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Parametrised evolution equation

L
w

u(x, t; p)

Solve
u(x,0; ) == uo(x; )
Oeu(x, t; p) — Llu(x,t; w)] =0
plus boundary conditions. Solutions u(-, t; i) live in a (Sobolev) space W for each
t € [0, Tmax]-
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Discrete simulations (FV, FE, DG, ...)

c L, Le, P
w Wh
ulx ti) | {UR( N

Solve
Ui (1) := Pluo(x; )]

Ly, AEYUET] = Le(p, AE)[UE] =0,

with At = % Solutions build trajectories in high dimensional discrete function space
WhH.

WhH

March 3, 2012 3 /16



Discrete simulations (FV, FE, DG, ...)

c L, Le, P
w Wh
ulx ti) | {UR( N

Solve
Ui (1) := Pluo(x; )]

Ly, AEYUET] = Le(p, AE)[UE] =0,

with At = % Solutions build trajectories in high dimensional discrete function space
WhH.

{Uk (W) ueP 0<k<k}

March 3, 2012 3 /16



Discrete simulations (FV, FE, DG, ...)

c L, Le, P
w Wh
ulx ti) | {UR( N

Solve
Ui (1) := Pluo(x; )]

Ly, AEYUET] = Le(p, AE)[UE] =0,

with At = % Solutions build trajectories in high dimensional discrete function space
WhH.

{Uk (W) ueP 0<k<k}

March 3, 2012 3 /16



Reduced simulations (Projection on RB space)

c L Le, P L, Le, P
W Wh Wi = span {¢n}h_,
ulx, tip) | {UR () Her {a" (1)}

Solve
a’(n) := Pluo(p)]
Li(p, At @] — Le(u, At%)[a"] = 0.

Solutions build trajectories in low dimensional discrete function space Wh.

WhH
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Reduced simulations (Projection on RB space)

L Ly, Lg, P L, Lg,P
w Wi Wy = span {pa}"_, Wi, Wo
u(x, ;1) | {US ()} {a" (1)} Un (1), s(p)

Reconstruct the solution N
k k
Un(i) =Y an(1)pn € Wh
n=1

or: Evaluate an output functional s(u).
The latter is preferable in the RB context because it is independent of any high
dimensional computations.

Wh
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Classification of evolution problems

Operator constraints

| L | Le

1 linear in space, affinely p-dependent

=1Id localized
3 | coercive, non-coercive, lin- | =1Id

ear, non-linear
4 | linear in space localized or: linear in space,
5 | localized, nonlinear affinely p-dependent

v

Revision: Affine parameter dependence(*)

An operator is called affinely decomposed if it can be written as a sum of products of
parameter dependent and parameter independent parts.
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Case 1 is discussed in [Haasdonk&Ohlberger, 2008].

Case 2 is discussed in [Haasdonk et al., 2008] and [Drohmann et al.,2009]

Case 3 is discussed in [Grepl, 2005], [Grepl et al., 2008] and [Knezevic et al., 2009]
Our focus: nonlinear and non-affinely decomposed implicit operators.

Revision: Affine parameter dependence(*)

An operator is called affinely decomposed if it can be written as a sum of products of
parameter dependent and parameter independent parts.
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Empirical interpolation

Non-affinely decomposed operators

Base functions:
y

y
1.0 - q1 1.0 - q2
Approximate an operator L(u)[U* ()] with o5 05
few point evaluations. LN / v AN
05 1.0 05 1.0
y Llu(p)](>)
|

5.0 1 L[u(p)](x2)
N

“ — Lfu(p)]

Zpm[Llu(p)]
4.0

3.0
2.0

1.0
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Empirical interpolation

Non-affinely decomposed operators = parametrised DEIM

Approximate an operator L(u)[U* ()] with
few point evaluations.

4

Empirical interpolation [Barrault et al, 2004]

o Collateral reduced basis space of
operator evaluations

W = span{L(u:)[Uf (1)1}

o Collateral reduced basis = :={& M,

of nodal base functions
@ Interpolation points xi, ..., xum.
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Empirical interpolation

Non-affinely decomposed operators = parametrised DEIM

: Base functions:
Operator evaluations y y

n o o 1.0 - q1 1.0 - q2
Interpolation is gained through exact os os
operator evaluations at the interpolation ’ ‘
. 1 X X
points such that 05 1.0 05 1.0

y Llu(p))(x1)

Zm[L()[UN(x) = D ym(1)ém(x) |

5.0 1 L[u(p)](x2)
N
N

m=1

Ym() = L()[U](xm)

— Lfu(p)]

Zpm[Llu(p)]
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Empirical interpolation

Non-affinely decomposed operators = parametrised DEIM

: Base functions:
Operator evaluations y y

n o o 1.0 - q1 1.0 - q2
Interpolation is gained through exact o5 os
operator evaluations at the interpolation ' ’
4 X X

points such that 05 1.0 05 1.0
m y Llu(p)](x1)
Im[L()[UIN(X) =D Yo (1£)Em(x) |
= 5.0 + Llu(w)](x2)
. — L[u(p)]
ym(p) = L(p)[U](xm) o Zpa[Llu()]
X y :

@ The coefficients ' can be computed 30

efficiently, if the operator is localised.
o A local version of the grid and
evaluations of the RB functions at
interpolation points need to be
precomputed in offline phase.

2.0

1.0
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Linear implicit operator

Projection of empirical interpolated L;(u)

Let U= 3" anpn be a discrete function in the reduced basis space
W = span{@n}h_;. Then

/ Li(w)[U]ipn ~
Q

‘/QIM L[(/.L) |:Zan<,0n

with quickly computable online parts and precomputed offline parts.

] )ew () =D an ym(tpn;u)/;2 Em(x)onr (x)

m=1 n=1

Note: ym is linear, because the operator L;(u) is linear in space.

.
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Linear implicit operator |l

Reduced basis scheme

With degrees of freedom a* := (af,...,a%) for k =1,..., K and affinely decomposed
operators P, Lg(u) we get the scheme
Qp
a’ = Ploj(u) =0, Li(n)a  + Z Lia“ o (u) =0,
=1 q=1
with
M
(Li(1)) 0 = Zym(wn;u)/némwn/ (1)
m=1
W

Note: Pluo()] and Le(u) are linear and affinely decomposed in this scheme, but could
be substituted easily by an empirical interpolation.
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Non-linear implicit operator

Newton method

Define the defect

Vk+1,u+1 o= Uk+1,u+1 . Uk+1,u

and solve

FI(Uk+1,V)[Vk+1,V+1] _ _L,[Uk+1,U] _ LE[Uk],

for each k =0,...,K — 1 and each Newton step v =0,..., S(k) with
Ukt .= Ykt .= kSt and F; being the Fréchet derivative of L;().
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Newton method
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Ukt .= Ykt .= kSt and F; being the Fréchet derivative of L;().

How to reduce F;?

March 3, 2012 8/ 16



Non-linear implicit operator

Newton method

FI(Uk+1,V)[Vk+1,V+1] _ _L’[Uk+1,U] _ LE[Uk],

v
Empirical interpolation of F;

@ empirical interpolation of L,

Im[Li] =) ym(U)ém

m=1

o leads to an empirical interpolation of F;(U)[V]

ZmlF(U)IVII =D " Oiym(U)vi€m =D > Biym(U)Vikm

i=1 m=1 ieT m=1

o where 7 C {1,..., H} is the smallest possible subset for which the above equation is
fulfilled. Note, that card(7) € O(M), because L; is localised.

@ {vi}tier can be evaluated efficiently in case of nodal basis of Wh.

v
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Non-linear implicit operator I

Reduced basis scheme

GA(UIl\(I+1,V)(ak+1,V+1 _ ak+1,u) _ RHS(akH’V,ak),
with A(Un) and G defined by

(AU =S Om(U)a)  and (Gnm= | enp.

i=1

The assembling of A(Un) costs O(MN - MN) and multiplication with G has costs of
O(NMN). In addition this is still independent of H.
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Convection-diffusion equation with parametrized geometry

As a test case we choose a general (maybe nonlinear) convection-diffusion-reaction
equation on parametrized geometries.

Oru(x, t; u) — V- (KVu(x, t; n)) — b- Vu(x, t; ) — ru(x, t; 0) =0 in Q(p) X [0, Trmax]-
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Convection-diffusion equation with parametrized geometry

The reduced basis space must not depend on the parameter.

Therefore, we introduce a reference geometry ) and a diffeomorphic mapping
®(p) : Q — Q(u) for every parameter.

As a test case we choose a general (maybe nonlinear) convection-diffusion-reaction
equation on parametrized geometries.

Oru(x, t; u) — V- (KVu(x, t; n)) — b- Vu(x, t;u) — ru(x, t; ) =0 in Q%) X [0, Trmax]-
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Geometry transformation

Transformed heat equation

The special case of a transformed linear heat equation with a scalar diffusion factor k()
results in a PDE with (anisotropic) diffusion, convection and a reaction term:

Oell — k(p)V - (GG*VD) + k(1)V - (v) — k(p)(V-v)a =0 in Q x [0, Trmaxl,
with notations
%= (x), (%, t) = u(d(R), t),
G(%) := DO o), v(8) == G(%) (Vz - G(%)).

~
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Finite volume scheme

Challenges

@ The geometry transformation introduces a diffusion tensor.

o For non-affine geometry transformations the discrete operators do not depend
affinely on the parameter. = Empirical interpolation of the purely explicit
discretization operator (case 2) or the implicit and explicit operators (case 4).

Numerical scheme for transformed heat equation

o Discretization with a semi-implicit finite volume scheme on a structured grid with
gradient reconstruction. [Drblikova&Mikula, 2007]

o Implicit discretization of diffusion term.
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Results

Solutions for ;1 = (0, 0) at timesteps t = 0.0, t = 0.75, t = 1.5.

Solutions for u = (0.2,0.2) at timesteps t = 0.0, t = 0.75, t = 1.5.
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Results I

L2(Q)—error dimension | time [s]
H = 40000 24.3675
o-1 vt N=7M=267 | 12224

N=7,M =800 2.0501
M=220 N =14, M = 267 1.246
M=510
10~2 N =14 M = 800 2.104
M=800
N =20,M =267 1.2707
_3 N =20, M =800 2.1127
10 N
0 5 10 15 20
Table: average time measurements on 100 test
Figure: RB error convergence on 100 test samples
samples

Number of base functions in Why: 40000
Time gain factor for online phase: ~ 10
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Summary and Outlook

@ Reduced bases allow model reduction for parametrized evolution problems

o RB framework can be applied to implicit and explicit schemes. (tested for implicit
linear operators)

o Geometry parametrization is possible for diffeomorphic reference mappings

@ Reliability through a posteriori estimators in some cases

o Improvement of methodical parts (error estimators, RB/EI generation, stability)

o Test case for schemes with non-linear implicit operators (nonlinear diffusion term)
o Application to PDE systems

o Implementation of a framework that works with efficient numerical software
packages like Dune. (c.f. poster)
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