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1. Introduction

Preparing applications for a transition from petascale to exascale systems will
require a very large investment in several areas of software research and
development. The introduction of manycore nodes, the abundance of parallelism,
an increase in system faults (including soft errors) and a complicated, multi-
component software environment are some of the most challenging issues we face.
In this paper we address four topics we believe to be the most the challenging issues
and therefore the greatest opportunities for making effective next-generation
scalable applications.

2. Parallel Programming Transformation

The first and foremost barrier to optimal use of extreme scale computers is the
required transformation of parallel programming strategies. There is mounting
evidence that optimal parallel applications for scalable manycore computer systems
will rely on MPI for inter-node parallelism, but will need to introduce large-volume
functional parallelism and SIMD vectorization to effectively use the manycore node.
Vectorization is the job of the compiler, with a little help from the programmer via
pragmas and directives. The real issue is that presently there is no obvious parallel
programming model for implementing the middle layer of parallelism. Current
standards such as OpenMP, Pthreads and UPC are not designed for manycore nodes.
CUDA, RapidMind and related products target manycore nodes but are proprietary.
OpenCL is an emerging standard but is not really a user-oriented interface, and will
likely not provide optimal performance (e.g., in comparison to CUDA on GPUs).

However, even without an emerging programming model for manycore, there is a
vast amount of work required to prepare existing applications for manycore nodes.
Two major tasks are (i) reducing bandwidth requirements as much as possible,
primarily by introducing the use of mixed precision, storing data in 32-bit arrays
wherever possible, and (ii) rewriting low-level kernels as stateless functions with
large enough granularity to keep a SIMD core busy, and small enough that there is a
large volume of simultaneous function calls to execute.

Application developers can
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Thread Building Blocks, but a manycore programming model will need to emerge in
the near future.

In many areas of science and engineering, solving a single problem with given input
conditions, often called the forward problem, is sufficiently challenging, and higher
forward problem fidelity is the highest priority for scalable computing. However, as
the fidelity of the forward problem becomes sufficiently good, it becomes possible
and imperative to study parameter sensitivities, quantify uncertainties and
automatically compute an optimal solution over a range of parameter values.

All of these advanced modeling and simulation techniques quickly increase problem
size and parallelism—often by orders of magnitude—and large problems can easily
exceed the computing capacity of our largest systems. The simplest of these
approaches are “black box” in nature and do not require a true peta/exascale system
(instead requiring a cluster of tera/petascale systems). However, more advanced
methods (often called embedded methods) rely on a tightly coupled aggregation of
forward problems and require a true peta/exascale system. The challenge with
embedded methods is that they require the transformation of an application into a
“subroutine” because embedded methods need to call the forward solve as a
function. Most applications were not designed with this mindset, so this
transformation will be challenging. Furthermore, many of these approaches assume
a smoothly varying nonlinear function, which is often not the case in practice. Some
functions are inherently non-smooth. Others are implemented in such a way that
function evaluations involve table lookups, or ad hoc evaluation techniques. Such
functions can often be rewritten to improve smoothness.

If hardware fault predictions are accurate, exascale systems will have very high fault
rates and will in fact be in a constant state of decay. “All nodes up and running,” our
current sense of a well-functioning scalable system, will not be feasible. Instead we
will always have a portion of the machine that is down, a portion that is failing and
perhaps producing faulty results, another that is coming back to life and a final,
hopefully large, portion that is computing fast and accurate results.

Our current hardware and software environments are not well prepared for this
kind of “stable” system. In fact, the only reliable, portable resilience mechanism we
have is checkpoint-restart. Although there have been many research efforts in fault
tolerance, much of this work has been focused on a single layer in the hardware and
software stack, without sufficient consideration of the whole set of requirements.
One of the biggest needs we have in resilient computing research is an increased
effort to include the full vertical scope of the software and hardware stack into our
design discussions. Furthermore we need a full-featured environment to probe the
system, make decisions based on system state and recover from system faults, both



hard and soft. Without a dramatic improvement in this environment, we face the
very real risk that application developers will reject exascale systems in favor of
smaller, more reliable systems that provide a better overall throughput.

Regardless of how unreliable a system is, from an application developer’s
perspective there has to be some way to perform reliable computations. This does
not mean that every computation must be reliable, but that certain, perhaps higher
cost, computations and their input and resulting data are highly reliable. Without
this kind of capability, it becomes extremely difficult to provide any kind of
verifiable result. An application needs the ability to declare certain ranges of data as
highly reliable. Furthermore, it needs to know that certain computations have
completed correctly or, if not, have the ability to react to faulty or interrupted
computations. If the runtime environment can provide these two features, we can
develop algorithms that will be reliable on exascale systems.

The CSE software community, by most accounts, has been slow to adopt formal
software engineering practices. Although a lot of high quality software has been
developed without formal practices, the demands of collaborative development,
multi-code environments and large collective teams require more attention to the
benefits that formal practices can provide.

Typically, single-physics CSE application and library software efforts naturally
involve a small team of researchers who work closely with each other on a daily
basis. However, advanced CSE projects require a coordinated effort of dozens or
more researchers who, although contributing to a larger effort, continue to work in
small teams on their portion of the project. The Trilinos project, as one example of a
“project of projects,” has used a kind of “federalist” approach to addressing these
competing realities. We have formally defined a “package” to be a collection of
related functionality developed by a small team with certain rights and
responsibilities in the larger Trilinos framework.

This basic approach has enabled a great deal of local autonomy in decision-making,
allowing us to tolerate and appreciate a variety software research and development
styles, and team cultures. We can handle modest redundancy in software
functionality and adapt to change in many ways. At the same time, this approach
also provides a global interaction that promotes a variety of desirable outcomes: (i)
cross-fertilization of ideas, techniques and tools across package teams, (ii) adoption
of “best practices” from one package by other packages, (iii) fostering of trust among
disparate groups (iv) software modularity that is naturally enforce by package and
team boundaries and (v) well-defined interfaces between packages for
interoperability.

One important factor that improves the effectiveness of the Trilinos architecture is
the constant focus on improving software engineering practices and processes. The



philosophy we promote is that we spend time on improving software engineering so
that we can spend less time on software development and maintenance and more
time on science and engineering. This emphasis has two major impacts on our
efforts: (i) better software engineering in the project makes for better software so
that package teams are willing to use each other’s software and (ii) discussions of
incompatibilities in practices and processes across packages can focus on the goal of
determining best practices and not decay into expressions of personal preference
that can be contentious and counter-productive.

The net result of this approach to software research and development is a large and
growing collection of inter-related tools where Trilinos as a whole has an identity
but, even more importantly, each package has its own identity within its community
of interest. It is worth noting that this kind of approach is also operative within the
TOPS-2 SciDAC project. The climate community uses the CCSM in a similar way, but
we are unfamiliar with its internal dynamics.

We believe an international effort to coordinate the work of many groups can
benefit from the kind of model the Trilinos project is using. This type of approach
will allow individual teams to simultaneously continue with their current efforts,
practices and culture while at the same time start contributing to a larger whole.

There are many challenges facing application development in the transition from
petascale to exascale. We believe the four issues above have the highest priority
and, if addressed, will greatly improve exascale computing capabilities. A common
theme across all of these topics is cross-discipline collaboration. Determining the
next generation of programming models, wrapping a forward problem application
in a outer optimization loop, developing a truly resilient application environment
and creating a synergistic software development environment all require an
increased level of interaction. As a result, the present challenges are as much
organizational as technical and a key element for success going toward exascale is
collaboration.



