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CONNECTING ATOMISTIC-TO-CONTINUUM COUPLING
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Abstract. Many atomistic/continuum coupling algorithms utilize an overlapping subdomain
method, where boundary data for local solves in atomistic and discretized continuum subdomains is
provided from local solves in neighboring subdomains. Such coupling algorithms are closely related to
the classical alternating Schwarz domain decomposition method, although little to no convergence or
error analysis exists for such methods in an atomistic/continuum framework. We consider a specific
alternating Schwarz algorithm for coupling a nonlocal atomistic model with a local finite element
model and carry out a convergence and error analysis along with supporting numerical experiments.
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1. Introduction. Atomistic/continuum coupling1 methods are motivated by
the desire to study material domains on scales where atomistic effects are important
but fully atomistic simulation is not feasible. Such coupling schemes call for decom-
position of the material domain into atomistic and continuum subdomains, where the
continuum subdomain is modeled via a finite element analysis. The treatment of the
interface between these subdomains, or “handshake region,” is primarily what distin-
guishes one atomistic/continuum coupling method from another. In this transition
region, approximations are made such as treating finite element nodes as atoms, or
vice versa, to accommodate the incompatibility between a nonlocal atomistic descrip-
tion and a local finite element description.

A complete theory of this transition region does not yet exist. However, the
atomistic/continuum coupling problem has similarities with the classical continuum-
to-continuum domain decomposition problem. We will explore some of these similar-
ities and address the extent to which both problems can be placed within the same
mathematical and algorithmic framework. We focus only on analysis of methods
to couple length scales (statics). Analysis of the many schemes proposed to couple
length and time scales (dynamics) is a separate but related problem requiring addi-
tional analysis.

Many different approaches to couple atomistic and continuum domains have been
proposed; see any of the reviews [30, 9, 26, 38, 13]. Broadly speaking, these ap-
proaches can be divided into two categories. The methods in the first category rely
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1We note here that the name atomistic/continuum coupling is a misnomer. We never couple an
atomistic model with a continuum model, but only with a discretized continuum model, such as a
finite element model.
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on a single global energy functional that approximates the total energy of the atom-
istic/continuum system. The quasi-continuum (QC) method [36, 27], is a well-known
technique for coupling atomistic and discretized continuum domains in the static
(zero temperature) case, which belongs to this type of method. To deal with the
local/nonlocal interface in the transition region, the QC method approximates the
global atomic energy functional in the continuum region and the transition region.
This has the attractive feature that a single global energy functional is generated with
far fewer degrees of freedom than the corresponding global atomistic model. In addi-
tion, availability of a single energy functional facilitates analysis of the method. Thus,
it is not surprising that, compared to other atomistic/continuum methods, some anal-
ysis has been accomplished [18, 24, 5, 25, 11] for the QC method. Unfortunately, to
the extent that the energy functional in these methods is an inexact approximation
of the true energy in the system, so-called ghost forces are generated and must be ex-
plicitly corrected [33]. In general, any coupling approach that generates a well-defined
global energy functional must sacrifice accuracy [9].

The second category of atomistic/continuum coupling algorithms avoids this is-
sue altogether by taking an alternative approach to the coupling problem. Utilizing
overlapping subdomains, methods in this category perform a solve on the atomistic
subdomain, thus generating boundary conditions for the continuum domain, then
perform a solve on the continuum domain, thus generating boundary conditions for
the atomistic domain, and repeat until convergence. Subdomain solves require only
local energy functionals for the atomistic and continuum domains, and thus a global
energy functional is never needed. This type of “back-and-forth” iteration process
is employed by methods for many different atomistic/continuum coupling problems,
including the FEAt method [19], as well as the coupling schemes proposed by Li,
Liao, and Yip [21, 22, 23], Hadjiconstantinou [15, 16], Wijesinghe and Hadjicon-
stantinou [40], Werder, Walther, and Koumoutsakos [39], Tang and Aluru [37], Nie
et al. [28], and Nie, Chen, and Robbins [29]. However, the lack of a single, albeit
approximate, energy functional makes error analysis of these coupling methods more
difficult, despite the fact that this process of back-and-forth iteration between do-
mains is well known2 within the domain decomposition community as the alternating
Schwarz [32] method. Although others such as Hadjiconstantinou [15, 16] and Wi-
jesinghe and Hadjiconstantinou [40] have recognized that specific atomistic/continuum
coupling schemes are essentially alternating Schwarz, no error or convergence analysis
exists. One reason is that the classical alternating Schwarz algorithm is formulated
for problems described by a single physical model, valid over both subdomains. As
a result, analysis of this algorithm cannot be straightforwardly extended to variants
where subdomain problems are defined by different physical models.

The main goal of this paper is to provide analysis of the second class of atom-
istic/continuum methods, i.e., algorithms characterized by a back-and-forth iteration
process and lack of a globally defined energy functional. We have organized the pa-
per as follows. In section 2 we introduce a prototypical atomistic/continuum model
and define a specific atomistic/continuum alternating Schwarz coupling algorithm. In
section 3 we perform error and convergence analyses on this algorithm. We demon-
strate conditions under which the atomistic solution will be recovered. We conduct
numerical experiments supporting our analysis in section 4 and offer conclusions in
section 5.

2For more on this method, see [34, 31].
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(a) Example atomic lattice.

 

(b) Example finite element mesh with trian-
gular elements.

Fig. 2.1. Example two-dimensional atomic lattice and associated finite element mesh de-
rived from lattice nodes. Dark atoms/nodes are taken to be fixed-displacement (Dirichlet) boundary
atoms/nodes.

2. A prototypical atomistic/continuum model. We begin by defining a
global atomistic domain of finite extent, which will consist of a one-, two-, or three-
dimensional Bravais-like lattice of atoms. A sample two-dimensional lattice is shown in
Figure 2.1(a). We suppose that all atoms share a bond with their rth nearest neighbors
(r ≥ 1), where each bond is represented by a linear spring, to define a mass-spring
network. That is, r = 1 implies all particles are connected to their nearest neighbors,
r = 2 implies all particles are connected to their nearest and second-nearest neighbors,
etc. We define a corresponding one-, two-, or three-dimensional global finite element
domain where the finite element nodes are located at the lattice sites. A sample two-
dimensional finite element domain is shown in Figure 2.1(b). For our finite element
model, we assume piecewise linear finite element shape functions.

We consider a global finite element model with nodes located at lattice sites only
for ease of presentation, as such a model does not reduce the total number of degrees
of freedom and thus presents no computational savings over the corresponding global
atomistic model. In general, an atomistic domain is coupled with a finite element
mesh more coarse than the atomic lattice. In such a coupling, atomistic positions are
computed by evaluating the displacement fields of the finite element solution at the
undeformed atom position. Likewise, finite element nodal displacements are computed
by evaluating the local atomic displacement field in the region around the undeformed
nodal position. For ease of presentation, we omit these grid-transfer operators from
our analysis.

For simplicity, we assume that we are modeling a homogeneous linear elastic
material with some tensile elastic modulus E. Clearly, our global atomistic and finite
element models are simply two different descriptions of the same physical material,
and we desire that they both permit certain solutions, such as recovering a constant
strain under an applied constant stress. In general, we desire that all Cauchy–Born
deformations [7, 12] be recovered exactly by the coupled model. The theory to be
presented is general in that it does not require that we couple only homogeneous
materials and holds for any mass-spring network coupled with any corresponding
finite element model.

We briefly describe a desirable (although not necessary) mathematical compati-
bility relationship between any atomistic and discretized continuum models we might
wish to couple and show their connections in Figure 2.2. For several atomistic mod-
els, upscaling via an appropriate limit process has been shown to recover an asso-
ciated continuum PDE. Berezhnyy and Berlyand showed sufficient conditions on a
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Atomistic Model

Continuum (PDE)

Finite Element Model

upscaling FEM discretization

lim h 0

Atomistic/Finite Element
Coupling

Fig. 2.2. Desirable mathematical compatibility relationships between three related models. If
possible, upscale the atomistic model to a continuum PDE and discretize that PDE to produce the
associated finite element model. In this process, one can quantify the relationships between the two
models. When the finite element model is local, the local-nonlocal coupling issue arises.

mass-spring network such that it admits a continuum limit [3]. Blanc, Le Bris, and
Lions [6] showed how to write certain continuum mechanical models as an asymptotic
limit of molecular models. In [10], E and Huang upscale a Frenkel–Kontorova model
to recover the Klein–Gordon equation. Further, Arndt and Griebel show how to re-
cover continuum mechanical models from atomistic models for crystalline solids [1].
Likewise, if our atomistic model is a regular mass-spring network, we may view it
as a finite difference discretization of our PDE. However, the atomistic model is not
generally directly recoverable from the PDE.

Referring again to Figure 2.2, we see that a finite element discretization of the
continuum PDE produces our finite element model, and the PDE can be recovered
from that model in the limit where the mesh spacing h goes to zero [8]. Note that our
finite element model can then be derived from our atomistic model by first upscaling
the atomistic model (presuming that such an upscaling exists) and then applying the
method of finite elements to the resulting PDE. We argue that it is desirable to cou-
ple atomistic and finite element models that possess this mathematical relationship,
because it is possible to precisely quantify the relationships between the two models.
In general, one can couple atomistic and finite element models that do not satisfy this
relationship, although it then becomes questionable whether the atomistic and finite
element models are compatible descriptions of the same material.

In general, we may use any acceptable discretization of our continuum equations.
It is important to note that we in general go from a nonlocal atomistic model to a
local finite element model in this process. Interatomic potentials for an atomistic
model describing real materials effectively span over many atoms and are thus non-
local. Common finite element shape functions have local support, meaning that the
functions associated with a given node are nonzero only in elements associated with
that node, and thus the displacement of any point within an element depends only on
the displacements of the nodes of that element. For a more detailed discussion of the
differences between local and nonlocal models, see [9]. This local-nonlocal coupling
will become the primary focus of our later analysis.

We now describe the specific coupled atomistic/finite element model that we will
analyze. Denote the global atomistic domain by Ωa

g and the global finite element

domain by Ωfe
g , such as those depicted in Figure 2.3. For simplicity, we consider the
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Ωa
g Ωfe

g

Ωa
g,1

Ωa

Ωfe
g,2

Ωfe

Global Atomistic Model Global Finite Element Model

Coupled Model

Ω1 Ω2Ω3 Ω5Ω4

Fig. 2.3. Construction of a coupled model by overlapping subdomains of atomistic and finite
element models. In the coupled model, Ω1 is the purely atomistic region, Ω2 the purely finite element
region, and Ω3 ∪ Ω4 ∪ Ω5 the overlap region. Circles represent atoms and squares finite element
nodes. Both are present in the overlap region of the coupled model.

case where Ωa
g = Ωfe

g = Ωg. Assume that Ωg is subdivided into two overlapping
domains Ωg = Ωg,1 ∪ Ωg,2. We can define corresponding overlapping subdomains on

each global model as follows: Ωa
g,i = Ωa

g ∩ Ωg,i and Ωfe
g,i = Ωfe

g ∩ Ωg,i for i = 1, 2.

Now construct a coupled atomistic/finite element model using Ωa
g,1 from the global

atomistic model and Ωfe
g,2 from the global finite element model, as depicted in Fig-

ure 2.3 for a simple two-dimensional case. As our primary focus in this paper is on the
coupled model, we will simplify our notation by henceforth referring to the atomistic
subdomain in the coupled model as Ωa and the finite element subdomain in the cou-
pled model as Ωfe. We can use these domain boundaries to define five nonoverlapping
subdomains in the coupled model, which we will call Ω1, . . . ,Ω5. By definition, we
have that Ωa = Ω1 ∪ Ω4 ∪ Ω3 ∪ Ω5 and Ωfe = Ω4 ∪ Ω3 ∪ Ω5 ∪ Ω2. Ω1 is the purely
atomistic region, Ω2 the purely finite element region, and Ω3 ∪ Ω4 ∪ Ω5 the overlap
region. Both the atomistic and finite element models are defined in the overlap region
of the coupled model.3 Without loss of generality, suppose that the degrees of freedom
in Ω1 are numbered first, those in Ω2 second, and so on. Additionally, suppose that
the degree-of-freedom numberings in the global atomistic and global finite element
models match that of the coupled model.

3Note that the finite element model is not merely the atomistic model reduced to only nearest-
neighbor interactions.
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When performing a solve in the atomistic subdomain Ωa, the atoms in subdomain
Ω5 will be held fixed. Correspondingly, in the finite element subdomain Ωfe, the finite
element nodes in subdomain Ω4 are subject to a Dirichlet boundary condition. The
size of the subdomain Ω3 can be altered to control the size of the subdomain overlap.
Because the finite element model is a local model, the domain Ω4 need only be a
surface (in three dimensions) or a line (in two dimensions), but the domain Ω5 must
be at least equal to the cutoff radius used in the atomic model. This is to “saturate”
the bonds of the atoms in domain Ω3 (and also possibly Ω4 or Ω1) and thus prevent
these atoms from acting as if they are in the presence of a surface. The subdomain
boundaries in the coupled model are artificial and should never produce surface effects.

Having defined a global atomistic model, a global finite element model, and a
coupled model, we now describe the specific alternating Schwarz algorithm we will
analyze in the next section.

Algorithm 1 Atomistic/continuum Schwarz

1: Initialize displacements of all non-Dirichlet finite element nodes in Ωfe.
2: Initialize positions of all nonfixed atoms in Ωa.
3: while not converged do
4: Fix positions of atoms in domain Ω5 according to positions of finite element

nodes in Ω5.
5: Solve for displacements of unconstrained atoms in atomistic subdomain Ωa.
6: Fix displacements of finite element nodes in Ω4 according to positions of atoms

in Ω4.
7: Solve for displacements of unconstrained finite element nodes in Ωfe.
8: end while

Because we do not define a global energy functional, we cannot compute a global
residual for our coupled model. Further, if we do define and minimize a global energy
functional, our model will be subject to ghost forces, as discussed earlier. Instead,
we say that our atomistic/continuum Schwarz algorithm has converged if the relative
change in the global solution vector is less than some tolerance ε. The well-known
limitation in this convergence test is that it may report convergence prematurely if
the algorithm is converging slowly. As we will see later, we have some control over
the convergence rate of the algorithm and can avoid this problem in practice. In
particular, we will see that the rate of convergence increases with the size of the
subdomain overlap.

3. Error and convergence analysis. From the global atomistic and finite
element models described above, let us write down the corresponding stiffness matrices
and force vectors. For the global atomistic model (corresponding to Figure 2.1(a), for
example), we have

(3.1) Ka
gu

a
g = fa

g ,

and for the global finite element model (corresponding to Figure 2.1(b), for example)
we have

(3.2) Kfe
g ufe

g = ffe
g ,

where Ka
g ,K

fe
g ∈ R

n×n, and ua
g , u

c
g, f

a
g , f

fe
g ∈ R

n, where n is the number of uncon-
strained degrees of freedom in the respective global models. Additionally, let there be
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ni unconstrained degrees of freedom in domain Ωi, i = 1, . . . , 5, with respect to the
global models, such that n = n1 + n2 + n3 + n4 + n5.

Here, ufe
g is the solution of the global finite element model, and ua

g is the solution
of the global atomistic model. In the atomistic model, we clearly can only apply forces
to atoms. In our continuum (PDE) model, we can apply body and surface forces, but
after a finite element discretization, these forces are realized as nodal forces.

We note here that in Algorithm 1 and for the associated coupled model depicted
in Figure 2.3, the finite element problem is not defined over the purely atomistic
domain Ω1. This choice is predicated under the assumption that Ω1 has features of
the solution not resolvable by a continuum model. However, for the purposes of our
analysis in this section, we will refer to the global finite element model (3.2), which
is defined over all of Ω, including Ω1. This is done only for the purposes of error and
convergence analysis, and (as we will see later) the finite element solution over Ω1

does not appear in our final error or convergence results.
For clarity, we explain the details of the alternating Schwarz domain decomposi-

tion method here. As is well known, the classical alternating Schwarz algorithm can
be recast as a projection method [31]. To assist our analysis, we begin by recasting
Algorithm 1 as a projection method. Let us define the operators R1 and R2 such
that the stiffness matrix associated with subdomain Ωa in our coupled model (see
Figure 2.3) can be written as

Ka = RT
1 K

a
gR1,

and the stiffness matrix for the finite element subdomain Ωfe in our coupled problem
(see Figure 2.3) can be written as

Kfe = RT
2 K

fe
g R2.

Here R1 ∈ R
n×(n1+n4+n3) and R2 ∈ R

n×(n3+n5+n2) are extension operators, and RT
1

and RT
2 are the corresponding restriction operators. Given the atom/node numberings

we have defined, they can be written as

R1 =

⎡
⎢⎢⎢⎢⎣

I 0 0
0 0 0
0 I 0
0 0 I
0 0 0

⎤
⎥⎥⎥⎥⎦ , R2 =

⎡
⎢⎢⎢⎢⎣

0 0 0
I 0 0
0 I 0
0 0 0
0 0 I

⎤
⎥⎥⎥⎥⎦ ,

where I represents an identity matrix of appropriate dimension and 0 a zero matrix of
appropriate dimension. We may then rewrite the core of Algorithm 1 as the following
two steps:

uk+1/2 = uk + R1(K
a)−1RT

1 (fa
g −Ka

guk),

uk+1 = uk+1/2 + R2(K
fe)−1RT

2 (ffe
g −Kfe

g uk+1/2),

where uk is the solution to the coupled problem at iteration k, and u0 is initialized in
steps 1 and 2 of Algorithm 1. Substituting in (3.1) and (3.2) gives

uk+1/2 = uk + R1(K
a)−1RT

1 K
a
g (ua

g − uk) = uk + P a
(
ua
g − uk

)
,

uk+1 = uk+1/2 + R2(K
fe)−1RT

2 K
fe
g (ufe

g − uk+1/2) = uk+1/2 + P fe
(
ufe
g − uk+1/2

)
,
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where P a ≡ R1(K
a)−1RT

1 K
a
g and P fe ≡ R2(K

fe)−1RT
2 K

fe
g are projection matrices.

In particular, P a is a Ka
g -orthogonal projector onto the space R (R1), and P fe is

a Kfe
g -orthogonal projector onto the space R (R2), where R denotes the range of a

matrix.
We are interested in conditions for which our coupled model recovers the global

atomistic solution ua
g . To that end, we define the error at step k with respect to the

global atomistic solution as eak ≡ uk − ua
g . Further, we define the vector d such that

ufe
g = ua

g + d. That is, d may be viewed as the difference of the global finite element
and global atomistic solutions.

Combining the two-step algorithm above into a single step and substituting in
our definition for d gives

uk+1 =
[
I − (P a + P fe − P feP a)

]
uk + (P a + P fe − P feP a)ua

g + P fed.

Now subtract ua
g from both sides to give

(3.3) eak+1 =
[
I − (P a + P fe − P feP a)

]
eak + P fed.

The rightmost term arises due to the “discrepancies” between the atomistic and
the continuum models. In some simple cases, e.g., assuming nearest-neighbor inter-
actions only and a linear spring model, this term vanishes. However, it is clear that,
for most atomistic models of interest, this term will not disappear.

Let us suppose that the iteration operator has the eigendecomposition V ΛV −1.
Upon substitution, we have

eak+1 = V Λk+1V −1ea0 +

k∑
i=0

V ΛiV −1
(
P fed

)
.

Let σ be the spectral radius of Λ, and let κ(V ) ≡ ‖V ‖
∥∥V −1

∥∥ denote the condition
number of the eigenvector matrix V , where ‖·‖ denotes the 2-norm. Taking norms,
we have

∥∥eak+1

∥∥ ≤ κ(V ) ‖ea0‖σk+1 + κ(V )
∥∥P fed

∥∥ k∑
i=0

σi

= κ(V ) ‖ea0‖σk+1 + κ(V )
∥∥P fed

∥∥ 1 − σk+1

1 − σ
.

With the preceding equation, we have just proved the following theorem.
Theorem 3.1. Assume σ 	= 1. The norm of the error with respect to the global

atomistic model at iteration k + 1 of Algorithm 1 can be bound above as

(3.4)
∥∥eak+1

∥∥ ≤ σk+1κ(V )

(
‖ea0‖ −

∥∥P fed
∥∥

1 − σ

)
+

κ(V )

1 − σ

∥∥P fed
∥∥ .

If 0 < σ < 1, then in the limit as k → ∞, the first term on the right-hand side
disappears, and the second is independent of k. Further, σ determines the convergence
rate. So, with respect to the global atomistic solution, the (nonconvergent) rightmost
term bounds our error. Note that if σ decreases with increasing overlap, we expect
faster convergence of our iterative method, and a smaller rightmost term, both of
which are incentive to increase the overlap.

We analyze these two terms separately.
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3.1. The convergent term. To analyze the convergence rate we must deter-
mine σ, which we can do by considering the block structure of the iteration operator.
We utilize analysis similar to that of Bjørstad [4]. We begin by writing out the global
stiffness matrices for the atomistic and finite element models, where the block struc-
ture of the these matrices indicates the subdomain connectivity:

Ka
g =

⎡
⎢⎢⎢⎢⎣

Ka
1,1 0 0 Ka

1,4 0
0 Ka

2,2 0 0 Ka
2,5

0 0 Ka
3,3 Ka

3,4 Ka
3,5

KaT

1,4 0 KaT

3,4 Ka
4,4 0

0 KaT

2,5 KaT

3,5 0 Ka
5,5

⎤
⎥⎥⎥⎥⎦ ,

Kfe
g =

⎡
⎢⎢⎢⎢⎢⎢⎣

Kfe
1,1 0 0 Kfe

1,4 0

0 Kfe
2,2 0 0 Kfe

2,5

0 0 Kfe
3,3 Kfe

3,4 Kfe
3,5

KfeT

1,4 0 KfeT

3,4 Kfe
4,4 0

0 KfeT

2,5 KfeT

3,5 0 Kfe
5,5

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Before writing down the projectors we define specific Schur complement operators
that will occur frequently:

Sa
4 = Ka

4,4 −KaT

1,4(K
a
1,1)

−1Ka
1,4 −KaT

3,4(K
a
3,3)

−1Ka
3,4,

Sfe
5 = Kfe

5,5 −KfeT

2,5 (Kfe
2,2)

−1Kfe
2,5 −KfeT

3,5 (Kfe
3,3)

−1Kfe
3,5.

Applying the definition of the projectors, we see that they take the form

P a ≡ RT
2 (Kfe)−1R2K

fe =

⎡
⎢⎢⎢⎢⎣

I 0 0 0 P a
1,5

0 0 0 0 0
0 0 I 0 P a

3,5

0 0 0 I P a
4,5

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

P fe ≡ RT
1 (Ka)−1R1K

a =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 I 0 P fe
2,4 0

0 0 I P fe
3,4 0

0 0 0 0 0

0 0 0 P fe
5,4 I

⎤
⎥⎥⎥⎥⎥⎦ ,

where the block submatrices take the form

P a
1,5 = (Ka

1,1)
−1Ka

1,4(S
a
4 )−1KaT

3,4(K
a
3,3)

−1Ka
3,5,

P a
3,5 = (Ka

3,3)
−1

(
Ka

3,5 + Ka
3,4(S

a
4 )−1KaT

3,4(K
a
3,3)

−1Ka
3,5

)
,

P a
4,5 = −(Sa

4 )−1KaT

3,4(K
a
3,3)

−1Ka
3,5,

P fe
2,4 = (Kfe

2,2)
−1Kfe

2,5(S
fe
5 )−1KfeT

3,5 (Kfe
3,3)

−1Kfe
3,4,

P fe
3,4 = (Kfe

3,3)
−1

(
Kfe

3,4 + Kfe
3,5(S

fe
5 )−1KfeT

3,5 (Kfe
3,3)

−1Kfe
3,4

)
,

P fe
5,4 = −(Sfe

5 )−1KfeT

3,5 (Kfe
3,3)

−1Kfe
3,4.
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We now have that

P a + P fe − P feP a =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0 P a
1,5

0 I 0 0 −P fe
2,4P

a
4,5

0 0 I 0 −P fe
3,4P

a
4,5

0 0 0 I P a
4,5

0 0 0 0 I − P fe
5,4P

a
4,5

⎤
⎥⎥⎥⎥⎥⎦ .

Clearly, the iteration operator I − (P a + P fe − P feP a) is a block upper-triangular
matrix with zero blocks on all but the last entry of the diagonal, which is equal to
P fe

5,4P
a
4,5. Thus, we have that σ is the maximum magnitude eigenvalue of P fe

5,4P
a
4,5.

In general, 0 < σ so long as the atomistic lattice is stable and a stable finite
element formulation is used. From practical experience, one may expect that if the
finite element formulation in Ω \ Ω1 can be derived from the atomistic model in the
manner suggested by Figure 2.2, then σ < 1. We give more detail in Appendix A on
situations where σ < 1.

3.2. The nonconvergent term. To analyze the behavior of the rightmost term
in our bound, we must consider ‖P fed‖. As we have broken our global domain into
five subdomains Ω1, . . . ,Ω5, we also break the vector d into five subvectors such that

d =
[
dT1 , d

T
2 , d

T
3 , d

T
4 , d

T
5

]T
.

In general, the domain Ω1 was chosen to be purely atomistic in the coupled model
because a finite element solution in this domain does not produce acceptable results.
Thus, we expect the finite element solution and the atomistic solution in the domain
Ω1 to be different. That is, we expect that d1 	= 0. Fortunately, this does not prohibit
our coupled model from recovering the global atomistic solution. For this, a key role
is played by the structure P fe. This operator acts only on the portions of the global
problem that are in the finite element domain Ωfe and ignores the purely atomistic
subdomain Ω1. As a result,

∥∥P fed
∥∥2

2
=

∥∥∥d2 + P fe
2,4d4

∥∥∥2

+
∥∥∥d3 + P fe

3,4d4

∥∥∥2

+
∥∥∥P fe

5,4d4 + d5

∥∥∥2

∼ ‖d2‖2
+ ‖d3‖2

+ ‖d4‖2
+ ‖d5‖2

;

i.e., the value of d1 (the difference of the atomistic and continuum solutions in the
purely atomistic subdomain Ω1) does not appear in the nonconvergent term.

We will see in the next section that the error of the converged solution depends
not only on the location but also the size of the pad region.

We can easily identify one situation when we expect ‖P fed‖ = 0. In particular,
we will have di = 0, i = 2, . . . , 5, if the atomistic and finite element displacements are
identical in domains Ω2, . . .Ω5. This means that the displacement of the macroscopic
model (the finite element model) matches exactly the displacement of the microscopic
model (the atomistic model) in the domain Ωfe.

Remark 3.2. We expect that ‖P fed‖ = 0 if the deformation in Ωfe is a Cauchy–
Born deformation, regardless of the deformation in Ω1.

In particular, our linear spring model and our choice of finite element shape
functions can both reproduce exactly a constant strain solution under an applied
constant stress. In finite element parlance, recovering a constant strain solution given
an applied constant stress satisfies a patch test [35]. We consider this specific example
in section 4.2.
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Ωa Ωfe

Ω1 Ω4 Ω3 Ω5 Ω2

Fig. 4.1. The overlap region for the one-dimensional coupled model consists of domains Ω4,
Ω3, and Ω5. In this figure, circles represent atoms and squares finite element nodes. When solving
in domain Ωa, the atoms in domain Ω5 are held fixed. When solving in domain Ωfe, the finite
element nodes in domain Ω4 are held fixed.

4. Numerical results. The results in the previous section are general in that
they do not depend on the number of dimensions of the model, the shape of the atom-
istic or finite element subdomains, the finite element discretization, or the specifics of
the mass-spring model used in the atomistic subdomain. To demonstrate theoretical
results, we will propose a specific one-dimensional model and then analyze it.

4.1. A one-dimensional overlapping Schwarz model. Here we propose
one-dimensional atomistic, finite element, and coupled models based on the one-
dimensional models described in [9]. In particular, Algorithm 1 applied to the model
we describe below is essentially identical to the one-dimensional FEAt example from
[9]. Our global atomistic model is represented by a mass-spring system of 105 atoms
with lattice constant α, where nearest-neighbor atoms are bonded by a spring of stiff-
ness ka1 and second-neighbor atoms are bonded by a spring of stiffness ka2 . (Hence,
we have a second-nearest neighbor model with r = 2.) We number the atoms/nodes
from left to right, 1, . . . , 105. The two leftmost and two rightmost atoms will be held
fixed in all cases. Our global finite element model will consist of 104 truss elements,
where the two rightmost and two leftmost nodes are held fixed; i.e., there we impose
Dirichlet boundary conditions. In particular, the fixed atom positions of the atom-
istic model and fixed displacements of the Dirichlet finite element nodes will be set
consistently. Each finite element has an equilibrium length α and Young’s modulus
such that the effective spring constant is kfe. Under a uniform deformation field, we
would like the strain energies of the two models to match, so we fix kfe = 4ka1 + ka2 .
We construct a coupled model by overlapping an atomistic subdomain with a finite
element subdomain, as discussed in section 2. Domain Ω1 denotes a purely atomistic
subdomain, domain Ω2 a purely finite element subdomain, and domains Ω3, Ω4, and
Ω5 the subdomains in the overlap region. When solving for new atom positions in
the atomistic subdomain Ωa, we hold the atoms in domain Ω5 fixed. Since r = 2 for
our model, we have only two atoms in domain Ω4. In general, the number of fixed-
displacement atoms must be large enough to avoid the appearance of surface effects in
the overlap region. The subdomain boundaries here are artificial, and surface effects
are nonphysical. Likewise, when solving for new node positions in the finite element
subdomain Ωfe, we hold the nodes in domain Ω4 fixed. As our finite element shape
functions have only local support, we require only one Dirichlet node in subdomain
Ω4. However, to avoid coupling between domains Ω1 and Ω3 in the atomistic model,
instead we define Ω4 to include two atoms/nodes. The region around the interface is
depicted in Figure 4.1.

To study how overlap affects convergence, we define an overlap parameter δ, as
shown in Figure 4.2. Let the middle atom/node in the coupled model be denoted as
I. An overlap of δ = 1 specifies one overlapping atom/node to the left and right of
atom/node I, an overlap of δ = 2 specifies two overlapping atoms/nodes to the left
and right of atom/node I, etc. Recall that we are considering an atomistic model
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δ = 1

δ = 2

δ = 3

I − 4 I − 3 I − 2 I − 1 I I + 1 I + 2 I + 3 I + 4

Fig. 4.2. The overlap region for the one-dimensional coupled model for various values of overlap
δ. Let circles denote atoms and squares denote finite element nodes, with the middle atom/node
as I.

Table 4.1

Data for section 4.2: constant strain.

δ Convergence σ Num.
∥∥u− ua

g

∥∥ 2nd term
∥∥P fed

∥∥
rate iterations from (3.4)

2 .9195 .9195 287 1.09 × 10−12 3.11 × 101 4.16 × 10−17

3 .8501 .8501 153 5.37 × 10−13 1.79 × 10−2 4.48 × 10−17

4 .7859 .7859 106 2.90 × 10−13 7.82 × 10−4 4.82 × 10−17

5 .7264 .7264 93 2.20 × 10−13 1.69 × 10−5 4.57 × 10−17

with r = 2 (nearest-neighbor and second-nearest-neighbor coupling). As a result, we
will consider only configurations where domain Ω3 has at least two atoms in order to
avoid direct coupling between domains Ω4 and Ω5. This means we will consider only
overlap values of δ ≥ 2.

Referring to Figure 2.2, we note that the particular one-dimensional mass-spring
model we use can easily be shown to be a finite difference discretization with a par-
ticular stencil of the equation

− d

dx

(
kfe

du

dx

)
= f.

In the limit as the lattice constant goes to zero, this PDE is recovered. Further, our
finite element model is a finite element discretization of the same PDE and likewise
recovers this PDE in the limit as the mesh spacing goes to zero.

4.2. Constant strain. We first examine the ability of the coupled model to
reproduce a constant-strain solution. We begin by setting two leftmost atoms and
the two rightmost finite element nodes to have a position/displacement consistent
with a constant strain of 0.01. We also fix the position of the leftmost atom at the
origin. We solved the coupled model using Algorithm 1 with a convergence tolerance
of ε = 1.0× 10−13 for several values of δ. Convergence data is shown in Table 4.1. A
plot of the computed strain solution for the coupled model is shown in Figure 4.3(a),
showing a constant strain throughout the domain, including the overlap region. For
these boundary conditions, ‖d‖ = 9.2×10−17. In particular, this means ‖d2‖ = ‖d3‖ =
‖d4‖ = ‖d5‖ = 0 to within machine precision (see the last column of Table 4.1), which
is precisely the case where the coupled model can recover the global atomistic solution.
The bound (3.4) is plotted in Figure 4.3(b).

One item of note is that κ(V ) (the condition number of the eigenvector matrix)
is quite large. The iteration operator is nonsymmetric, so this is not unexpected.
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Fig. 4.3. Plots for section 4.2: constant strain.

Table 4.2

Data for section 4.3: point force in pure atomistic domain Ω1.

δ Convergence σ Num.
∥∥u− ua

g

∥∥ 2nd term
∥∥P fed

∥∥
rate iterations from (3.4)

2 .9195 .9195 288 1.12 × 10−12 4.24 × 101 5.65 × 10−17

3 .8501 .8501 154 5.06 × 10−13 2.49 × 10−2 2.49 × 10−17

4 .7859 .7859 106 3.20 × 10−13 9.69 × 10−4 9.69 × 10−17

5 .7264 .7264 81 2.42 × 10−13 2.11 × 10−5 2.11 × 10−17

In this example, the bound (3.4) is useful in that it predicts when the error can be
zero, even though it is not numerically tight. One alternative approach is to modify
Algorithm 1 to a symmetric alternating Schwarz algorithm. In this algorithm, the
iteration operator becomes symmetric, thus forcing its eigenvector matrix to have a
condition number of one. Although producing a tighter bound, this symmetric version
of the algorithm is less useful in practice, as it is more expensive per iteration.

4.3. A point force in the atomistic subdomain. In this section, we consider
applying a point force to atom 25 in the atomistic subdomain and study how well the
global atomistic solution is recovered by the coupled model.

To set the positions of the fixed atoms and nodes in the finite element model,
we proceed by attempting to match the local strains at the ends with those of a
global finite element model. We first solve the global finite element problem setting
the four Dirichlet nodes such that a constant strain of 0.01 results in the absence of
external forces. We then fix the two leftmost atom and two rightmost finite element
node positions to match those of the global finite element model. Without loss of
generality, the leftmost atom is always held fixed at the origin.

We solved the coupled model using Algorithm 1 with a convergence tolerance of
ε = 1.0×10−13 for several values of δ. Convergence data is shown in Table 4.2. A plot
of the computed strain for the coupled model is shown in Figure 4.4(a), showing a
jump in the strain at the point of application of the force. The bound (3.4) is plotted
in Figure 4.4(b).

For this case, ‖d‖ ≈ 9.1 × 10−6. Although ‖d1‖ 	= 0, we have ‖d2‖ = ‖d3‖ =
‖d4‖ = ‖d5‖ = 0 to within machine precision (see the last column of Table 4.2),
allowing the coupled model to again recover the global atomistic solution. That
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Fig. 4.4. Plots for section 4.3: point force in pure atomistic domain Ω1.

Table 4.3

Data for section 4.4: point force in overlap domain Ω3.

δ Convergence σ Num.
∥∥u− ua

g

∥∥ 2nd term
∥∥P fed

∥∥
rate iterations from (3.4)

2 .9195 .9195 290 1.77 × 10−5 8.92 × 1012 1.19 × 10−5

3 .8501 .8501 154 1.66 × 10−6 3.59 × 109 9.00 × 10−6

4 .7859 .7859 106 2.02 × 10−7 1.48 × 108 9.13 × 10−6

5 .7264 .7264 82 2.78 × 10−8 3.36 × 106 9.10 × 10−6

is, the atomistic and finite element models disagree only in Ω1, a domain we have
designated to be a purely atomistic domain, and so our coupled model will recover
the global atomistic solution.

4.4. A point force in the overlap region. In this section, we apply a point
force to atom I in the coupled model, essentially the worst location to apply a force,
and study how well the global atomistic solution is recovered by the coupled model.

We set the fixed-displacement atoms and nodes as in the previous section. We
then solved the coupled model using Algorithm 1 with a convergence tolerance of
ε = 1.0 × 10−13 for several values of δ. Convergence data is shown in Table 4.3. A
plot of the computed strain near the pad region is in Figure 4.5 for several values of δ.
Observe that the quality of the solution improves as δ increases, meaning that the error
depends not only on the placement of the overlap region (with respect to the location
of the point force) but also varies with the size of the overlap. This result is in sharp
contrast to convergence results for alternating Schwarz applied to a standard finite
element discretization of an elliptic PDE; see, for example, [34, 31]. In this example
we have a nonuniform displacement field in the overlap region. Correspondingly, we
notice that ‖P fed‖ in Table 4.3 does not decrease below a minimum value and is
much larger than ‖P fed‖ in Tables 4.1 and 4.2. The nonconvergent term in (3.4) is
not small in this example, and so the error in the converged solution is larger as well.

4.5. Coupling Lennard-Jones and finite element models. In this section,
we couple a one-dimensional Lennard-Jones atomistic model [20] with our finite el-
ement model and study how well the global atomistic solution is recovered by the
coupled model. The well-known Lennard-Jones potential can be written as
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Fig. 4.5. Plots for section 4.4: point force in overlap domain Ω3. Computed strains are shown
for the global atomistic model (dashed line) and the coupled model (solid line). The δ = 5 strain
plot (not shown) is visually indistinguishable from the δ = 4 strain plot.

Table 4.4

Data for section 4.5: Coupling a Lennard-Jones and finite element model with a point force in
pure atomistic domain Ω1.

δ Convergence Num.
∥∥u− ua

g

∥∥
rate iterations

2 .9258 241 1.92 × 10−5

3 .8569 126 1.92 × 10−5

4 .7930 87 1.92 × 10−5

5 .7336 67 1.92 × 10−5

Uij = 4ε

((
s

rij

)12

−
(

s

rij

)6
)
,

where rij = |xi − xj | is the distance between two atoms. For this model, we fixed
ε = 1/4, s = 2 3

√
2 and set a lattice constant α = 6

√
2s. Additionally, we set a cutoff of

2.5s.
To match the Lennard-Jones with our finite element model, we linearized the

Lennard-Jones force and set the stiffness kfe to match the linearized Lennard-Jones
force, so that both models will agree to first order, and hence only for small deforma-
tions.

We set the fixed-displacement atoms and nodes as in the previous section and
apply a point force to atom 25, just as in section 4.3. We then solve the coupled model
using Algorithm 1 with a convergence tolerance of ε = 1.0 × 10−13 for several values
of δ. Convergence data is shown in Table 4.4. We observe an increase in convergence
rate with increasing δ, just as when we coupled with a mass-spring model. We also
observe that the absolute error is essentially constant with δ, which we expect, given
that the point force is applied far from the overlap region.

5. Conclusions. In this paper we analyzed an important class of atomistic/
continuum coupling methods that are characterized by a “back-and-forth” iteration
process between overlapping atomistic and continuum subdomains. These methods
do not rely on a single, global energy functional, and so they avoid ghost forces. Our
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analysis takes advantage of the fact that such methods may be placed within the
framework of the alternating Schwarz domain decomposition algorithm.

However, in contrast to classical alternating Schwarz applied to a single PDE
model, we showed that the error in the atomistic/continuum version of this method
consists of convergent and nonconvergent parts. As a result, unlike the classical case,
in the atomistic/continuum setting the error can depend not only on the size but also
the placement of the overlap region with respect to external applied forces. Among
other things this implies that the atomistic/continuum solution computed in this way
depends on the size of the overlap region. In particular, based on our experiments, it
is clear the overlap region should be placed sufficiently far away from regions where
the continuum model is not valid.

In closing, we observe that many improvements have been made to the classical
alternating Schwarz domain decomposition algorithm, including acceleration by mod-
ification of the transmission conditions between subdomains [14]. A next logical step
is to extend these acceleration techniques to the atomistic/continuum setting.

Appendix A. A class of problems for which σ < 1. In this section we
consider a large class of problems for which we can prove σ < 1, showing that the first
term on the right-hand side of (3.4) (the “convergent term” discussed in section 3.1)
disappears in the limit as k → ∞. Sufficient (but not necessary) conditions to satisfy
the assumptions of Theorem A.1 on Kfe

g , Ka
g from (3.1) and (3.2) are that Ka

g is
a mass-spring system,4 that a sufficiently regular finite element mesh was used in
generating Kfe

g , and that Ka
g , Kfe

g are compatible models.
Before we present Theorem A.1, we present some notation. If the entries of the

matrix A are nonnegative (positive), we say that the matrix is nonnegative (positive)
and denote this as A ≥ O (A > O), and similarly for vectors. A matrix A is a
nonsingular M -matrix if its off-diagonal elements are nonpositive and it is monotone,
i.e., A−1 ≥ O [17]. Given a positive vector w > O, the weighted max-norm for a
vector y is defined as

‖y‖w = max
j

∣∣∣∣ 1

wj
yj

∣∣∣∣ ,
and the corresponding matrix norm is defined as

‖A‖w = max
i

(|A|w)i
wi

.

For A ≥ O, Aw < w implies ‖A‖w < 1 [2]. In the following, we will denote the
Schwarz iteration operator from (3.3) as T , where we write T as

T = (I − P fe)(I − P a) = T feT a.

Theorem A.1. Let Kfe
g and Ka

g in (3.1) and (3.2) be M -matrices, with Kfe
g (Ka

g )−1

≥ O. Let σ be the spectral radius of the Schwarz operator from (3.4). Then for any
vector w = (Ka

g )−1e with e ≥ O, σ ≤ ‖T‖w < 1.
The proof below is a modification of [2, Lemma 3.1].

4The mass-spring system may be viewed as a linearization of a more complicated potential. Given
the choice of potential and positions of the particles, if the nearest-neighbor distance is in the convex
region of the potential and nearest-neighbor interactions dominate, the resulting matrix Ka

g will be
symmetric positive definite and thus an M-matrix, satisfying the conditions of Theorem A.1. See [24]
for further details.
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Proof. We wish to show that σ < 1, where σ is the spectral radius of T . Given
that σ ≤ ‖T‖w [2, Lemma 3.1], we accomplish this by proving T ≥ O and Tw ≤ w,
thus demonstrating ‖T‖w < 1.

To show T ≥ O, we observe from [2, Lemma 3.1] that T fe ≥ O, T a ≥ O, and
thus T ≥ O.

Next, we show that Tw < w with w = (Ka
g )−1e, where e > O. We consider

the first step (application of T a) separately from the second step (application of
T fe). In the following, let S1 denote the indices of the degrees of freedom in Ωa

g,1,

and similarly let S2 denote the indices of the degrees of freedom in Ωfe
g,2, following

Figure 2.3. S1 ∪ S2 contains all the degrees of freedom for the global model, and
S1 ∩ S2 contains the degrees of freedom in Ω3 ∪ Ω4 ∪ Ω5.

Let w1 = T aw. From [2, Lemma 3.1], we have that 0 ≤ w1 ≤ w, with strict
inequality in the components corresponding to S1. Writing (w1)i as the ith component
of w1, we have

(w1)i

{
= wi if i /∈ S1,
< wi if i ∈ S1.

Now let w2 = T few1, and observe that

w2 = T few1 = T fe(w1 − w + w)

= T fe(w1 − w) + T few.

For i ∈ S2, the ith component of w2 can be written as

(w2)i =
[
T fe(w1 − w)

]
i
+
[
w −R2(K

fe
g )−1RT

2 K
fe
g (Ka

g )−1e
]
i
,

where we have used the definition of P fe from section 3. Because T fe ≥ O, w1 −w ≤
O, R2(K

fe
g )−1RT

2 ≥ O [2, Proposition 2.3], Kfe
g (Ka

g )−1 ≥ O, and e > O, we have
shown that w2 ≤ w, and in the components corresponding to S2 the inequality is
strict. We can again have

(w2)i

{
= (w1)i ≤ wi if i /∈ S2,
< wi if i ∈ S2.

Because S1 ∪S2 contains all degrees of freedom, we conclude that Tw < w. It follows
that ‖T‖w < 1, and therefore σ < 1.
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