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Reduced Basis Scenario

Desired: Many solution-snapshots uh(·; tk,µ) ∈ Wh in a discrete function spaceWh
of high dimensionH (for 0 = t0 ≤ . . . ≤ tK = T ). These snapshots are gained from
a parametrized numerical scheme (e.g. finite volume discretization) of the following
type:

uh(t0,µ) = Ph[u0(µ)] (1a)(
Id + ∆tLIh

) [
uh(tk+1,µ)

]
−
(

Id + ∆tLEh
) [
uh(tk,µ)

]
= 0 (1b)

Here, Ph is a projection operator ontoWh for an initial data function and L∗h :
Wh→Wh are (non-linear) discretization operators.
If (1b) includes non-linear terms, a Newton-Raphson method is applied.

The main ingredients for reduced basis model reduction are:

• Parameter vectors µ ∈ P in parameter space P ⊂ Rp,

• A manifoldM := {uh(·; tK,µ)|k = 0, . . . , K,µ ∈ P} ⊂ Wh of interesting solu-
tion snapshots.

High-Dimensional Discrete Simulation
Sketch of a single trajectory of solu-
tion snapshots {uh(·; tk,µ)}Kk=0 for a
certain parameter µ embedded in the
manifold M, long computation time
th and high memory consumption de-
pending on dimension H.
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M th

Idea of Reduced Basis Method

Suppose:

• Solutions for many parameters need to be computed or

• A solution for a single parameter needs to be computed fast, in less than a
critical amount of time tcrit.

Then: Reduced Basis Method

• Find a linear subspaceWred of the manifoldM by a greedy search algorithm that
minimizes the deviation E(Wred,M) = supx∈M infy∈Wred

‖x− y‖Wh
.

• The subspaceWred ⊂ Wh is called reduced basis space and has low dimension.
N � H

• Introduce two phases:

Offline Phase: Reduced Basis Generation
Sketch of the approximation of the
manifoldM by a reduced basis space
Wred, very long computation time toff
and very high memory consumption
depending on dimension N and H.
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Online Phase: Reduced Simulations
Sketch of a single trajectory of solution
snapshots {ured(·; tk,µ)}Kk=0 for a cer-
tain parameter µ. Very fast compu-
tation time tred and very low memory
consumption depending on N .

ured(tK,µ)

Wred
tred

Error Estimation
Approximation error can be controlled efficiently offline and online by a posteriori
error estimates ‖uh(·; tk,µ)− ured(·; tk,µ)‖ ≤ ηk(µ).

Amortization
Assuming, an application needs to calculate simulations for M different parame-
ters. Then model reduction with the reduced basis method pays off if

•Mtred + toffline ≤Mth or tred ≤ tcrit

Abstract

Many applications from science and en-
gineering are based on parametrized
evolution equations and depend on
time-consuming parameter studies or
need to ensure critical constraints on
the simulation time. For both set-
tings, model order reduction by the
reduced basis methods is a suitable
means to reduce computational time.
In this proceedings, we show the ap-

plicability of the reduced basis frame-
work to a finite volume scheme of
a parametrized and highly nonlinear
convection-diffusion problem with dis-
continuous solutions. The complex-
ity of the problem setting requires the
use of several new techniques like
parametrized empirical operator inter-
polation, efficient a posteriori error es-
timation and adaptive generation of re-

duced data. The latter is usually realized
by an adaptive search for base functions
in the parameter space. Common meth-
ods and effects are shortly revised in
this presentation and supplemented by
the analysis of a new strategy to adap-
tively search in the time domain for em-
pirical interpolation data.

Results

Example: Buckley–Leverett problem
Find u(t;µ) ∈ BV (Ω) ∩ L∞(Ω) ⊂ L2(Ω) fulfilling

∂tu(t;µ) +∇ · (v(u;µ)u(t;µ))

−∇ · (d(u;µ)∇u(t;µ)) = 0 in Ω× T (2a)
u(0;µ) = u0(µ) in Ω× {0} (2b)
u(t;µ) = udir(µ) on Γ× T (2c)

with Ω := [0, 1]2, T := [0, 0.3]
and µ = (µ1, µ2, µ3) ∈ P := [1, 2]× [0, 0.1]× [0.1, 0.4]

Data functions:

• initial data u0(µ) = clow + (1− clow)χ[0.2,0.6]×[0.25,0.75],

• velocity vector v(u;µ) = (0, 1)tf (u;µ),

• diffusion d(u;µ) = µ1
(1−u)3

µ2
f (u;µ)p′c(u;µ),

• fractional flow rate f (u;µ) = u3
µ1
·
(
u3
µ1

+
(1−u)3

µ2

)−1
,

• and capillary pressure pc(u;µ) = u−λ.

Discretization: The problem is discretized with a stan-
dard finite volume scheme comprising an explicitly computed
Engquist–Osher flux for the convective terms and an implicit

discretization of the diffusive terms. This leads to a scheme as
in (1a-b) with a Newton-Raphson method.

Figure 1: Detailed simulation solution snap-
shots at time instants t = 0.0 t = 0.1, t = 0.3
and for different parameters µ = (0, 0.1, 0.4)
and µ = (2, 0.1, 0.4). The last column shows
the reduced solution on cross-sections at y =
0.5 for the time instants t = 0.0 (solid line),
t = 0.1 (dotted line), t = 0.3 (dashed line).
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Table 1: Comparison of the number of bases,
the reduced basis sizes averaged over sub-
intervals, offline time, averaged online re-
duced simulation times and maximum errors.
The average online run-times and maximum
errors are obtained from 20 simulations with
randomly selected parameters µ.

adaptation no. of bases ø-dim(CRB) offline time[h] ø-runtime[s] max. error

no 1 350 1.47 6.79 5.88 · 10−4

yes, cmin = 5 11 223.09 2.08 4.06 5.80 · 10−4

yes, cmin = 1 26 198.42 8.40 3.38 5.75 · 10−4

Figure 2: Illustration of basis sizes on time
intervals after adaptation with (a) cmin = 5
and (b) cmin = 1. Plot (c) illustrates the error
decrease during generation of bases on three
intervals and for a single basis without adap-
tation. 0 0.1 0.2 0.3
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Empirical Operator Interpolation

In the online phase, the discretization operators need to be efficiently computable,
i.e. with complexity independent of the high dimension H. Therefore, we want
to interpolate operator evaluations in a low dimensional collateral reduced basis
(CRB) spaceWM ⊂ Wh with few point evaluations at the so-called “magic points”
as proposed in [2].
So for each operator Lh, we need a further interpolation operator IM : Wh → WM
computing exact evaluations IM [Lh[vh]] (xm) = Lh[vh](xm) at interpolation points
xm,m = 1, . . . ,M .
The following illustration shows how the interpolation with two local operator eval-
uations in a CRB space of dimension two.

Base functions ofWM :
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With empirical interpolation, the numerical scheme (1a-b) can be reduced to a low
dimensional one for online simulations:

ured(t0,µ) = Pred[u0(µ)] (3a)(
Id + ∆tLIred

) [
ured(tk+1,µ)

]
−
(

Id + ∆tLEred

) [
ured(tk,µ)

]
= 0 (3b)

with projection operator Pred :Wh→Wred

and reduced operators LI/Ered = Pred ◦ IM ◦ L
I/E
h

Adaptive Basis Generation

Both the RB and CRB spaces are generated during the offline phase by greedy algo-
rithms iteratively adding basis functions. The PODGREEDY algorithm for RB genera-
tion and the EIDETAILED algorithm for are described in the proceedings paper.
For complex manifoldsM the basis spaces can become very big reducing the model
reduction effects. Therefore, it is sometimes desirable to produce different bases for
subsets ofM.
In this presentation we propose the following algorithm producing different CRB
spacesWKM and magic points for sub-intervals K ⊂ T of the time interval.

procedure TIMESLICEDEI(Winit,K, LKtrain)

WM ← EIDETAILED(Winit, L
K
train,Mmax, εtol)

if εtol reached then
Mk ←M andWk

Mk ←WM for all k ∈ K.
else if card(K) ≤ 2cmin then
Wk
Mk ← EIDETAILED(WM , L

K
train,∞, εtol) for all k ∈ K.

else % maximum number of extensions Mmax reached
K1,K2←SPLITTIMEINTERVAL(K,WM )
TIMESLICEDEI(WK1

M , LK1

train)

TIMESLICEDEI(WK2

M , LK2

train)
end if

end procedure

The number of different bases produced can be controlled by constant cmin for the
miminum size of sub-intervals K.
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