceneGraph() );

// because the sphere was added at the 0,0,0 coordinate

// and by default the viewer is also located at 0,0,0

// we have to move the viewer back a little so that

// he/she can see the scene.

u.getViewingPlatform().setNominalViewingTransform();

// add a light to the root BranchGroup to illuminate the scene

addLights( bgRoot );

// finally wire everything together by adding the root

// BranchGroup to the SimpleUniverse

u.addBranchGraph( bgRoot );

}

/*

* Create the geometry for the scene. In this case

* we simply create a Sphere

* (a built-in Java 3D primitive).

*/

public BranchGroup createSceneGraph()

{

// create a parent BranchGroup node for the Sphere

BranchGroup bg = new BranchGroup();

// create an Appearance for the Sphere.

// The Appearance object controls various rendering

// options for the Sphere geometry.

Appearance app = new Appearance();

// assign a Material to the Apperance. For the Sphere

// to respond to the light in the scene it must have a Material.

// Assign some colors to the Material and a shininess setting
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// that controls how reflective the surface is to lighting.

Color3f onjColor = new Color3f(0.8f, 0.2f, 1.0f);

Color3f black = newColor3f(0.0f, 0.0f, 0.0f);

app.setMaterial(new Material(objColor, black, objColor, black, 80.0f));

// create a Sphere with a radius of 0.1

// and associate the Appearance that we described.

// the option GENERATE_NORMALS is required to ensure that the

// Sphere responds correctly to lighting.

Sphere sphere = new Sphere( 0.1f, Primitive.GENERATE_NORMALS, app );

// add the sphere to the BranchGroup to wire

// it to the scene.

bg.addChild( sphere );

return bg;

}

/*

* Add a direction light to the BranchGroup.

*/

public void addLights( BranchGroup bg )

{

// create the color for the light

Color3f color = new Color3f( 1.0f,1.0f,0.0f );

// create a vector that describes the direction that

// the light is shining.

Vector3f direction = new Vector3f( -1.0f,-1.0f,-1.0f );

// create the directional light with the color and direction

DirectionalLight light = new DirectionalLight( color, direction );

// set the volume of influence of the light.

// Only objects within the Influencing Bounds

// will be illuminated.

light.setInfluencingBounds( getBoundingSphere() );

// add the light to the BranchGroup

bg.addChild( light );

}

/*

* Create some Background geometry to use as

* a backdrop for the application. Here we create

* a Sphere that will enclose the entire scene and

* apply a texture image onto the inside of the Sphere

* to serve as a graphical backdrop for the scene.

*/

public BranchGroup createBackground()

{

// create a parent BranchGroup for the Background

BranchGroup backgroundGroup = new BranchGroup();

// create a new Background node
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Background back = new Background();

// set the range of influence of the background

back.setApplicationBounds( getBoundingSphere() );

// create a BranchGroup that will hold

// our Sphere geometry

BranchGroup bgGeometry = new BranchGroup();

// create an appearance for the Sphere

Appearance app = new Apperance();

// load a texture image using the Java 3D texture loader

Texture tex = new TextureLoader( "back.jpg", this).getTexture();

// apply tge texture to the Appearance

app.setTexture( tex );

// create the Sphere geometry with radius 1.0.

// we tell the Sphere to generate texture coordinates

// to enable the texture image to be rendered

// and because we are *inside* the Sphere we have to generate

// Normal coordinates inwards or the Sphere will not be visible.

Sphere sphere = new Sphere( 1.0f,

Primitive.GENERATE_TEXTURE_COORDS |

Primitive.GENERATE_NORMALS_INWARD, app );

// start wiring everything together,

// add the Sphere to its parent BranchGroup.

bgGeometry.addChild( sphere );

// assign the BranchGroup to the Background as geometry.

back.setGeometry( bgGeometry );

// add the Background node to its parent BranchGroup.

backgroundGroup.addChild( back );

return backgroundGroup;

}

/*

* Create a behavior to move child nodes along the X-axis.

* The behavior is added to the BranchGroup bg, whereas

* any nodes added to the returned TransformGroup will be

* effected by the behavior.

*/

public TransformGroup createBehaviors( BranchGroup bg )

{

// create a TransformGroup.

//

// A TransformGroup is a Group node (can have children)

// and contains a Transform3D member.

//

// The Transform3D member contains a 4x4 transformation matrix
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// that is applied during rendering to all the TransformGroup’s

// child nodes. The 4x4 matrix can describe:

// scaling, translation and rotation in one neat package!

// enable the TRANSFORM_WRITE capability so that

// our behavior code can modify it at runtime.

TransformGroup objTrans = new TransformGroup();

objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

// create a new Transform3D that will describe

// the direction we want to move.

Transform3D xAxis = new Transform3D();

// create an Alpha object.

// The Alpha object describes a function against time.

// The Alpha will output a value that ranges between 0 and 1

// using the time parameters (in milliseconds.)

Alpha xAlpha = new Alpha( -1,

Alpha.DECREASING_ENABLE |

Alpha.INCREASING_ENABLE,

1000,

1000,

5000,

1000,

1000,

10000,

2000,

4000 );

// create a PositionInterpolator.

// The PositionInterpolator will modify the translation components

// of a TransformGroup’s Transform3D (objTrans) based on the output

// from the Alpha. In this case the movement will range from

// -0.8 along the X-axis with Alpha=0 to X=0.8 when Alpha=1.

PositionInterpolator posInt = new PositionInterpolator( xAlpha,

objTrans, xAxis, -0.8f, 0.8f );

// set the range of influence of the PositionInterpolator

posInt.setSchedulingBounds( get BoundingSphere() );

// wire the PositionInterpolator into its parent

// TransformGroup. Just like rendering nodes behaviors

// must be added to the scenegraph.

objTrans.addChild( posInt );

// add the TransformGroup to its parent BranchGroup

bg. addChild( objTrans );

// we return the TransformGroup with the

// behavior attatched so that we can add nodes to it

// (which will be affected by the PositionInterpolator.)

return objTrans;

}
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/*

* Return a BoundingSphere that describes the

* volume of the scene.

*/

BoundingSphere getBoundingSphere()

{

return new BoundingSphere( new Point3d(0.0,0.0,0.0), 200.0 );

}

/*

* main entry point for the Application.

*/

public static void main(String[] args)

{

SimpleTest simpleTest = new SimpleTest();

}

}
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MULTIMODAL RELIABILITY ASSESSMENT FOR COMPLEX
ENGINEERING APPLICATIONS USING SEQUENTIAL KRIGING

OPTIMIZATION

B.J. BICHON∗, M.S. ELDRED† , AND L.P. SWILER†

Abstract. As engineering applications become increasingly complex, they are often charac-
terized by implicit response functions that are both expensive to evaluate and nonlinear in their
behavior. Reliability assessment given this type of response is difficult with available methods. Cur-
rent reliability methods focus on the discovery of a single most probable point of failure, and then
build a low-order approximation to the limit state at this point. This creates inaccuracies when
applied to engineering applications for which the limit state has a higher degree of nonlinearity or
is multimodal. This paper describes the application of sequential kriging optimization to reliability
assessment through an efficient global search for multiple most probable points. By locating multiple
most probable points of failure, more complex limit states can be modeled, leading to more accurate
probability integration. Several possible formulations of this method will be explored and applied
to a collection of example problems that currently available methods have difficulty solving either
accurately or efficiently.

1. Introduction. Accurate reliability assessment is a problem of great impor-
tance to the engineering community. Poor solutions lead to designs that are either
unreliable or overly expensive. However, the ability to accurately quantify the uncer-
tainty in a design becomes increasingly difficult as the analysis of the design becomes
more expensive and its behavior more nonlinear.

Current methods of reliability assessment solve an optimization problem to locate
the most probable point of failure (MPP), and then quantify the reliability based
on its location and an approximation to the shape of the limit state at this point.
Typically, gradient-based solvers are used to solve this optimization problem, which
may converge to sub-optimal solutions for response functions that possess multiple
local optima. Convergence to sub-optimal MPPs and limit state approximations that
may be inaccurate, make MPP search methods unreliable in practice. Engineers are
then forced to revert to sampling methods, which are impractical when evaluation of
the response function is expensive.

A reliability assessment method that is both efficient when applied to expensive
response functions and accurate when the response function is highly nonlinear is
needed. This paper investigates the application of a global optimization tool known
as sequential kriging optimization to the search for multiple MPPs. By locating
multiple points on the limit state, more accurate approximations to nonlinear limit
states can be built, resulting in a more accurate assessment of the reliability.

Sequential kriging optimization [12] (SKO) is an adaptation of efficient global op-
timization [13] (EGO), which was developed to facilitate the optimization of expensive
implicit response functions. These methods build an initial kriging model as a global
surrogate for the response function, then intelligently select additional samples to be
added for the next kriging model. The new samples are selected based on how much
they are expected to improve the current best solution to the optimization problem.
When this expected improvement is acceptably small, the optimal solution has been
found. Because SKO is a global optimization method, it is able to locate multiple
local optima, which will allow for the discovery of multiple MPPs.

∗Vanderbilt University
†Sandia National Laboratories
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Section 2 describes the reliability assessment problem and traditional methods
of solving it. Section 3 gives an overview of SKO and outlines some ideas on how
it might be modified for application to MPP search. Section 4 details a preliminary
investigation into some of the ideas posed in Section 3. Finally, Section 5 provides
concluding remarks and some initial impressions on the promise of this method.

2. Reliability Assessment. The goal of reliability assessment is to determine
the probability that an engineered device, component, system, etc. will fail in service
given that its behavior is dependent in part on random inputs. This behavior is defined
by a response function g(x), where x represents the vector of random variables defined
by known probability distributions. Failure is then defined by that response function
exceeding (or failing to exceed) some threshold value z. The probability of failure,
pf , is then be defined by

pf =
∫
· · ·
∫

g > z

fx(x) dx (2.1)

where fx is the joint probability density function of the random variables x, and the
integration is performed over the failure region where g>z. In general, fx is impossible
to obtain, and even if it is available, evaluating the multiple integral is impractical. [9]
Because of these complications, methods of approximating this integral are used in
practice.

2.1. MPP Search Methods. These methods involve solving a nonlinear opti-
mization problem to locate the point on the limit state (the contour on the response
function where g = z) that has the greatest probability of occurring. This point is
known as the most probable point or MPP. An approximation to the limit state is then
formed at this point to facilitate the integration required to compute the probability
of failure.

The MPP search is performed in uncorrelated standard normal space (“u-space”)
because it simplifies the probability integration; in this space, the distance from the
origin to the MPP is equivalent to the number of input standard deviations from the
mean response at which the limit state lies. This distance is known as the reliability
index and is denoted by β. The transformation from correlated non-normal distribu-
tions (x-space) to uncorrelated standard normal distributions (u-space) is nonlinear
in general, and possible approaches include the Rosenblatt [15], Nataf [5], and Box-
Cox [1] transformations. The nonlinear transformations may also be linearized, and
common approaches for this included the Rackwitz-Fiessler [14] two-parameter equiv-
alent normal and the Chen-Lind [3] and Wu-Wirsching [18] three-parameter equivalent
normals. This work employs the Nataf nonlinear transformation, which occurs in the
following two steps. To transform between the original correlated x-space variables
and correlated standard normals (“z-space”), the CDF matching condition is used:

Φ(zi) = F (xi) (2.2)

where F () is the cumulative distribution function of the original probability distri-
bution. Then, to transform between correlated z-space variables and uncorrelated
u-space variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lu (2.3)

where the original correlation matrix for non-normals in x-space has been modified
for z-space [5].
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The forward reliability analysis algorithm for computing the probability/relia-
bility level that corresponds to a specified response level is called the reliability index
approach (RIA), and the inverse reliability analysis algorithm for computing the re-
sponse level that corresponds to a specified probability/reliability level is called the
performance measure approach (PMA) [17]. The differences between the RIA and
PMA formulations appear in the objective function and equality constraint formu-
lations in the MPP searches. For RIA, the MPP search for achieving the specified
response level z is formulated as

minimize uT u

subject to G(u) = z (2.4)

and for PMA, the MPP search for achieving the specified probability/reliability level
p, β is formulated as

minimize ±G(u)

subject to uT u = β
2

(2.5)

where u is a vector centered at the origin in u-space and g(x) ≡ G(u) by definition.
In the RIA case, the optimal MPP solution u∗ defines the reliability index from
β = ±‖u∗‖2, which in turn defines the probability of failure through the probability
integration.

Recent research has focused on the use of local and multipoint surrogate models
to reduce the expense of the MPP search [7, 8]. All of these MPP search methods
employ local optimization techniques and converge to a single MPP. But the limit
state of a complex engineering application may be multimodal and possess multiple
significantly probable points of failure. These points are commonly referred to as
multiple most probable points (multiple MPPs) despite the misnomer. The SKO
method for uncertainty quantification proposed here uses a global surrogate model
and global optimization methods to reduce expense and locate multiple MPPs.

2.2. Probability Integration. For an RIA formulation, after the MPP is found
and the reliability index β is known, the next step is to integrate over the failure region
to calculate the probability of failure. This can be greatly simplified from Eqn. 2.1
by approximating the shape of the limit state with one over which it is easier to
integrate. The simplest approximation is the first-order reliability method (FORM),
which approximates the limit state as a linear function. Because β represents the
distance from the mean response to the MPP in standard normal space, the probability
integration simplifies to:

pf = Φ(−β) (2.6)

where Φ() is the standard normal cumulative distribution function. Another alterna-
tive is the second-order reliability method (SORM), which incorporates some curva-
ture in the limit state approximation [2, 10, 11]. Breitung applies a correction based
on asymptotic analysis [2]:

pf = Φ(−β)
n−1∏
i=1

1√
1 + βκi

(2.7)

where κi are the principal curvatures of the limit state (the eigenvalues of an orthonor-
mal transformation of ∇2

uG, taken positive for a convex limit state). This method
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essentially uses a parabolic approximation to the limit state and is more accurate for
large values of β because it collapses to first-order integration at β = 0. An alterna-
tive correction in Ref. [10] is consistent with Breitung’s correction in the asymptotic
regime (β →∞) but does not approach first-order integration as β → 0:

pf = Φ(−β)
n−1∏
i=1

1√
1 + ψ(−β)κi

(2.8)

where ψ() = φ()
Φ() and φ() is the standard normal density function. Ref. [11] applies

further corrections to Eqn. 2.8 based on point concentration methods.
Each of these methods makes some approximation to the shape of the limit state,

making them inaccurate if the approximation is poor. If multiple MPPs are present,
the true shape of the limit state cannot be linear and is likely not parabolic, so more
advanced methods are needed. One possibility is to borrow concepts from system
reliability where the total probability of failure is calculated as the probability of the
union of multiple distinct modes of failure. If each of the n multiple MPPs on a single
limit state are treated as single MPPs on n multiple limit states (with each limit
state considered a distinct failure event E), then the probability of failure could be
computed as:

pf = P (E1 ∪ E2 ∪ · · · ∪ En−1 ∪ En) (2.9)

Assuming the individual failure modes are independent, DeMorgan’s Rule can be used
to simplify this to:

pf = 1−
n∏

i=1

P (Ei) = 1−
n∏

i=1

[1− P (Ei)] (2.10)

If the reliability index for each MPP i is denoted by βi and FORM is used for the
probability integration at each MPP, the total probability of failure could be calculated
by:

pf = 1−
n∏

i=1

[1− Φ(−βi)] (2.11)

and a similar formulation could be used for SORM methods.
Another possibility is to perform the probability integration numerically by sam-

pling the response function. Sampling methods do not rely on a simplifying approxi-
mation to the shape of the limit state, so they can be more accurate than FORM and
SORM, but they can also be prohibitively expensive because they generally require
a large number of response function evaluations. The simplest sampling method is
Basic Monte Carlo. Samples of the input variables are randomly generated based on
their distributions and the response function is then evaluated at these input values.
The value of the response function at this sample point is then compared to the limit
state to determine if the observed response is a success or failure. The probability of
failure is then calculated as simply the ratio of observed failures to the total number
of observations. One major drawback to this method is that it will generate a large
number of samples in the high-probability region of the response function, but because
engineers are typically concerned with high-reliability problems, this region is of little



B.J. Bichon, M.S. Eldred, and L.P. Swiler 277

interest as the limit state most likely lies in a much less-probable region of the design
space.

Importance sampling methods avoid this problem by centering the sampling den-
sity function at the MPP. This ensures the samples will lie in a more interesting
region of the design space and is a much more efficient sampling method than Basic
Monte Carlo. Adaptive importance sampling (AIS) further improves the efficiency by
adaptively updating the sampling density function. Multimodal adaptive importance
sampling [6, 19] is a variation of AIS that allows for the use of multiple sampling
densities making it better suited for cases where multiple sections of the limit state
are highly probable.

Note that Importance Sampling methods require the location of at least one MPP
be known because it is used to center the initial sampling density. However, current
gradient-based, local search methods used in MPP search may fail to converge or may
converge to poor solutions, thus making these methods inapplicable. Because SKO
is a global optimization method that does not depend on the availability of accurate
gradient information, convergence to the MPP should be more reliable. Moreover,
SKO has the ability to locate multiple MPPs, which would provide multiple starting
points and a true multimodal sampling density for the initial steps of multimodal
AIS. An additional advantage of the SKO method proposed is that a byproduct of
the MPP search process is a kriging model that is accurate in the vicinity of the limit
state, thereby providing an inexpensive surrogate that can be used to provide response
function samples. Using SKO to locate multiple MPPs, and then using the resulting
kriging model to provide function evaluations in multimodal AIS for the probability
integration, could result in an accurate and efficient reliability assessment tool.

3. Sequential Kriging Optimization. Sequential kriging optimization is a
global optimization method put forth by Huang et al. [12], but has its roots in the
efficient global optimization (EGO) method from Jones et al. [13]. The main differ-
ence between SKO and EGO is the formulation of what is known as the expected
improvement function (EIF), which is the feature that sets all EGO-type methods
apart from other global optimization methods. The EIF is used to select the location
at which a new training point should be added to the kriging model by maximizing
the amount of improvement in the objective function that can be expected by adding
that point. The general procedure of these EGO-type methods is:

1. Build an initial kriging model of the objective function
2. Use cross validation to ensure that the kriging model is satisfactory.
3. Find the point that maximizes the EIF. If the EIF value at this point is

sufficiently small, stop.
4. Evaluate the objective function at the point where the EIF is maximized.

Update the kriging model using this new point. Go to Step 3.
The following sections discuss the construction of the kriging model used, the form of
the EIF, and then some ideas on how that EIF could be altered for SKO’s application
to MPP search.

3.1. Kriging Model. Kriging models are set apart from most other surrogate
models by the fact that they provide not only a prediction of the modeled function
value at a point, but also an indication of the uncertainty of that prediction. This
uncertainty is a result of the construction of the covariance function, which is based
on the idea that when input points are near one another, the correlation between their
corresponding outputs will be high. As a result, the uncertainty associated with the
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model’s predictions will be small for input points which are near the points used to
train the model, and will increase as one moves further from the training points.

It is assumed that the true function being modeled Y () contains some random
noise (modeled as independent identically distributed normal deviates [12]), and can
be described by: [4]

Y (x) = h(x)T β + Z(x) + ε (3.1)

where h() is the trend of the model, β is the vector of trend coefficients, Z() is
a stationary Gaussian process with zero mean and covariance defined below that
describes the departure of the model from its underlying trend, and ε is the noise in
the true function. The trend of the model can be assumed to be any function, but
taking it to be a constant value is generally sufficient. [16] The covariance between
outputs of the Gaussian process Z() at points a and b is defined as:

Cov [Z(a), Z(b)] = σ2
ZRZ(a,b) (3.2)

where σ2
Z is the process variance and RZ() is the correlation function. There are

several options for the correlation function, but the squared-exponential function is
common, and is used here for RZ():

RZ(a,b) = exp

[
−

d∑
i=1

θi(ai − bi)2
]

(3.3)

where d represents the dimensionality of the problem, and θi is a scale parameter that
indicates the correlation between the points within dimension i. A large θi indicates
a low correlation.

The expected value Ŷ () and variance s2() of the kriging model prediction at point
x̂ are:

Ŷ (x̂) = h(x̂)T β + v(x̂)T V−1(y − Fβ) (3.4)

s2(x̂) = σ2
Z −

[
h(x̂)T v(x̂)T

] [0 FT

F V

]−1 [h(x̂)
v(x̂)

]
(3.5)

where v() is a vector containing the covariance between x̂ and each of the n training
points (defined by Eqn. 3.2), V is an n×n matrix containing the covariance between
each pair of training points with the variance of the noise in the true function evalu-
ations σ2

ε added to the diagonal terms, y is the vector of response outputs at each of
the training points, and F is an n × q matrix with rows h(xi)T (the trend function
for training point i containing q terms; for a constant trend q=1). This form of the
variance accounts for the uncertainty in the trend coefficients β, but assumes that the
parameters governing the covariance function (σ2

Z , σ2
ε and θ) have known values.

The parameters σ2
Z , σ2

ε , and θ are determined through maximum likelihood esti-
mation. Denote by R the correlation between the outputs at the training points. R
is then equivalent to V/(σ2

Z + σ2
ε), and the ijth component of R is:

Rij =

{
1 if i=j
gRZ(xi,xj) if i 6=j

(3.6)

where g=σ2
Z/(σ

2
Z + σ2

ε). The log likelihood can then be written as: [16]

log [p(y|R)] = − 1
n

log|R| − log(σ̂2) (3.7)
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where |R| indicates the determinant of R, and σ̂2 is the optimal value of the variance
given θ and is defined by:

σ̂2 =
1
n

(y − Fβ̂)T R−1(y − Fβ̂) (3.8)

where β̂ is the generalized least squares estimate of β from:

β̂ =
[
FT R−1F

]−1
FT R−1y (3.9)

Maximizing Eqn. 3.7 gives estimates of θ and g; recognizing that σ̂2 = σ2
Z + σ2

ε ,
estimates of σ2

Z and σ2
ε can also be obtained.

3.2. Expected Improvement Function. The expected improvement function
is used to select the location at which a new training point should be added. It does
this by calculating the probability that any point in the design space will provide a
better solution than the current best solution based on the predictions and uncer-
tainties of the kriging model. An important feature of the EIF is that it provides a
balance between exploiting areas of the design space where good solutions have been
found, and exploring areas of the design space where the uncertainty is high. First,
recognize that at any point in the design space, the kriging predictor YP () can be
described by a normal distribution:

YP (x) ∼ N
[
Ŷ (x), s(x)

]
(3.10)

where the expected value Ŷ () and the variance s2() were defined in Eqns. 3.4 and 3.5,
respectively. The EIF used in SKO is then defined as: [12]

EI(x) ≡ E
[
max

(
Ŷ (x∗)− YP (x), 0

)](
1− σε√

s2(x) + σ2
ε

)
(3.11)

where x∗ is the current effective best solution and is defined below. The expectation
term in Eqn. 3.11 can then be computed by integrating over the distribution of YP (x)
with Ŷ (x∗) held constant, and can be expressed analytically as: [12, 13]

E
[
max

(
Ŷ (x∗)− YP (x), 0

)]
=
[
Ŷ (x∗)− Ŷ (x)

]
Φ

[
Ŷ (x∗)− Ŷ (x)

s(x)

]

+ s(x)φ

[
Ŷ (x∗)− Ŷ (x)

s(x)

] (3.12)

The effective best solution x∗ is determined through a utility function υ() to
account for the uncertainty in the evaluation of the true function (due to the noise
ε). This function is defined as: [12]

υ(x) ≡ −Ŷ (x)− ηs(x) (3.13)

where η is a tunable constant that indicates the desired level of risk aversion. For
instance, if η=1, it implies a willingness to trade 1 unit of the predicted value for 1 unit
of the standard deviation of prediction uncertainty. [12] Because unobserved points
in the design space will likely have greater uncertainty than the observed training



280 Multimodal Reliability Assessment

points, the utility function is only maximized over the n training points for the sake
of computational efficiency [12]:

x∗ = max [υ(x1), υ(x2), . . . , υ(xn−1), υ(xn)] (3.14)

Note that if the function being modeled is deterministic (σε = 0), then Eqn. 3.11
collapses to Eqn. 3.12, and the training points are directly interpolated by the kriging
model (therefore s(x) = 0 at the training points), so the utility function becomes
simply υ(x)=−Ŷ (x)=−Y (x).

The point at which the EIF is maximized is selected as an additional training
point. In Ref. [12] this maximization is performed using a Nelder-Mead simplex
approach, which is a local optimization method. Because the EIF is quite often
multimodal (particularly in the early stages of the SKO process) it is expected that
Nelder-Mead may occasionally fail to converge to the true global optimum, thus global
optimization techniques for finding the point that maximizes the EIF will be investi-
gated. With the new training point added, a new kriging model is built and then used
to construct another EIF, which is then used to choose another new training point,
and so on, until the value of the EIF at its maximized point is below some specified
tolerance.

It is important to understand how the use of this EIF leads to optimal solutions.
This particular EIF is tailored to the problem of bound-constrained minimization.
Eqn. 3.12 indicates how much the objective function value at x is expected to be
less than the predicted value at the current effective best solution. It contains a
balance between exploitation of regions of the design space where good solutions have
been discovered, and exploration of regions that have not been well explored and thus
have greater uncertainty. Because the kriging model provides a random distribution at
each predicted point, points with good predicted values and even a small variance will
have a significant probability of producing a better solution (exploitation), but so will
points that have relatively poor predicted values and greater variance (exploration).
The problem of MPP search, however, is made more complicated due to its inclusion
of equality constraints. For this problem, the EIF must be reformulated to give it
knowledge of these constraints.

3.3. Incorporation of Equality Constraints for MPP Search. In this
work, the equality constraints will be enforced through the use of a merit function.
Possible merit functions include a penalty function P , a Lagrangian function L, and
an augmented Lagrangian function LA, the forms of which are:

P (x, rp) = f(x) + rpc(x)T c(x) (3.15)

L(x,λc) = f(x) + λT
c c(x) (3.16)

LA(x,λc, rp) = f(x) + λT
c c(x) + rpc(x)T c(x) (3.17)

where f() is the objective function, c() is the vector of equality constraint functions
(converted to a standard form such that for feasible point c(x) = 0), and λc is the
vector of Lagrange multipliers for the equality constraints. The proper form of the
penalty schedule rp has not yet been fully investigated for this work, but one possibility
may be:

rp = exp
[
k + offset

10

]
(3.18)
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where k is the current iteration number of the SKO process. Simple zeroth-order
updates for the Lagrange multipliers are used:

λk+1
c = λk

c + 2rpc(x) (3.19)

The Lagrange multipliers are applied whenever a new iterate is accepted, whereas
the penalty schedule is updated for any iteration that fails to reduce the constraint
violation.

4. Computational Experiments. Preliminary work has investigated the use
of the penalty function in Eqn. 3.15. The application of this method to the PMA case
is fairly straightforward because the objective function involves the minimization of
the response function that the kriging model represents, which is the initial intent of
the SKO method. Furthermore, the equality constraint for PMA is only applied to the
location of the optimal solution, which is deterministic. In this case, the constraint
function can be written as c(u)=‖u‖ − β. This is then added to the expected value
of the kriging model at u, to produce the penalty function:

P̂ (u) = Ĝ(u) + rp
(
‖u‖ − β

)2
(4.1)

which is written in terms of G() and u because the kriging model is a surrogate for
the response function in u-space. Note that the penalty function is denoted as P̂ to
emphasize that only the expected value of the kriging model is being penalized rather
than the full distribution at u; the variance s(u) remains the same.

Application to the RIA case is less clear because the objective function involves
the minimization of a deterministic function. Moreover, the constraint is stochastic
because it involves the kriging model, so feasibility can only be determined in a
probabilistic sense. The constraint function could be formulated as c(u)= Ĝ(u) − z,
and added to the deterministic function being minimized to produce the penalty
function:

P̂ (u) = ‖u‖+ rp

(
Ĝ(u)− z

)2

(4.2)

For both formulations, the resulting expected improvement and utility functions
would be as follows:

EI(u) =

{[
P̂ (u∗)− P̂ (u)

]
Φ

[
P̂ (u∗)− P̂ (u)

s(u)

]
+ s(u)φ

[
P̂ (u∗)− P̂ (u)

s(u)

]}
·(

1− σε√
s2(u) + σ2

ε

) (4.3)

υ(u) = −P̂ (u)− ηs(u) (4.4)

Preliminary results with a static rp have shown that the penalty function provides
poor scaling between the objective function and the constraint violation; one or the
other simply overwhelms the EIF. The Lagrangian methods should help provide the
scaling needed.

Another idea is to add the penalty (for either the RIA or PMA formulation) to
the true function evaluations that are used to build the kriging model. The EIF could
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then be used in the form of Section 3.3.2 with no modifications. The advantage to
this is that the entire kriging model is built with some knowledge of the constraints,
whereas in Eqns. 4.1-4.4 only the expected value of the kriging model is modified by
the penalty, while the variance remains the same. The disadvantage to this method
is that the kriging model that results as a byproduct of the optimization will not be
a model of the true function, but rather of the penalized function. However, after
the MPPs are found, the final set of training points could be evaluated without the
penalty and used to build a kriging model that could then be used in the probability
integration. This adds slightly to the expense, but this method may provide a better
handling of the constraints.

5. Conclusions. The prevalence of engineering problems defined by expensive,
nonlinear response functions has necessitated the development of reliability assessment
methods that are both efficient and accurate. To that end, this paper has presented
an idea based on the application of sequential kriging optimization to MPP search.
Because this is a global optimization method, it is capable of locating multiple MPPs,
which allows for more accurate probability integration. In order to apply SKO to
MPP search, a method of properly incorporating the equality constraints must be
developed. One possibility is through the use of a merit function, several forms of
which are being investigated. The formulation of a reliability assessment tool based
on sequential kriging optimization is still in its early stages, but initial results have
shown promise.
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TOWARD MASSIVELY MULTITHREADED SHORTEST PATH
ALGORITHMS: APPLICATIONS AT THE NANOSCALE

JOSEPH CROBAK∗ AND JOHN BERRY†

Abstract. The single source shortest path (SSSP) problem often arises at the nanoscale. In
this paper, we briefly detail the SSSP problem and three nanoscale problems involving the SSSP
problem. Next, we argue that the Cray MTA-2 is the most suitable architecture for solving the SSSP
problem on graphs at the nanoscale.

1. Introduction. The single source shortest path (SSSP) problem is a funda-
mental problem in graph theory. Historically, the problem arises in road and computer
network routing. At the nanoscale, the SSSP problem arises in several applications,
such as path planning for nano-robotics and the design of a new computational de-
vice based upon Quantum-dot Cellular Automata (QCA). At such a small scale, the
number of particles in a system is very large (Aluminum contains 6× 1022 atoms per
cm3 1). Thus, graphs representing molecules or other nanoscale particles can contain
billions or more vertices.

In the case where non-negative edge weights are not allowed, the SSSP problem
can be solved in O(m+ n log n) time using Dijkstra’s classical algorithm [4], where n
is the number of vertices and m is the number of edges. State of the art algorithms
(e.g. [5, 6, 8, 10]) can solve the SSSP in time nearly linear with respect to n+m. For
modestly sized graphs (up to tens of millions of vertices), a modern personal computer
can solve the problem using one of these modern approaches in a few seconds.

Graphs with more than a few million vertices, such as graphs of particles at
the nanoscale, do not fit into the main memory of a personal computers. Because
memory accesses by a graph algorithm are irregular, cache is ineffective Traversing
the graph leads to numerous cache misses as vertices and edges are accessed. Graph
algorithms generally examine the entire graph, which leads to a large number of
memory operations. These memory operations are the bottleneck when running a
large graph algorithm on a traditional microprocessor.

In order to process larger graphs, a more powerful architecture is required. Mod-
ern distributed memory supercomputers are not ideal because the graph must be
partitioned across the cluster. For unstructured classes of graphs such as social net-
works, this partitioning is ineffective. Graphs arising from nano-scale problems do
have some geometric structure. However, even assuming an effective partitioning, it
remains to be seen whether the cache of traditional processors can be utilized dur-
ing the run of a graph algorithm on a giant instance. The Cray MTA-2 architecture
we outline below uses the strategy of latency tolerance rather than the traditional
strategy of latency mitigation via cache.

Rather than distributing memory over the nodes in a cluster and forcing the
programmer to manage communication, a shared memory machine provides a global
address space to all of the processors or cores. The most popular implementation
of shared memory is Symmetric MultiProcessing (SMP). A SMP machine still suf-
fers from some of the performance problems such as the effects of caching and the
limitations of RAM.

∗Lafayette College
†Sandia National Laboratories
1Atom Density = (Avogardo’s Number) × (Density) / (Atomic Mass Units) where Density of

Aluminum = 2.7 g/cm3 and AMU = 26.98g/mol.
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Because of the limitations of these hardwares, we have studied graph algorithms
on the Cray MultiThreaded Architecture (MTA). As we describe in section 3 this ar-
chitecture is an appealing alternative to all of the above architectures when implenting
graph algorithms for very large graphs.

In this paper, we shows a significant link between problems in nano-technology
and the SSSP. In addition, we argue that the Cray MTA-2 architecture is the designed
well to solve this problem on graphs of particles at the nano-scale. The outline of the
paper is as follows. First, we discuss several different problems at the nano-scale to
which a SSSP solver could be applied. Second, we discuss the architecture of the
Cray MTA-2 the benefits of this architecture for nano-scale problems. Finally, we
summarize the benefits of the Cray MTA-2 on the problems.

2. Applications. The Single Source Shortest Path (SSSP) problem arises in
several applications at the nano-scale. These range from nano-robotic planning to
Quantum-Dot Cellular Automata (QCA)- a technology that may soon replace silicon-
based computers. Nano-scale problems that rely upon shortest path algorithms are
described in the following sections 2.1 through 2.3.

2.1. The Curvature-Constrained Shortest-path Problem. The curvature
constraint shortest-path problem is a planning problem with applications in nano-
robotics. For example, this problem models nanorobotic navagation through the heart
in the presence of obstacles (e.g. red blood cells). The problem is:

Given a robot R and a set P = {p1, p2, ..., pm} of m polygons, com-
pute the shortest path from position s to position t while avoiding
the polygons. Further, this path must be computed within a certain
curvature (thus ensuring that R can maneuver through the path).

In three-dimensions, this problem is at least NP-hard, and it is NP-hard in many
cases in two-dimensions. For a complete overview of the complexity of the problem
and its variants, see [9]. Regardless, approximation algorithms exist to solve the prob-
lem. For example, the algorithm of Wang and Agarwal [12] computes a path whose
length is at most (1 + ε) times the length of an optimal curvature-constrained path
in O((n2/ε2) log n)-time, where n is the number of vertices describing the positions
of polygons in P . This algorithm reduces the problem to the Single Source Shortest
Path (SSSP) problem.

2.2. Nanoparticle Self-Assembly. The nanoparticle self-assembly problem is
very similar to the Curvature-constraint Shortest Path problem. This problem has
the added goal of assembling (or moving) particles into certain areas. Formally, the
problem is:

Given a robot R, a set P = {p1, p2, ..., pm} of m polygons, a set
O = {o1, o2, ..., on} of n objects, and a set D = {d1, d2, ..., dn} of n
object destinations, plan a shortest path for R such that an object
from O is placed at each d ∈ D. The robot pushes the particles into
place and must avoid all polygons in P .

A solution to this problem is suggested by Makaliwe and Requicha in [7]. Their
planner operates in three phases. They are:

• Assignment All objects are identical, so the planner must decide which object
will be placed at which destination.
• Path find Next, the planner discovers paths that the robot can take to move

objects to destinations. Because a path might not exist for a given assignment,
a new assignment might be needed.
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(a) (b) (c)

Fig. 2.1. (a) QCA cell representing 1, (b) QCA cell representing 0, and (c) QCA cells in a
wire. The empty circles are electron “wells” and the black circles represent electrons.

• Ordering of paths Finally, the planner must decide in which order to move
each object. It attempts to minimize the distance traveled.

During the Path find phase of the planner, the authors solve the SSSP problem
using Dijkstra’s algorithm.

2.3. Quantum-Dot Cellular Automata. Quantum-Dot Cellular Automata
were first suggested in the early 1990s [11]. A QCA is made up of cells that represent
either a ‘0’ or a ‘1’ depending on the configuration of the electrons within the cell.
When cells are placed next two each other, they arrive at the same configuration as
the electrons in adjacent cells repel one another. For an example, see Figure 2.1.

QCA cells can be arranged to simulate digital logic gates (such as AND, NOT,
and OR gates). They can also be arranged to create more complex structures, such
as adders and shifters. As complexity of structure increases, problems arise. For
example, it is not completely evident how to make two QCA wires cross. One solution
to this problem is to eliminate QCA wire crossings. Chaudhary, et al. [3] reduce this
problem to the node-duplication based crossing-elimination (NDCE) problem. Their
algorithm to solve the problem runs in linear-time, but is not guaranteed to find the
optimal solution (i.e. there may be more node-duplications than needed). Ultimately,
they reduce the problem to the shortest path problem.

3. The Cray MTA-2. The Cray MTA-2 is a shared memory multiprocessor
architecture. Each processor in the MTA-2 system has 128 hardware threads. On
each clock cycle, a context switch occurs and a different hardware thread takes over
execution. Furthermore, the instruction pipeline is 21 stages deep, and each thread
can have only one instruction in the pipeline at any time. With sufficient parallelism,
therefore, each thread can afford to wait 21 cycles before expecting a load or store to
have occurred. Since each thread can have up to 8 memory references in flight and
the memory cycle time is about 150 cycles, a sufficiently parallel application can keep
the machine almost 100% utilized.

This model is ideal for graph algorithms since they are latency-dominated. Fur-
thermore, MTA-2 processors incur no overhead from caching, which would be ineffec-
tive anyway. The shared memory archictecture of the MTA-2 also has the advantage
of fine-grain synchronization, which efficiently allows mutual exclusion at the vertex
or edge level in graph algorithms.

As demonstrated in [1, 2], the MTA-2 runs search kernel graph algorithms much
more efficiently than parallel computers based on tradional microprocessors. Further-
more, in work done during the summer of 2006, we have implemented Thorup’s SSSP
algorithm [10] and demonstrated scalable performance on the MTA-2. Instances of the
three problems mentioned in Section 2 are potentially very large and computationally
intense. All three problems either reduce to the shortest path problem or solve the



J. Crobak and J. Berry 287

shortest path problem in sub-problems. Thus, SSSP algorithms on the MTA-2 should
be very good for solving these problems.

4. Summary. We have given a brief overview of three different problems at
the nanoscale that relate to the shortest path problem. The curvature-constrained
shortest path problem and the nanoparticle self-assembly problems are two important
problems in planning. At this scale, the input to these problems is large, and the
communication pattern for shortest path computations is irregular. Thus the best
architecture for solving these problems is the Cray MTA-2. Likewise, the number of
QCA cells can grow very large when trying to emulate a modern microprocessor.
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OPTIMIZING MESH OPTIMIZATION

ERICK JOHNSON† AND MICHAEL BREWER‡

Abstract. Research has been focused on creating a better initial mesh and optimizing a mesh
in order to correct any errors. Mesh optimization is used to both untangle and smooth a mesh
to minimize skewed elements. Each is critical as most analysis software cannot compensate for
malformed elements. The time required to optimize a mesh also becomes an issue and finding the
line between time and quality needs to be addressed in order to provide the best solution. One idea
to address quality and time is to cull (hide) the elements or nodes which meet certain criteria, thus
time and effort no longer need be spent on improving something that is “good enough.” Culling
would allow the available computational power to be spent improving sections of a mesh which are
“worse.” An important issue being addressed is ensuring the quality of a mesh is the same or better
with culling than it would have been without.

1. Introduction. There is a significant drive to perform simulations and exper-
iments on computers. This is because time and money can be saved in the design
process if an actual prototype does not need to be produced and tested every time
a change is made. Using computers also has the potential to increase the number of
computational experiments that can be performed as a direct result of the savings
of time and money. This is specially true in the micro/nano sciences where current
limitations in manufacturability significantly impacts the number of or even feasibil-
ity of certain experiments. In order to produce viable finite element or finite volume
solutions though, a high quality mesh of the model or system needs to be created.

A mesh is the discretization of a computational model, which is needed to perform
an analysis on the same model. To easily move from the model to the solution
a suitable mesh is required. An improper mesh (too coarse, tangled, etc) is not
necessarily going to allow a correct analysis, while a mesh that is extremely fine
may take an inordinate amount of time to solve. The way analyses are performed
necessitates a mesh of high quality. Another issue to consider is the amount of time it
takes to create a high quality mesh. For various reasons in the design through analysis
process the largest portion of time is spent on meshing and its related procedures.
Depending on the application, the line between quality and time changes and needs
to be redetermined, which in turn influences the operations on the geometry to be
meshed. For example, there may be features on the geometry that are smaller than
the size of the mesh elements. These features may adversely influence the mesh and
need to be removed [4].

One solution to these problems is mesh optimization. Mesh optimization can
produce a higher quality mesh1, which is easier to analyze; thus saving time and
yielding a more correct solution. This is done by one of two methods: a topology
change or node movement. Node movement is a more intuitive approach because it
maintains the connectivity between nodes (it doesn’t change which neighbors a node is
connected to). Node movement optimization can be solved by either a global or local
scheme. The global scheme takes the entire system and solves for a direction to move
each individual node for an improved node location. It then moves all the nodes at
once. The local scheme moves through the mesh on a node-by-node basis and solves
for the optimal location of each node based on its neighboring nodes or elements.

†Carnegie Mellon University
‡Sandia National Laboratory
1It needs to be noted the optimization is based on some predetermined idea of what “good” is.

This depends on the desired result within a certain quality metric.
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However, in both cases the entire mesh is iterated over until the final solution is
achieved. This paper looks at a method to decrease the time and computational cost
of mesh optimization while maintaining a high quality mesh as the final product.
The method is applied with node movement in a local scheme. The algorithm is
implemented in Mesquite [1], the mesh optimization library used by CUBIT [6]. A
more rigorous comparison of mesh optimization techniques can be found in [2].

2. Culling: A “Good Enough” Approach. A question should be asked,
“Why spend time and effort improving a node’s position when its neighboring elements
are ‘good enough’?” Based on some definition of “good” that all the elements should
be in the most optimal case, there is some value nearby that can be defined as “good
enough.” If an element falls in between these then the time spent improving it could
be better spent improving another element. In other words, while improving a mesh
comprised of a list of nodes, instead of improving the whole list on each iteration, why
not hide select nodes so the list decreases in size over a series of passes. The idea of
“good enough” does not lead to the conclusion the mesh could be better, because the
improvements made to a culled node beyond this point are negligible in terms of the
entire mesh.

This method has been seen in many implementations of the Laplacian algorithm
(e.g. [6] [1]). The Laplacian smoother alone moves a node to the center of its neighbors;
however, in these implementations it hides the nodes that are known to be close to
their optimal positions2. The research for this paper stems from these methods.

2.1. The Algorithm. This idea of culling by itself seems fairly logical; however
there is a very important difference between how it was described and how it is
presented in Algorithm 1. As seen in line 7, there is a means to make the node and
its neighbors visible. This addendum to the culling algorithm is what ensures a high
quality mesh. Otherwise the culling algorithm potentially hides a node which could be
improved more. As an example, let’s say a “good” position for a node is the geometric
center of its neighbors. If one node does not meet the criteria, it is moved and hidden
with no trouble. However assume more nodes don’t meet the criteria. In this case
the optimal position will change as the neighboring nodes move. Since nodes are only
hidden in the list there can be no increase in improvement when a node is hidden
early. The addition of 1.7 allows for a node previously culled to be pulled back into
the list in order to ensure it’s at the best location.

Algorithm 1 Current Culling Algorithm
1: while a node exists do . at least one node is not hidden
2: while termination criterion has not been met do
3: move the node(s) in this patch
4: if the node is now ‘good enough’ then
5: hide the node(s) in this patch
6: else
7: make the node(s) and its neighbor(s) visible
8: end if
9: end while

10: end while

2That is, a node is hidden as long as the nodes around it have not moved significantly since the
last time the node’s position was updated



290 Optimizing Mesh Optimization

Another item requiring a moment is the termination criterion, the mechanism for
stopping the iterations of the optimization procedure. This is not just a reiteration of
the culling criterion (what has currently been defined as “good enough”), though it is
an important part. Additional termination criteria will provide multiple ways to stop
when implemented in a program. It may not seem evident at first, but in some cases a
node cannot be moved to a position satisfying the criterion (or criteria). As such the
algorithm would be stuck in an infinite loop with no way out. Another case is where an
optimizing function (e.g. conjugate gradient) may require multiple iterations before
arriving at the best location when optimizing the position of a single node. These
extra criterion allow the algorithm to move through the whole mesh hopefully making
enough changes in the previous pass to successfully cull a troublesome node.

2.2. Benefits. There are obvious benefits to using the culling algorithm. Re-
moving the nodes that are no longer needed significantly decreases the time spent
optimizing a large mesh when compared to the global scheme3. Even if nodes are
periodically made visible, the overall trend should be a decrease in the number of
nodes. Also, since the algorithm is applied to the local scheme there should also be
a large savings on memory when compared to the global scheme. In each case this is
because the algorithm will be manipulating a small patch as opposed to a matrix of
the entire system.

3. Untangling With The Culling Algorithm. Mesh optimization can both
untangle and smooth a mesh to increase its quality. To untangle a mesh nodes are
moved until all the elements are convex shapes (Fig 3.1(a)). Smoothing is a little
more qualitative in that the desire is to make the mesh a more continuous pattern
(Fig 3.1(b)); this is obviously more subjective than whether an element has a negative
area4 or not. For this reason the paper focuses on untangling; however, it can be
easily applied to smoothing algorithms as well. All of this optimization is done to
aid the finite element analysis in reaching the correct solution as quickly as possible.
Poor element shapes significantly reduce the accuracy of a solution, and many solvers
will not accept tangled elements. Even if a solver does allow them, it impacts the
accuracy of the solution. Though a lot of smoothing methods inherently incorporate
some untangling of the mesh (trying to make smoother elements will push all elements
toward a better shape), applying only a smoother to a tangled mesh does not guarantee
it will become untangled. Therefore, ensuring an untangled mesh prior to smoothing
becomes an important issue as it allows us to then use a shape improvement algorithm
that does not guarantee non-inverted elements.

If the quality metric to define untangling is equation (3.1) as defined by [5], where
α is the element corner area and β is some value defined by the user and maintains
0 < β < α, then untangled elements will result in µ = 0, while tangled elements
are a positive value capable of being minimized. If β were not included the most
optimal value for a tangled element would be when its area was zero, thus β pushes
an element toward a positive area. There are other methods to untangle a mesh
(e.g. [3]; however equation (3.1) is already implemented in Mesquite can be easily
formulated to a smooth optimization scheme and has proven to be a reliable method.

µ = |α− β| − (α− β), (3.1)

3This is the trend that has been observed for a small selection of tangled meshes; however, there
is no hard evidence to prove it is always the case

4volume can be substituted throughout
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(a) Untangling

(b) Smoothing

Fig. 3.1. Direction of mesh optimization

Both “good” and “good enough” can be defined based on the quality of a node’s
neighbors, µ. However, a different definition may yield a better termination. If
the culling criterion is changed to the gradient of the untangling quality metric, its
minimum will be a node’s most optimal position and may be easier to define than a
direct relation to quality.

The following sets of figures show a comparison of untangling between the global
scheme, the smart Laplacian smoother (a Laplacian smoother in Mesquite), and the
local scheme with a gradient culling. The smart Laplacian smoother is used frequently
because of its speed and simplicity; however, the comparison is unfair because it is
not explicitly formulated to untangle a mesh. The goal is to show two points about
the local untangler with culling. First, the culling algorithm influences a small region
surrounding the tangled area. This buffer zone increases the chance a mesh can be
untangled (compare 3.4(b) to 3.4(d)). Second, because the local untangler limits its
working space it does not influence the entire mesh (compare 3.3(c) to the rest). This
is very advantageous, as the biased mesh shows, because changing the whole mesh
effects the solution and any previous work done to alter the mesh. Though none of the
methods were able to successfully untangle 3.4(a), the culling algorithm was able to
produce an untanlged mesh in two cases: 1) running the algorithm a second time, and
2) in one run after changing the criterion from the quality gradient of the element
to the quality of the element. The global scheme did not succeed when changed
similarly, and the smart Laplacian method is unable to untangle the mesh due to the
the concave nature of the hole.

(a) Original Mesh (b) Global (c) Smart Laplacian (d) Local with Culling

Fig. 3.2. Untangling a 10x10 block. All methods are successful.
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(a) Original Mesh (b) Global (c) Smart Laplacian (d) Local with Culling

Fig. 3.3. Untangling a 10x10 block with a curve bias. All methods are successful.

(a) Original Mesh (b) Global

(c) Smart Laplacian (d) Local with Culling

Fig. 3.4. Untangling a surface where the mesh is outside the geometry. (b) & (c) fail with
multiple tangled elements remaining, (c) also does not constrain itself to the geometry, (d) fails with
1 element remaining
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4. Conclusion & Future Work. A culling algorithm appears to be a good
approach to improving mesh quality more quickly. It cannot guarantee a mesh will be
untangled, but seems to provide at least the same consistency as the global scheme
with the untangling metric from [5]. The primary focus of future work should be de-
termining the relationship between the culling criterion and the quality metric being
applied. In a lot of cases the quality metrics being used are scale dependent and in-
fluence the definitions of “good” and “good enough.” Determining these relationships
will allow a comparison of the resultant quality to ensure culling is a viable means to
successfully improve a mesh. A rigorous approach needs to be accomplished as well to
compare time and memory usage of the local and global schemes. Though the current
algorithm appears to perform well trying alternative algorithms may provide a more
robust method (one potential alternative is Algorithm 2). This example may require
more time to complete the optimization; however it should prevent removing some of
the nodes too early.

Algorithm 2 Alternative Culling Algorithm
1: while a node exists do . at least one node is not hidden
2: while termination criterion has not been met do
3: move the node(s) in this patch
4: make the node(s) and its neighbor(s) visible
5: end while
6: if the node is now ‘good enough’ then
7: hide the node(s) in this patch
8: end if
9: end while
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TOWARD A REVERSIBLE QUANTUM-DOT CELLULAR
AUTOMATA MICROARCHITECTURE

S. FROST-MURPHY¶, E. DEBENEDICTIS‖, AND P. KOGGE∗∗

Abstract. Quantum-dot cellular automata (QCA) is a promising emerging technology with
device characteristics very different from transistors with the potential for very low power operation.
Coupling QCA with the reversible computing paradigm may lead to a realm where the energy dissi-
pation due to the deletion of bits dominates the power equation. This work explores several problems
on the path toward a reversible QCA microarchitecture including a survey of high level reversible
languages, a floorplan for reversible general purpose computing, a reversible planar crossover design,
and a new look at the set of 3-input, 3-output universal reversible gates.

1. Introduction. There are many indicators that a radical change in computing
technology will be required soon. How “soon” is defined is a hotly debated question,
but the ITRS roadmap is filled with “red blocks” signifying problems that it is un-
known how the problem will be solved. These red blocks start showing up as soon as
2008 and dominate by 2014. This seems to indicate that the problem is approaching
sooner rather than later. In addition to the oft predicted demise of exponentially
scaling CMOS, there are application domains where even end of the roadmap CMOS
(could it be realized) would be unable to provide the required computing power [4].
These are two factors driving research into novel nano-scale devices and architectures
to make use of them.

There are computing paradigms that have the potential to beat end-of-the-road-
map CMOS and supply the computing power needed by these types of applications.
The solution seems to be combining reversible computing with one of the promising
emerging devices. This work explores a particular device called quantum-dot cellular
automata (QCA), and is focused toward the design of a reversible QCA microarchi-
tecture that will harness the strengths of the reversible computing paradigm with the
strengths of QCA.

Towards this end, several thrusts have been simultaneously explored including: a
floorplan for general purpose reversible computing; a reversible coplanar QCA wire
crossover design; three-input, three-output universal reversible gate amenable to QCA
circuit design.

1.1. Reversible Computing. Reversible computing builds on a well-estab-
lished thermodynamics history starting with Maxwell’s Demon. In 1887, Maxwell’s
thought-experiment that showed that destroying, or erasing, information results in
heat dissipation, specifically at least kT ln(2) where k is Boltzman’s constant and T
is the temperature of the system.

In traditional computing based on CMOS technology, the energy dissipated by
the device and clock independent of the function being performed dominated any
energy dissipation due to irreversibility. However, non-traditional technologies such
as quantum-dot cellular automata (QCA) offer a new opportunity to experimentally
verify the connection between physical devices and information.

The key insight of reversible computing is that information does not need to be
destroyed during computation. There is a fundamental connection between logical

¶University of Notre Dame
‖Sandia National Laboratories

∗∗University of Notre Dame
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Table 1.1
Truth Table of AND Operation

Irreversible AND Reversible AND
A B A and B
0 0 0
0 1 0
1 0 0
1 1 1

A B A B A and B
0 0 0 0 0
0 1 0 1 0
1 0 1 0 0
1 1 1 1 1

reversibility and physical reversibility, and if a logically reversible system is imple-
mented by physically reversible devices, there need not be any power dissipation due
to information erasure.

To be reversible, a function needs to be one-to-one. Any function can be made
to be one-to-one by saving the inputs. For instance, it is clear from examining the
truth table of the AND operation (Table 1.1) that AND is naturally irreversible since
there are three zeros in the output making it impossible to determine what the inputs
were from just the output. However, by copying the inputs to the output the function
becomes one-to-one. In this way, any irreversible function can be made to be reversible
at the expense of carrying additional information, or garbage data, forward through
the computation.

Copying the inputs to the outputs is an awkward way that reversibility can be
forced on any irreversible function. However, there is a set of naturally reversible gates
that do not incur this garbage penalty. There are seven classes of 3-input, 3-output
reversible gates that are universal, meaning that any function can be computed using
only the gate being considered. These will be discussed later.

To take full advantage of reversible computing, the physical implementation of
the logic must be physically reversible. Traditional CMOS is not physically reversible.
There are many emerging nanodevices that are being explored for extending Moore’s
law beyond the end of CMOS. One such device is quantum-dot cellular automata
(QCA). The basic device operates much differently from traditional CMOS and has
the potential for very low power operation to the point that energy dissipated due to
information destruction will be a significant if not dominant factor of the overall heat
dissipation of the system. In addition to being very low power, QCA has the potential
to be clocked in the tens of terahertz, and molecular implementations of QCA cells
are being explored which would lead to very high device densities [9] [11]. In short,
QCA has great potential for very fast, low power, dense computing, making it an
attractive device with the potential to beat end of the roadmap CMOS and extend
computing beyond what is possible with CMOS.

1.2. QCA Basics. The basic device is a QCA cell that consists of four quantum
dots arranged in a square. When two excess electrons are introduced into the cell,
they can tunnel between the dots in the cell and naturally form two stable states that
correspond to a logical zero and a logical one (figure 1.1a) [10].

If several QCA cells are placed in a row, and the first cell has a fixed polarization,
the value will ripple down the cells like dominoes forming a wire (figure 1.1b).

The basic gate is a majority gate which is a three-input, one-output gate (figure
1.1c). The output is the majority of the inputs (i.e. if the input contains two or more
zeros, the output will be a zero; if the input contains two or more ones, the output
will be a one). By fixing one of the inputs to zero, an AND gate is formed. Similarly,
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Quantum dot Electron

Logical 1

Logical 0

(a) (b)

Device Cell
A

B

C

Out = AB + AC + BC

(c) (d)

Fig. 1.1. QCA Device Basics: (a) QCA Cell schematic, (b) QCA Wire, (c)Majority Gate, (d)
Inverter

fixing one of the inputs to one forms an OR gate. An inverter can also be formed
using QCA cells (figure 1.1d) which is the final piece for a logically complete set.

To be able to design a computer, there must be a way for wires to cross. In
traditional technology, this is accomplished by vias and multiple metal layers. QCA
will most likely have only one layer of devices. There are several proposals to allow
planar crossovers that will require very little area but may be difficult to fabricate.
There is also a planar logical crossover that requires more area, but will not require
extremely precise fabrication (figure 1.2).

B

A

A

B

A xor B

A xor B

A xor B

A xor (A xor B) = B

B xor (A xor B) = A

Fig. 1.2. A planar crossover circuit using 3 XOR gates with no internal physical crossovers.

The final, and perhaps most important, piece of the QCA puzzle is the clock. Un-
like a traditional CMOS clock signal, the QCA clock is a different kind of phenomenon
than the QCA signal. The clock is an electric field that controls the tunneling of the
electrons between the dots of the cells. When the electric field is high, the electrons
will not be able to tunnel, fixing the state of the cell and allowing it to act as a
driver cell. Where the field is low, the cells will have no value and will not effect the
computation of neighbor cells. While the field is rising, the cells are assuming new
values that will be latched when the field is high.

There are two clocking strategies being proposed in the context of reversible
computing. The first is Landauer clocking in which a sinusoidal wave moves across
the QCA circuit in one direction. The other is Bennett style clocking in which the
leading edge of the clocking wave sweeps across the QCA circuit staying high behind
the leading edge. At the edge of the circuit being clocked, the edge is retracted, leaving
the clock low behind the edge (figure 1.3). Landauer clocking supports reversible
computing with fully reversible gates. Bennett clocking allows reversible computing



S. Frost-Murphy, E. DeBenedictis, and P. Kogge 297

to be done with irreversible parts [8].

T
im

e

Direction of Computation

T
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e

Direction of Computation

Fig. 1.3. Two clocking schemes: (a) Landauer clocking wave, (b) Bennett clocking

The actual implementation of the QCA cells and the clock are matters of ongoing
research by electrical engineers and materials scientists. Proof-of-concept QCA cells
have been fabricated using metal-dots that operate at cryogenic temperatures [3] [19].
Exploration continues into molecular implementations and at size scales between the
two extremes.

QCA has a solid foundation in irreversible architecture research as well. A pro-
cessor and memory have been designed showing that general purpose computing can
be done with QCA [13] [7], and the fundamental properties of the QCA from an
architectural viewpoint have been explored [18] [17] [16] [15].

The rest of this paper describes ongoing work toward designing a general pur-
pose reversible QCA architecture including a proposed floorplan for implementing
Bennett’s algorithm in “hardware”, a discussion of a reversible logical crossover cir-
cuit, and a discussion of the sets of universal reversible gates that are targets to be
implemented in QCA.

2. Reversible Language Survey. Examining high level reversible languages
reveals the fundamental operations that a reversible microarchitecture will need to
support. In addition, revealing the reversibility of the microarchitecture to higher lev-
els creates opportunities for applications and algorithms to exploit that reversibility.

The high-level languages that exist for more than theoretical analysis (i.e. Turing
machines) are Janus, Psi-Lisp, and R. Janus was a 1982 side project by two Caltech
undergraduates - Chris Lutz and Howard Derby [12]. A letter from Lutz to Landauer
is all that remains of this imperative language. It is a limited language, and while
R was developed independently, many of the same constructs are used, and both
guarantee reversibility in similar ways. Janus will not be discussed further. Psi-Lisp
was developed by Henry Baker in 1992 [1]. It is a reversible version of a linear lisp he
developed previously to manage garbage collection in lisp. It is a functional language.
R was developed by Mike Frank as a toy language in which to write a few simple
reversible benchmarks for his doctoral research [6]. R is a C-like procedural language
with some lisp-like features.

All of these languages share the following characteristics:
• All primitive operations are reversible
• There is no assignment (so no copying), only variable binding
• All branches and conditionals must maintain the original test value

2.1. Psi-Lisp. Beyond this, Psi-Lisp is a linear language. This corresponds to a
sequent calculus in which the structural rules of weakening and contraction are disal-
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lowed. In practice, this means that making and destroying copies of information is not
allowed. This restriction leads to an odd way of implementing functions and recur-
sions. Rather than copies of the arguments being passed to the functions or recursive
call, the values of the variable and the arguments are swapped. (All arguments begin
with a null value.) By the end of the function or recursive call, all values must be
swapped back to their original position so that the variable has a value.

2.2. R. R does not have the same argument swapping scheme, but it does require
that any variables bound in a let statement must have the same value at the end of
executing the let body as it has at the beginning of the let body. On the face of it,
this is not as stringent a requirement as in Psi-Lisp, but the ultimate effect is similar.

In addition, much of the uncomputing is hidden from the programmer. For in-
stance, decomputation of expressions (which do not change the stored value of a vari-
able) is specified by the compiler with no mechanism for the programmer to manage
that decomputation.

Michael Frank rejects the sort of linearity discussed above as a requirement for
reversibility. However, despite this rejection, R itself appears to be linear. As future
work, it will be interesting to determine if linearity is necessary for reversibility or if,
given reversible primitives, it is merely sufficient for reversibility.

3. Collapsed Bennett Model. At a high level of abstraction, reversibility can
be forced onto any algorithm or circuit by saving the inputs and all intermediate
results. However, depending on the function, this can lead to an exponential explosion
in the amount of data that needs to be stored. Charles Bennett proposed an algorithm
that minimizes the amount of data that needs to be stored at the cost of execution
time [2]. Using Bennett’s algorithm, any irreversible algorithm can be divided into
segments that will be calculated, have the intermediate result latched so it can be
used by the next segment, and then when it is no longer needed, uncalculate the
intermediate result so it does not have to be stored. Bennett’s algorithm is an optimal
ordering for the computing and uncomputing the segments. Figure 3.1 shows an
example of the order of computations and uncomputations for an algorithm broken
into eight segments.

Segment of Logic

Computed segment storing result

Segment uncomputed this cycle

Segment uncomputed, nothing storedT
im

e

Fig. 3.1. Bennett’s algorithm divides an algorithm into stages (8 stages in this example) and
selectively computes and decomputes them to store the least amount of data necessary to maintain
the reversibility of an irreversible algorithm.

In previous work, DeBenedictis (not published) introduced the beginnings of a
potentially implementable model that collapses Bennett’s reversible algorithm tree
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into a single level of logic with a stack at either end of the combinational logic and a
shifting mechanism to pop the top of one stack and push it onto the other stack (i.e.
shift left or shift right). In this work, we further developed this model and designed
a simple ripple-carry adder to demonstrate the proposed operation.

A schematic of the components can be seen in figure 3.2. It consists of a left
stack, an area of combinational logic, a shifter unit, a shift-disable area, and a right
stack. In addition, the logic unit as a whole can be disabled by adjusting the voltage
bias across the area, and separately the shifter can be similarly disabled.
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Fig. 3.2. The regions of the collapsed Bennett layout include two stacks, a logic or compu-
tational area, a shift area that allows data to be transferred between the stacks, and an interface
between the stacks and the logic and shift regions.

The collapsed Bennett model operates as follows:
1. Initial input begins at the top of the left stack
2. A cascade shaped Bennett clock moves across the logic section (starting at

the left, the clock goes high and stays high as the clock front travels to the
right).

3. Result is latched at the top of the right stack
4. The cascade is retracted, decomputing the logic (leaving the results latched)
5. A set of results is shifted to prepare for the next stage

a) Right stack is popped and the value is pushed onto the left stack (via
the shifter) and is ready to be the input in the next cycle

b) Left stack is popped and the value is pushed onto the right stack (via
the shifter) and is ready to be decomputed in the next cycle

6. This process is repeated with the shifting determined by Bennett’s 1989 al-
gorithm [2]
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Fig. 3.3. There are two disable sections in this layout. The top area disables the logic, while the
bottom area disables the shift. While disabled, the QCA cells have no value and do not contribute
to the computation of any nearby cells.

A simple adder is shown in this section to illustrate the operation of the layout
and demonstrate the required interfaces between the computation and storage. One
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Fig. 3.4. Clocking signals required for four modes of operation of collapsed Bennett clocking
layout: (a) Compute, (b) UnCompute, (c) Shift Left, (d) Shift Right

can imagine sandwiching an entire processor between two stacks in this manner for a
general purpose reversible processor.

4. Reversible Crossover. The traditional method for decomputing a circuit is
to make a mirror circuit which exactly undoes the computation done in the original
circuit. The desired output is copied out before the circuit is decomputed. One of
the challenges with QCA is that physical crossovers will most likely be very difficult.
However, if a majority gate, even one with one held input, is to be decomputed by a
separate mirror circuit, there must be a physical crossover (figure 4.1).

fanout

x
B

A A

B

x

Crossover

majority
gate

wire

Copy of Output

Input Decomputed
Input

Fig. 4.1. A physical crossover is unavoidable if reversibility is to be done with wave style
clocking in which the clock travels in one direction only. x is a held input.

There are several logical crossover circuits [14]. The one discussed in this paper
has fewer majority gates than others. If done irreversibly, the crossover circuit will
dissipate 21 bits (figure 4.2)

This circuit can be embedded in a Bennett clocking zone and be executed re-
versibly (figure 4). However, at the end of the Bennett clocking period, there will be
4 bits stored – two input bits, and two output bits. The reversible crossover circuit
can be used as a component in a larger reversible architecture, and it will be an ar-
chitectural decision whether to dissipate those 4 bits for the sake of throughput, or
decompute those 4 bits at the expense of throughput.
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B xor (A xor B) = AB

A

A

B

A xor B

A xor B

A xor B

A xor (A xor B) = B

Fig. 4.2. The logical crossover circuit will dissipate three bits at each majority gate, and two
bits at each gate with a held input for a total of 21 bits for this design.

B

A

A

B

A xor B

A xor B

A xor B

A xor (A xor B) = B

B xor (A xor B) = A

Time

Fig. 4.3. The Bennett clock reversible crossover circuit and the clock signals needed to execute
the function reversibly.

Identifying the necessity of physical crossovers for reversibility with Landauer
clocking is a significant result. It has a substantial impact on defining the design
space and illuminating the set of tradeoffs that need to be made.

5. Reversible Gates. The Collapsed Bennett layout shows a method for doing
reversible computing using irreversible building blocks. Another method for reversible
computing is using reversible building blocks with the Landauer clocking scheme. In
the Landauer clocking scheme, a sinusoidal clock signal travels across the QCA circuit
in one direction only. If the circuit itself is reversible (i.e. destroys no information) it
can operate in this clocking scheme without dissipating any information. This section
examines what reversible building blocks should be examined for QCA implementa-
tion. More specifically, this section examines the set of universal 3-input, 3-output
reversible gates.

5.1. Traditional Description. The most general description of a classical three
bit gate can be written as:

 x
y
z

 −→
 x′

y′

z′

 =

 a
b
c

⊕M
 x

y
z

⊕N
 yz

xz
xy

⊕
 p

q
r

xyz (5.1)

where M and N are three by three matrices [5]. We are interested in reversible
gates only. To be reversible, the gate must meet three basic criteria. First, the gate
must have the same number of inputs as outputs. Second, the columns of the M
matrix above must be linearly independent. Third, the final vector in equation 5.1
must contain all zeros. In addition, the first vector in equation 5.1 consists of additive
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Table 5.1
Six Possible Values of M 100

010
001

  100
001
010

  010
100
001


 001

100
010

  010
001
100

  001
010
100



constants only and has no impact on the reversibility of the gate. Taking all this into
consideration, the general description of a 3-bit reversible gate then becomes:

 x
y
z

 −→
 x′

y′

z′

 = M

 x
y
z

⊕N
 yz

xz
xy

 (5.2)

The columns in M must be either linearly independent or be the three non-zero
vectors in a two-dimensional space for the gate to be reversible. The gates can be
classified into seven classes in terms of four vectors Vi which are the exclusive or of
columns of M . Let M1 represent the first column of M , M2 represent the second
column of M , and so on. Then V1 = M2 ⊕M3, V2 = M1 ⊕M3, V3 = M1 ⊕M2,
V4 = M1⊕M2⊕M3. If the columns of M are linearly independent, all of the vectors
Vi are different. If the columns of M are the non-zero vectors in a two-dimensional
space, though, two of the Vi will be the same. The rest of this discussion will assume
the case in which the columns ofM are linearly independent. The six possible matrices
for M can be seen in table 5.1.

Notice that the effect of the M matrix is to permute the output. The N matrix
determines how the inputs interact with each other to produce the outputs. N can
be considered as permuting the Vi vectors. The two matrices can be separated in
considering the classes of reversible gates. The N matrix will be used to classify the
gates, and the M matrix will determine the different gates switching the classes.

Based on how N permutes the four V vectors, the set of reversible gates can be
divided into seven classes. The description of the N matrix for each class can be seen
in table 5.2.

The seven classes of gates are described in [5] in terms of the vectors Vi. The
classes exchange and cycle the four vectors in various ways. This nomenclature is
very useful for physicists but much less so for computer scientists. Translating the
gate classes into Boolean logic reveals a new type of symmetry between the classes.
This is described below.

5.2. A New Symmetry. In considering these gates for classical reversible com-
puting, it is more useful to translate these classes into the language of computer sci-
ence, boolean logic. The first step is to write the seven classes of gates in terms of the
basic components: the columns of M and the inputs themselves. This representation
can be seen in table 5.3.

In words, the effect of the seven classes of gates can be described as follows:
• Class 1: There is no interaction between the input bits.
• Class 2: Conditionally swaps x and y based on z.
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Table 5.2
Definition of N columns for Seven Classes of Reversible Gates

Class 1: N1 = N2 = N3 = 0

Class 2: N1 = N2 = M1 ⊕M2

N3 = 0

Class 3: N1 = M1 ⊕M2

N2 = M2 ⊕M3

N3 = M1 ⊕M3

Class 4: N1 = M1

N2 = N3 = 0

Class 5: N1 = M1

N2 = N3 = M2 ⊕M3

Class 6: N1 = M1 ⊕M2

N2 = M2

N3 = 0

Class 7: N1 = M1 ⊕M2

N2 = M2 ⊕M3

N3 = M3

• Class 3: For each input bit, if the bit is zero, the result is the AND of the
other two bits. If the bit is one, the result is the OR of the input “above”
and the negation of the input “below” (where x is above y which is above z
which is above x).
• Class 4: Beginning with this gate class each input bit is treated differently.

x’, the x output bit, is the exclusive or of the x input and the AND of y and
z. The y and z inputs are passed to the output unchanged.
• Class 5: Each output bit is calculated by a different function. x’ is the

exclusive or of x and the AND of y and z. y’ is the exclusive or of y, the AND
of y and x, and the AND of z and x. z’ is the exclusive or of z, the AND of z
and x, and the AND of x and y.
• Class 6: x’ is the exclusive or of x and the AND of y and z. y’ is the exclusive

or of y, the AND of y and z, and the AND of z and x. z’ is the unchanged z
input.
• Class 7: x’ is the exclusive or of x and the AND of y and z. y’ is the exclusive

or of y, the AND of y and z, and the AND of z and x. z’ is the exclusive or
of z, the AND of z and x, and the AND of x and y.

When the classes are described in terms of boolean logic, a new type of symmetry
and a new type of classification is revealed. There is a set of four functions that can
be used to describe each of the outputs described in the above list. Analogous to a
high-level programming language function, the order of the arguments is important.
It is interesting that the 21 output values (7 classes of gates x 3 outputs each) can be
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Table 5.3
Seven Classes of Reversible Gates

Gate Gate Inverse
Class Actions Actions

G1

 x
y
z

 = M1x⊕M2y ⊕M3z

 IV
IV
IV

  IV
IV
IV


G2

 x
y
z

 = M1x⊕M2y⊕M3z⊕(M1⊕M2)yz⊕
(M1 ⊕M2)xz

 I
II
IV

  I
II
IV


G3

 x
y
z

 = M1x⊕M2y⊕M3z⊕(M1⊕M2)yz⊕
(M2 ⊕M3)xz ⊕ (M1 ⊕M3)xy

 II
II
II

  V
V
V


G4

 x
y
z

 = M1x⊕M2y ⊕M3z ⊕M1yz

 III
IV
IV

  III
IV
IV


G5

 x
y
z

 = M1x⊕M2y⊕M3z⊕M1yz⊕(M2⊕
M3)xz ⊕ (M2 ⊕M3)xy

 III
I
II

  III
V I
V II


G6

 x
y
z

 = M1x⊕M2y⊕M3z⊕(M1⊕M2)yz⊕
M2xz

 III
II
IV

  V
III
IV


G7

 x
y
z

 = M1x⊕M2y⊕M3z⊕(M1⊕M2)yz⊕
(M2 ⊕M3)xz ⊕M3xy

 III
II
II

  V
V

V III



described with only four functions. The key insight is in the relative ordering of the
arguments. Consider that x is always considered to be above y which is above z which
wraps around to be above x. One can use A,B,C to represent the relative positions of
the function arguments. Allow A to be above B which is above C which is above A.
In other words, if A=x then B=y and C=z. If A=y, then B=z and C=x; and if A=z
then B=x and C=y. The value of A is fixed by the output row being calculated.

Given this representation, there are only four functions that occur in the seven
gate classes. They are:

• Type I: A⊕AC ⊕BC
• Type II: A⊕AB ⊕BC
• Type III: A⊕BC
• Type IV: A (no change)

where A is the input position (i.e. x in the top position of the vector, y in the middle
position, and x in the bottom position) and B and C are determined by the value of
A.

The gates that invert the seven classes add four more types of operations:
• Type V: A(¬C) ∨ CB
• Type VI: (¬B)(¬C)A ∨B(A ∨ C)
• Type VII: (¬C)(¬B)A ∨ C(A ∨B)
• Type VIII: A(¬B) ∨B(A⊕ C)

Using these types, the classes can be described as in the last two columns of table
5.3. Any one of the gates described here could be used as a basic building block for
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fully reversible QCA circuits.

6. Conclusion. All of this work continues to be ongoing. These intermediate
results identify a path toward a reversible microarchitecture for QCA. The reversible
language survey reveals the high level constrcuts that need to be supported by a
reversible ISA and microarchitecture. The collapsed Bennett layout strategy now
needs to take the crossover problem into consideration. Future work will include
this as well as designing QCA circuits that will implement a universal reversible gate
efficiently.
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COMPOSITE REFINEMENT OF UNSTRUCTURED CONFORMAL
HEXAHEDRAL MESHES

MICHAEL H. PARRISH∗, MATTHEW L. STATEN† , AND MICHAEL BORDEN‡

Abstract. Localized hexahedral (hex) modification algorithms modify unstructured confor-
mal meshes allowing greater user control over mesh density and quality. Hex refinement increases
the density of the mesh in a specified region, proving extremely useful in many analyses. Previ-
ous research, using solely directional refinement theory, made the implementation of localized hex
modification computationally expensive as well as unable to handle concave refinement regions and
self-intersecting hex sheets. Composite Refinement is a new procedure that combines old and new
theories to create an efficient and robust algorithm that is able to handle the above stated problems.
The Composite Refinement procedure uses two different methodologies in the refinement process.
These are: 1) Total Hex Refinement and 2) Directional Hex Refinement. Total Hex Refinement
refines a hex in one step using one of seven templates. As each hex is processed, the correct template
is selected and replaces the processed hex. Directional Refinement which was previously used for
all refinement is only used when the more efficient Total Hex Refinement algorithm is impossible.
A ranking system allows Directional Refinement to be done in the proper order thus eliminating
conformity problems.

1. Introduction. Hex refinement is a mesh modification procedure which in-
creases element density in a localized region. A refined mesh can increase the accuracy
of the analysis within the refined region because of the increased element density as
shown in Figure 1.1(a) and Figure 1.1(b). While hex refinement can be an invaluable
tool, previous theory and implementation were unable to provide needed capabilities
and made hex refinement computationally expensive. The work presented in this
paper therefore, attempts to solve these issues.

The following section discusses previous hex refinement theory and highlights
problems addressed by the current work. Composite Refinement will then be in-
troduced, accompanied with an abbreviated outline of the algorithm. A compari-
son between Composite Refinement and the old hex refinement algorithm will follow
showing that Composite Refinement is a more robust and efficient way to perform
hex refinement.

(a) Before Refinement (b) After Refinement

Fig. 1.1. Purpose of Hex Refinement

2. Background. Conformal refinement of unstructured hexahedral meshes was
previously done utilizing the dual of the mesh also known as the spatial twist con-

∗Brigham Young University
†Sandia National Laboratories
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tinuum (STC) [1]. The dual is a geometric representation that explicitly defines the
connectivity characteristics of a mesh [2]. A component of the dual is a hex sheet as
shown in Figure 2.1. Hexes were refined in hex sheets thus making the refinement
conformal because of the connectivity properties associated with the dual of the mesh.
While refinement using hex sheets has the advantage of conformity, three problems
have arisen that limit both capability and speed of this theory. These three critical
issues are: 1) Self-intersecting hex sheets, 2) Concavities, and 3) Scalability. Compos-
ite Refinement is an attempt to solve these three issues while maintaining a conformal
mesh.

Fig. 2.1. Hex Sheet(Shown in Gray) of 4 Hexes

2.1. Self-Intersecting Hex Sheets. A hex sheet starts at a boundary and
ends at a boundary or it will form a closed loop. Sometimes meshing algorithms will
create self-intersecting hex sheets. This means that before reaching the end, the hex
sheet will include hexes more than one time. The old algorithm was unable to handle
multiple refinement directions in the same hex sheet. In fact, it would create a non-
conformal mesh which made an accurate analysis impossible. The example below in
Figure 2.2 depicts the self-intersecting hex sheet.

Fig. 2.2. Example of Self-Intersecting Hex Sheet

2.2. Concavities. Figure 2.3 shows a simple concave region where the concavity
is formed by the shaded hexes. Concavities present a new set of problems for hex
refinement. The old algorithm could not handle concavities so it would add hexes1 to
the hex sheet until no concavities remained. While this solves the concavities problem,
it leads to another problem which is excessive refinement. Excessive refinement can

1Non-shaded hex represents one of four hexes that would be added to remove the concavity
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cause unwanted modification of a mesh,slow down the analysis process, and reduce
accuracy. The templates to handle concavities exist but were not implemented in the
old algorithm [3].

Fig. 2.3. Example of Concave Region

2.3. Scalability. Refining a mesh using hex sheets ensures a conformal mesh,
however the scalability of using such a process is on the order of n3. The reason for
this is the creation and deletion of intermediate hexes. The process occurs in the
following manner. First as shown in Figure 2.4(a), the original hex is deleted and
three new hexes are created in its place. Second, the three intermediate hexes are
deleted and nine more intermediate hexes are created as in Figure 2.4(b). Finally, the
nine intermediate hexes are deleted and 27 final hexes are created as in Figure 2.4(c).
In this example, 13 hexes were deleted and 40 hexes were created. This requires
significant computational power and time.

(a) 3 Hexes (b) 9 Hexes (c) 27 Hexes

Fig. 2.4. Three Phase Process of Old Algorithm

3. Composite Refinement. Composite Refinement is a new algorithm that
attempts to make hex refinement more robust while reducing computational cost. This
new algorithm changes the fundamental way in which hexes are processed. Rather
than being processed in hex sheets, hexes are processed one at a time. This means
that once a hex is processed, it is completely refined and removed from the refinement
algorithm. Immediately, this methodology solves the self-intersecting sheet problem
and it will be shown later that Composite Refinement also solves the other problems
stated in the previous section. It is also hoped that by processing hexes individually,
future problems that may arise can be solved with more ease.

Composite Refinement, as its name suggests, includes two distinct processes.
These are: 1) Total Hex Refinement and 2) Directional Hex Refinement. The re-
mainder of this section will discuss how these two types of refinement work and how
they function together to form the Composite Refinement algorithm.
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3.1. Templates. Seven templates are used in Composite Refinement and are
shown in the following figure. Figure 3.1(a), Figure 3.1(b), and Figure 3.1(c) are the
most common templates used in the refinement process. In fact, any refinement not
requiring concavities can be refined using these three templates. All seven templates
are used in Total Hex Refinement while Figure 3.1(a) and Figure 3.1(b) are not used
in Directional Hex Refinement. Figure 3.1(f) and Figure 3.1(g) are used to handle
concavities in the refinement process.

(a) 1 to 27 (b) 1 to 13 (c) 1 to 5 (d) 1 to 4 (e) 1 to 3

(f) 1 to 3 with 1
concavity

(g) 1 to 3 with 2
concavities

Fig. 3.1. Templates Used in Total Hex Refinement

3.2. Total Hex Refinement. Total Hex Refinement refines a hex in one step.
The initial hex is deleted and the final hexes are created using one of the seven
templates described in the previous subsection. No intermediate hexes are created or
deleted thus increasing the efficiency. This type of refinement is preferred and is used
as the primary refinement method.

3.3. Directional Hex Refinement. If all meshes were refined using solely To-
tal Hex Refinement, dozens of templates would be required. Most of these required
templates are currently unknown or create low quality elements. Therefore, to reduce
the number of templates required, Directional Hex Refinement is used. Directional
Hex Refinement only requires five templates which are shown above in Figures 3.1(c)
to 3.1(g).

Directional Hex Refinement refines along the three principle axes in series. Since
hexes are processed individually in Composite Refinement, new techniques had to
be developed to maintain a conformal mesh and ensure that refinement occurred
correctly. The remainder of this section discusses the advancements made to refine
hexes directionally on a hex by hex basis.

3.3.1. The Conformity Problem. Conformity becomes a real problem for
Directional Hex Refinement. An example of the conformity problem is shown in
Figure 3.2 with two hexes that share a single face. Figure 3.2(a) is refined front to
back and then bottom to top. Figure 3.2(b) is refined bottom to top and then front
to back. Both contain valid refinement schemes yet the shared face2 does not match

2Shown in gray
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(a) Refine Order 1 (b) Refine Order 2

Fig. 3.2. Conformity Issues

up. This problem would occur frequently since each hex is refined independently of
its neighbors.

3.3.2. Ranking System. To solve the conformity problem, we used the con-
cept of the dual of the mesh discussed previously. This concept was implemented as
a ranking system. The ranking system works in the following manner. An initial ar-
bitrary edge is selected and given a rank of 1. All opposite edges of adjacent faces are
located for the selected edge. If these new edges are split and need to be directionally
refined, they are ranked and become selected edges themselves. The process repeats
itself and the ranking system propagates outward. The entire process repeats itself
until all applicable edges are ranked. Refinement then occurs on a hex by hex basis
starting in the direction with the lowest rank and continuing in ranked order until the
hex is completely refined and the algorithm moves onto the next hex.

3.3.3. Projection Scheme. After a hex is refined in a principle direction, new
edges exist that may need to be split in order that the refinement works properly. To
handle this, we developed a projection scheme to determine which edges need to be
split. Figure 3.3 shows a 2D example of a hex that has been refined in one direction.
After the refinement has occurred, the projection scheme checks edges 1 and 4. If
both edges are split then it will split edges 2 and 3. If only one or no edges are split
then edges 2 and 3 will not be split. This process occurs on the four faces that are
not parallel to the initial direction of refinement.

Fig. 3.3. Projection Scheme

3.4. Algorithm. The Composite Refinement algorithm starts by applying the
the 1 to 27 template to the target hexes as shown in step 3.2. The boundary hexes are
all that remain after this step. Because Total Hex Refinement is more efficient, it is
applied first in step 3.4. The remaining hexes are then ranked as shown in algorithm
step 3.11. Finally, the remaining hexes are refined directionally from lowest to highest
rank.



M.H. Parrish, M.L. Staten and M. Borden 311

Algorithm 3 Composite Refinement
1: loop target hexes . Total Hex Refinement
2: apply 1 to 27 template to target hex
3: end loop
4: loop boundary hexes
5: if template applies then
6: refine hex using template
7: else
8: add to directional hex list
9: end if

10: end loop
11: loop directional hex list
12: apply ranking system
13: end loop
14: loop directional hex list . Directional Hex Refinement
15: directionally refine hexes
16: end loop

(a) Composite Refinement (b) Old Algorithm

Fig. 4.1. Comparison of Concavity Capability

4. Comparison between Composite Refinement and Old Algorithm.
Composite Refinement, because it refines individual hexes, solves the self-intersecting
sheet problem. Composite Refinement also is able to handle concavities. Figure
4.1(a) and Figure 4.1(b) show the results of both algorithms while trying to refine the
bottom and left surfaces of a cube. Composite refinement works correctly while the
old algorithm excessively refines the whole cube.

Probably the greatest advantage of Composite Refinement over the old algorithm
is scalability. It has already been stated that the scalability of the old algorithm
was on the order of n3. The scalability of Composite Refinement is nearly linear in
comparison. Figure 4.2 decisively shows that Composite Refinement out-performs the
old algorithm. The old algorithm was unable to refine anything with an initial element
count larger than 100000 elements. Contrast this with Composite Refinement which
was able to go up to almost half a million initial elements and would go further if
more data was taken.

Composite Refinement has become powerful mesh modification tool. While fur-
ther testing is needed, the data given in this section supports this conclusion. Compos-
ite Refinement can handle self-intersecting hex sheets and concavities. The scalability
is nearly linear and by modifications to directional refinement theory, Composite Re-
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Fig. 4.2. Scalability comparison

finement is able to maintain conformity. For these reasons, Composite Refinement
should replace the old refinement algorithm.

5. Conclusion. Composite Refinement was developed to solve problems with
old theory and implementation. It can handle self-intersecting hex sheets and con-
cavities. The scalability of Composite Refinement is nearly linear which is a dramatic
improvement over cubic scalability found in the old algorithm. With its increased ca-
pability and scalability, Composite Refinement is a powerful mesh modification tool.
Composite Refinement will allow increased accuracy in the analysis of target areas.
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USING RECONFIGURABLE FUNCTIONAL UNITS
WITH SANDIA SCIENTIFIC APPLICATIONS

K. RUPNOW‡ AND K. UNDERWOOD§

Abstract. Several groups have proposed using Reconfigurable Functional Units (RFUs) to ac-
celerate standard programs and embedded media applications. However, previous work has demon-
strated the significant differences between Sandia’s scientific applications and scientific benchmarks
such as those used in previous RFU studies. Furthermore, past RFU’s have significantly limited
abilities compared to the needs of Sandia applications. In our study, we select patterns of common
integer computation (dataflow graphs) and accelerate them in an RFU. We use application traces and
execution based simulation to simulate potential application speedup using an RFU. We present data
demonstrating the potential acceleration of Sandia applications using a Reconfigurable Functional
Unit to accelerate the integer computation.

1. Introduction. Many groups have utilized Reconfigurable Functional Units
(RFUs), however they have concentrated on embedded applications and media stream-
ing applications. RFU designs for embedded and streaming applications target signif-
icantly different program behavior than that seen in scientific applications. Interlock
collapsing [14] only considers graphs with two nodes. Other techniques such as the
CCA [4] and Dataflow Mini-Graphs [1] relax the limitation of two instructions, but still
limit the inputs and outputs of the graph. In addition, the CCA limits implementable
graphs to the subset that can be placed in their static RFU placement. While these
techniques have shown significant speedup with their designs, previous work [16] has
shown that dataflow in Sandia’s scientific applications is significantly more complex
than dataflow in SPEC-FP. Sandia’s dataflow graphs average more instructions, more
inputs and outputs and larger topographical height and width. Therefore, for our
architecture we relax the topographical shape constraints and the input and output
constraints, however we still place a premium on building a realistic RFU in terms of
register file bandwidth, instruction encoding, and chip area.

Reconfigurable Functional Units provide two main benefits: increased issue logic
efficiency and graph acceleration. Issue logic increases in efficiency because of the
more efficient instruction encoding an RFU can achieve. One RFU instruction may
represent many instructions, thus when an RFU instruction is issued we are effec-
tively issuing many instructions, possibly in excess of the processor’s issue width.
Furthermore, because one RFU instruction may represent many instructions, there
is extra issue window space, which increases the effective issue window size. Graphs
can be accelerated because an RFU can contain closely coupled functional units and
configurable communication patterns. By encoding the communication pattern into
the RFU, we prevent the need for bypass logic. Furthermore, because certain com-
putations such as logical operations complete in less than one cycle, we may combine
several such operations into one cycle. For this work we separate the acceleration
due to issue logic efficiency from the graph acceleration. We will assume zero graph
acceleration and measure application speedup based solely on increased issue logic
efficiency. For our simulations, we select graphs that cover 1% or more of the integer
computation instructions that are contained by any graph. We then use the selected
graphs as our set of configurations for the RFU. In Sandia applications, the top 16
graphs cover 89% of the integer computations contained by a graph, while the top
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16 graphs cover 84% of integer computations in SPEC-FP. Using the selected graphs,
most applications achieve speedup of between 2% and 6% over the baseline.

2. Related Work. Dataflow research originated in the 1960’s in studies of graph
theoretical models of parallel computation by Karp and Miller [12] and Rodriguez [15].
These papers studied parallel computation models as an alternative to the von Neu-
mann model of sequential execution. The main goal of parallel computation models is
to extract dataflow locality, which is the recurrence of common computation and com-
munication patterns. Dataflow is expressed as a graph, where nodes are instructions
and edges are the communication between instructions. Note that dataflow architec-
tures have no program counter, and thus no branching behavior. All decisions that
would be made by branches in a standard microprocessor are expressed by processing
units that conditionally send data to other processing units.

The first dataflow architectures that appeared in the early 1970’s [5, 6] corre-
spond closely to the graph model; the hardware consisted of functional units that
communicate directly using FIFO queues. Dataflow architecture designs of the 1980’s
[8, 10, 13, 17] built on early designs by adding tagging schemes, dynamic instruction
allocation, and communication hierarchy. However, the designs still required dataflow
specific programming languages and the memory and silicon integration technology
of the time struggled to provide the machines with sufficient memory bandwidth.

More recently, dataflow architectures have experienced a resurgence with archi-
tectures such as WaveScalar [19], RAW [20], and TRIPS [18]. However, all of these
dataflow architectures still depend on an explicitly parallel computing paradigm. De-
spite the improvements to the capabilities of dataflow processors, traditional micropro-
cessors are still the dominant technology. Furthermore, there is a significant amount
of dataflow locality in von Neumann control-flow architectures, and Reconfigurable
Functional Units (RFUs) are poised to extract that dataflow locality. RFUs execute
common sequences of instructions that were detected either at compile time or dy-
namically. Logically, this execution model extracts the dataflow locality of programs
that were compiled for sequential execution. Many groups have suggested RFUs and
corresponding execution models. Chimera [11], and the CCA [4] are two examples
of RFUs that identify common sequences of instructions during compile time. Other
projects [2,7] chose to perform similar instruction sequence profiling, but they create
application specific processing units rather than configurations for a RFU.

In contrast to previous RFU designs, we relax several graph constraints such as
graph depth, number of inputs and number of outputs, while still requiring a realistic
design. Our previous work demonstrated the importance of handling more complex
dataflow graphs, which motivated the relaxed constraints as compared to the CCA [4]
or Dataflow Mini-Graphs [1]. In addition, we chose an RFU tightly coupled with the
microprocessor pipeline, rather than the co-processor model used in Chimera [11].

3. Method. For all of our tests, we use trace based execution of G5 PPC [9]
trace files. Our analysis program uses the SimpleScalar [3] based definition file and
decode structure. We use 14 traces covering programs from the SPEC-FP 2000 bench-
marking suite, and 16 traces from seven Sandia applications (ALEGRA, CTH, cube3,
ITS, LAMMPS, MPSalsa, and Xyce). Each trace is a representative four billion in-
structions selected using performance register profiling and source code analysis. Our
simulation is performed in two phases, which simulates a simplified form of compiler
based graph selection. The trace-based graph selection algorithm uses the first one
billion instructions from the trace. The trace-based execution and timing simulation
uses the entire four-billion instruction trace.
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3.1. Graph Selection. For the graph selection phase of our simulations, we
select static dataflow graphs in a method similar to compiler based approaches. We
limit dataflow graphs to instructions within the same basic block of the program.
If all of a dataflow graph’s component instructions are within the same basic block,
then we can ensure that whenever that graph is encountered it is valid to execute the
entire graph. This simplifies pipeline cleanup in the event of a branch misprediction.
For the first phase we construct dataflow graphs to represent the complete set of
dataflow that does not cross branch boundaries. We keep track of all unique graphs,
and count the number of executions of each unique graph, as well as the total integer
computation instructions. For each simulation, we select graphs that contribute 1%
or more of the total integer computations executed as part of a DFG to use as our
pre-selected list of graphs for the timing simulation. This technique limits the total
number of dataflow graphs handled by the Reconfigurable Functional Unit, which
limits the expected complexity of maintaining multiple configuration contexts.

3.2. RFU Architecture. For the architecture of our Reconfigurable Functional
Unit, we have selected an extremely conservative design. This design does not assume
that the DFG is accelerated any as compared to a processor with sufficient free re-
sources. For this reason, any application acceleration we see in the timing analysis
is due to the increased virtual issue width and virtual issue window size. The issue
width and issue window size are effectively increased because one RFU instruction
can represent many instructions. Consequently, issuing an RFU instruction effectively
issues many instructions, leaving the remaining issue width available for other inde-
pendent operations. Additionally, since the RFU instruction takes fewer entries in
the issue queue, there are additional queue entries available for other instructions;
this increases the effective issue window size. To limit both register file bandwidth
requirements, and instruction word encoding requirements, we limit the amount of
data one RFU opcode can contain to three input registers and one output register, or
two output registers. Based on this limit, one dataflow graph will be encoded in one
or more RFU opcodes. The depth of the graph determines graph execution latency.
When we encounter a DFG during program execution, the graph is split into one or
more RFU opcodes to encode all inputs and outputs based on the previous require-
ments. Inputs are sorted into the order in which they will be required during graph
execution, the RFU can make intermediate progress on the graph execution as the
inputs become available (inputs may only become available in groups associated with
the opcode they were encoded in). We then remove the original instructions from the
instruction stream, insert the RFU instructions, and reorder the instruction stream
as necessary to enforce register dependence ordering.

4. Graph Selection Analysis. This section presents analysis of the graphs
selected during the first phase of simulation. We first examine the average dataflow
graph size, comparing the SPEC-FP benchmark suite to the scientific applications
used at Sandia. In addition, we compare the average graph size under two constraints,
minimum graph size of two instructions, and minimum graph size of three instructions.
We then compare the average percentage of integer computation instructions that are
contained in a dataflow graph, and conclude by examining the percentage of integer
computation instructions contained in a dataflow graph versus the number of selected
graphs.

4.1. Average Graph Size. On average, the dataflow graphs in Sandia’s ap-
plications are larger than those in the SPEC-FP application. For graphs with a
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minimum of two nodes, Sandia averages 40% larger graphs, while for graphs with a
minimum of three nodes, Sandia averages 33% larger graphs. For SPEC-FP, includ-
ing graphs of size two reduces the average number of nodes by 41%, while for Sandia
including graphs of size two reduces the average by 38%. In Figure 4.1, we see the
average graph size for both SPEC-FP and Sandia for each of the minimum graph
sizes. Sandia’s larger average graph size is further emphasized because graphs from
Sandia applications also cover more of the total integer computation instructions on
average.

Fig. 4.1. Average Dataflow Graph Size

4.2. Average Integer Instruction Coverage. On average graphs from Sandia
applications cover a larger percentage of the integer computation instructions, however
the difference is more exaggerated when the minimum graph size is three nodes. In
Figure 4.2, we see the average coverage of SPEC-FP and Sandia for both a minimum
graph size of two and minimum graph size of three. As expected, the average coverage
is higher when graphs of size two are included. Interestingly, when the minimum
graph size is three, Sandia covers 9% more instructions on average while the addition
of size two graphs lowers that advantage to only 2%. In addition, average coverage in
SPEC-FP doubles when size two graphs are included while Sandia only covers 40%
more instructions. This indicates a prevalence of important two instruction graphs
in SPEC-FP applications to a degree not seen in Sandia applications. While total
coverage is important, it is more important to examine how much of the coverage can
be obtained with a small number of unique graphs.

4.3. Integer Instruction Coverage vs. Number of Selected Graphs. In
Figure 4.3, we see the average integer computation coverage versus the number of
selected graphs. For both SPEC-FP and Sandia, most of the obtainable instruction
coverage is achieved with the top ten graphs, with especially high coverage obtained
with the top five graphs. In the case with a minimum graph size of three, Sandia has
uniformly higher coverage throughout the range, however in the case with a minimum
graph size of two, Sandia’s coverage only overtakes SPEC-FP’s coverage with more
than five graphs. For SPEC-FP, we see that the minimum of two starts at a signifi-
cantly higher coverage, which indicates that SPEC-FP contains a very important two
instruction graph on average. Instruction coverage in Sandia applications, however,
starts at a level very similar to the minimum of three and rises more rapidly after the
first graph. This indicates that while Sandia does contain important two instruction
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Fig. 4.2. Average Integer Computation Instruction Coverage

graphs, they are of lesser importance than the larger graphs on average. Overall, it
is encouraging that most of the potential dataflow graph executions can be covered
by a small number of unique dataflow graphs. This shows that while we need config-
urability to capture all of the graphs, a small number of different graphs can capture
most of the potential.

Fig. 4.3. Integer Computation Coverage vs. Number of Selected Graphs

5. Graph Execution Analysis. This section presents analysis of the execution
and timing simulation of our RFU architecture. We begin by examining the speedup
of our architecture over the baseline case. We then examine the number of RFU oper-
ations that executed as compared to the number we would expect from the selection,
and conclude by showing the average number of RFU operations per graph.

5.1. Percent Speedup. For both sets of selected graphs, most of the bench-
marks or applications achieve a speedup in the range of 2%-6%. Note again that this
speedup is solely based on the increased efficiency of issue logic, as the graph is not
accelerated separately. This demonstrates that the grouping of common calculations
into dataflow graphs can help the issue logic more efficiently handle the instruction
stream. There are a few benchmarks which show a slowdown of 1.5%-2%. This is
caused by the introduction of a serialization case that was not in the original code. In
the event that a graph has multiple outputs, it is possible that the additional latency
to wait for the entire graph to complete causes instructions waiting for that output
to wait longer than they would otherwise. To mitigate the effect of this problem,
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we will be investigating allowing the RFU to output intermediate data as it becomes
available, which is a more realistic implementation. In Figure 5.1 and Figure 5.2,
we see the speedup over baseline for both sets of selected graphs for the SPEC-FP
benchmarks and Sandia applications, respectively.

The results for LAMMPS particularly emphasize the serialization problem in the
current architecture. In lmp.flow.langevin, there are 175 Million graphs found and
executed during the trace, which causes a 3.3% speedup over the base case. In lmp.lj,
however, there are 200 Million graphs executed which causes a slow down of 8%.
In both cases there are sufficient graphs to achieve significant speedup, however the
serialization problems in lmp.lj cause a slowdown where a speedup would be expected.
Similarly, we see serialization issues in many of the applications, where the minimum
of 2 simulation is slower that the minimum of 3. This should never be the case except
as caused by serialization.

Fig. 5.1. Speedup: SPEC-FP Benchmarks

5.2. Average Number of RFU ops per Graph. We measure the average
number of RFU ops per graph to track how average graph size affects the acceleration
potential of our applications. As previously stated, one dataflow graph may require
one or more RFU ops to encode all of the input and output registers. Larger graphs
will require more RFU ops, but they also encode a larger number of instructions.
On average, there are 2.25 RFU ops per graph with a minimum graph size of three,
and 1.9 RFU ops per graph with a minimum graph size of two. The highest average
for any benchmark or application is 3. When we compare this to the average graph
size for the executed graphs, we see a direct correspondence between the graph size
and the required number of RFU ops, as expected. We will be examining the packing
efficiency of graph data into the RFU ops to determine if our current encoding scheme
is the most efficient choice to encode RFU ops. We wish to minimize the number of
required RFU ops per graphs while maximizing the number of instructions per graph;
fewer RFU ops per graph will achieve better speedup.
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Fig. 5.2. Speedup: Sandia Applications

6. Conclusions. There is significant potential in using a Reconfigurable Func-
tional Unit with scientific applications at Sandia. Even with a conservative RFU
architecture, we have achieved modest speedups simply by increasing the efficiency
of the issue logic. Furthermore, future schemes will improve on these results by mit-
igating serialization impact and minimizing the number of required RFU operations
to encode one dataflow graph. Future RFU designs can contain realistic graph ac-
celeration values, which would further improve the speedup numbers. In addition,
techniques to combine dataflow graphs from multiple basic blocks could improve the
scope and coverage of this technique.
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MASSIVELY MULTITHREADED APPLICATIONS FOR DEEPLY
PIPELINED QCA ARCHITECTURES

MEGAN VANCE∗ AND KEITH UNDERWOOD†

Abstract. To achieve good processor utilization in a deeply pipelined nanoscale architecture,
traditional serial application codes will not be sufficient. This study investigates the parallelization
of a massively multithreaded depth first search. With straightforward techniques and a small fu-
ture computation library, a DFS search algorithm is shown to provide thousands of independent
lightweight threads when executed on a simple multithreaded processor.

1. Introduction. As shrinking transistor size becomes increasingly problem-
atic to the design of future CMOS-based processing devices, several design methods
have come to the fore as possible alternatives for computing at the nano-scale. In
particular, nanotechnologies aim to overcome the problems of heat dissipation, high
fabrication costs, and fundamental limits to the density of CMOS transistors. Though
there are several different nanotechnologies currently being investigated, each of them
presents the similar challenge to software design, in the form of higher logic density
and increased memory latencies. For example, in CMOS, higher latencies result from
extremely small, high resistance wires.

Increasing memory latency exacerbates the von Neumann bottleneck extant in
current architectures, where processing and logic are physically separated. Tolerat-
ing these latencies enough to provide good performance will not be possible with
the current paradigm of serial or coarse grained parallel computations. Neither of
these programming models can provide enough independent instructions to overcome
latencies which may be in the tens of thousands of cycles.

A particular technology, quantum-dot cellular automata (QCA), is used here as
the basis for a nano-scale architecture. QCA lends itself to a mode of computation
distributed throughout the memory structure, addressing the processor-memory bot-
tleneck which limits current processor performance. In addition, QCA design allows
for computation to proceed “in the wire”, meaning that calculations can be com-
pleted while data is in transit. This naturally lends itself to processors with very deep
pipelines. While current processors rely primarily on instruction re-ordering of serial
codes to fill up pipeline issue slots, dependence on Instruction Level Parallelism (ILP)
will not be sufficient to efficiently utilize processing power on the nano level where
pipelines will be deeper and memory latencies longer. To achieve good utilization,
applications may be designed to exploit Thread Level Parallelism (TLP) on a massive
scale.

Creating massive numbers of threads, on the order of tens of thousands, is feasible
when the threads themselves require very little overhead for creation, movement,
and destruction. Current investigations into large-scale multithreading achieve this
through the paradigm of lightweight threads. As opposed to traditional kernel or
user level threads in a UNIX-type system, lightweight threads need very little state –
minimally a program counter, some local data, and status information. Since thread
state is small, thread creation can be as fast as the allocation and copy of a small
amount of data. By associating register data with the thread state, movement becomes
a small memory copy.

∗University of Notre Dame
†Sandia National Laboratories
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Graph algorithms provide a good target for both large-scale multithreading and
novel architectures. Most importantly, graph algorithms are increasingly of interest
for a large number of real world applications, particularly data mining. Searching
extremely large graphs also lends itself particularly well to decomposition into inde-
pendent threads, since searches often consist of code which visits each node in the
graph, examines the node, and possibly makes some change to it. Visiting each node
may typically proceed in parallel, with serialization only required for concurrent access
to a single node. Because a visit is typically a short operation, requiring only enough
local data to identify the node to visit, this operation maps well to a lightweight
thread.

Though graph algorithms provide useful functionality, their performance on tra-
ditional architectures has been poor. This is due to the hierarchical memory system
designs which favor ordered, consecutive memory accesses. Since graph algorithms
proceed by traversing edges which may connect any set of nodes, memory accesses
appear random to the memory system, which cannot compensate for long latencies
by caching recent accesses or prefetching nearby data. Using a novel architectural
approach with a thread based execution model obviates this typically bad behavior.

1.1. QCA. Quantum-dot cellular automata [3] technology is based on the ac-
tivity of two electrons arranged in a cell with four dots arranged in a square. Two
excess electrons are attached to the cell and may move between the four dots, meaning
that two stable configurations exist as shown in figure 1.1. Either the electrons repel
each other toward the top-left/bottom right configuration, connotating a binary 0, or
the opposite, a binary 1. Wires are formed by placing cells in close proximity and
preventing a cell’s electrons from tunneling so that they may influence the state of a
neighbor cell, who’s electrons are allowed to tunnel.

Quantum dot Electron

Logical 1

Logical 0

Fig. 1.1. Quantum-dot Cell

Clocking operates, then, by raising and lowering an electric field to either lock a
cell into a stable configuration, or allow it to take on the configuration of a neighbor
which is stable. As the field rises, the cell becomes more stable, so during an upward
“clock” pulse, the cell takes on a configuration and holds it until the field begins to
drop, at which point the cell looses its configuration altogether until the next rise.
Cell state acquiring value, storing value, dropping value, and lacking value are called
respectively switch, hold, release, and relax as shown in figure 1.2.

Utilizing the clocking fields in the appropriate configuration yields the basic com-
putation block for QCA, the majority gate. A central cell is influenced by three
neighbors (inputs) into taking on the value held by the majority. Then, this central
cell acts as a drive to a fourth neighbor (output). Fixing one input to 1 produces an
OR gate, and to 0, an AND gate. Figure 1.3 shows the majority gate with inputs A,
B, and C giving output AB+BC+AC.
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Fig. 1.2. QCA Clock Phases: switch, hold, release, relax

Device Cell
A

B

C

Out = AB + AC + BC

Fig. 1.3. QCA Majority Gate

2. Previous Work. A thread based execution model based on QCA technology
is presented in [7]. Because the memory structure is deeply pipelined and dense, mov-
ing instructions and data to a single execution location would be inefficient. Instead,
thread state is encapsulated into a small bundle which moves throughout memory be-
tween instructions and data. As the thread is routed to its next destination, compu-
tation is performed in the routers which are spread throughout memory, so individual
pipeline stages complete different routers as the thread moves.

In contrast to traditional processors, the Tera/Cray MTA [4] [1] does not rely
on ILP to hide latencies. Applications written for the MTA [8] [2] contain massive
numbers of independent control streams. This is accomplished by parallelizing loops
and recursive structures at a fine-grain. Recursive structures are managed via a
runtime system which stores thread futures in a queueing system which is accessed
by available execution resources. The approach is similar in this study, except that
threads are created as software entities rather than allocated as hardware resources,
which simplifies the implementation.

Exposing the inherent abilities of graph algorithms to a massively multithreaded
architecture has been accomplished via a MultiThreaded Graph Library (MTGL) [6].
MTGL draws inspiration the Boost Graph Library (BoostGL) [5] but was not designed
as an extension, allowing design to focus on MTA performance rather than genericity.
This study adopts the multithreaded approach to graph algorithms afforded by the
MTA language constructions in MTGL.

3. Methodology. In order to study the behavior of a massively multithreaded
DFS without over-reliance on a particular microarchitecture, a structural simulation
framework was used to model system behavior as the high level interaction of com-
ponents. Programs are compiled for a PowerPC target and interact through a middle
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layer of software to a set of C++ objects which interpret computation and mem-
ory operations as a series of tokens which make changes to the state of the system.
Therefore the same binary can be used to observe performance on a conventional
processor or a set of simple integrated processor and memory nodes. Thread creation
is supported as fast (3-5 instruction) calls to the simulator internals.

Software described here was written in C++ and compiled using g++ version 3.3.
No optimization was used for the future library itself, while the actual DFS search
algorithm was compile with the -O2 flag.

3.1. Futures Library. Derived from the basic model presented in the MTA
programming environment, futures are a method to parallelize loops which contain
function calls. Figure 3.1 shows how a future would be created in the MTA compiler.
Rather than immediately create a thread to run each new instance of rfoo, a structure
called a future is created.

void rfoo (ArgClass arg) {

#pragma mta assert parallel
#pragma mta loop future
for (int i = 0; i < totalIterations; i++)

rfoo (args.moreArgs[i])
}

Fig. 3.1. Loop Futures in the MTA

Essentially a future stores all of the relevant information needed to call the func-
tion. Since this consists of only a function pointer and arguments, the future itself
can be small. Futures are enqueued into a FIFO queue from which other threads,
called virtual processors (VPs), can dequeue futures and instantiate a new thread by
creating the necessary memory space for its stack and assigning it to a processor.
Stack space may not be necessary if the thread is short and uses few local values.

void rfoo (ArgClass args) {
Future *ftr;
int iterationsPerThread;

int i = 0;
while (i < totalIterations) {

ftr = Future<void,ArgClass>::create(NULL,
&rfoo,
&(args.moreArgs[i]),
iterationsPerThread);

futureQ_addWork(ftr);
i += iterationsPerThread

}

futureQ_wait();
}

Fig. 3.2. Loop Futures

To provide the same kind of functionality as the #pragma mta commands, a
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futures library was written which is invoked as shown in figure 3.2. Because the
MTA compiler contains advanced parallelization optimizations, work is done be-
hind the scenes which is made explicit in the calls to the future library. Because
totalIterations may be extremely large compared to the number of threads which
the programmer wishes to create, multiple iterations are assigned to each future. This
happens when the Future object is created. In order, the arguments to future creation
are:

1. a pointer where an array of return values from the iterations may be stored
2. a pointer to the function to be called
3. an array of arguments, where each argument will be used in a separate call

to the function
4. the number of calls to be made, serially, to the function in the created thread

As the basic structure of the graph search is recursive, so the threads which are
taken from the future queue may create more futures. By convention, when a thread
creates a set of futures in a loop, it will not continue in its computation until all of
these futures return. Whereas the MTA handles this action by detecting a blocked
stream and re-allocating its resource, the futures library has the parent thread block
explicitly using the futureQ_wait library call, at which point it is removed from its
virtual processor.

At any point in computation, there are at most two types of threads available
for a free virtual processor to choose for execution, future threads, and threads which
have run for a while, blocked, and are now unblocked. The latter type will always have
priority over the former and are stored in a separate queue, call the unblocked queue.
If no threads exist, the virtual processor thread will block. When a thread unblocks
or is added as a future, a blocked VP will be unblocked, if such a VP exists. All
blocking and unblocking incurs very little overhead, since these functions are handled
via full/empty bits on a single memory location.

3.2. DFS Search Algorithm. For this study, a DFS search was constructed
which uses the graphs generated in MTGL and proceeds through a DFS search with
similar logic. Rather than use a DFS as a basis for another algorithm, such as con-
nected component detection, this search simply traverses the graph, marking each
node it encounters.

For a non-marked node, the algorithm marks the node and proceeds to visit each
node to which it is connected by an edge. If the node has above a static threshold of
neighbors, 20 in this case, multiple threads are spawned to visit the neighbors, at a
granularity of 8 visits per thread. Dropping the threshold or granularity would create
more threads per node visit.

3.3. Configuration. Execution was modeled on a single multithreaded proces-
sor. Each issue slot in the pipeline must contain an instruction from a different thread.
Though this may not be a requirement for a particular multithreaded processor, it
simplifies processor logic, obviating the need for hazard detection or branch predic-
tion logic. Simpler design suits nanoscale devices as well as any logic which is to be
repeated a large number of times on a single chip.

To model the large memory bandwidth expected from closely coupling computa-
tion and memory access, the simulated processor was directly connected to 2 DRAM
modules which contained the graph data. By avoiding a bottleneck to memory, the
application benefits from many threads which may have long latency delays but will
not suffer from constricted bandwidth.
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4. Results and Future Work. With the threshold and granularity numbers
given above, a DFS search on a graph with 2M vertices 30M Edges produced 440K
threads during execution. As simulator development continues, these benchmarks will
be used to compare performance in a deeply pipelined conventional architecture versus
a deeply pipelined multithreaded processor described in section 3.3. Also, preliminary
testing was done on an MTGL connected components search on a smaller graph of 256
vertices and 65K edges, from which it was possible to derive 35K threads by reducing
the number of node visits per thread to 2.

Once a fully functional combination of MTGL and the future library is available
for simulation, the performance of several algorithms can be investigated across a
range of architectural configurations and pipeline depths.

5. Conclusion. In a QCA architecture, real applications will require large num-
bers of independent instructions to hide memory latencies. Here, we have shown that
a lightweight library can provide thousands of threads with only minimal changes
to the existing code. Using useful graph algorithms, we have simulated the kind
of massive lightweight parallelism required by the bouncing threads model of QCA
execution.
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