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Model reduction at Sandia

m CFD model m High simulation costs

m 100 million cells m 6 weeks, 5000 cores

m 200,000 time steps m 6 runs maxes out Cielo
m Design engineers require m Uncertainty quantification

faster simulations
Objective: break barrier
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Discrete optimality outperforms Galerkin, but why?

m Discrete-optimal ROM outperforms Galerkin on large-scale
com pressib|e—f|OW prob|ems [Carlberg, 2011, Carlberg et al., 2013]
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m Strong performance attributed to discrete optimality
m Limited comparative analysis of the two approaches

Goal: Deeper understanding of Galerkin v.
discrete-optimal projection for general time integrators
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Outline

m Time-continuous and time-discrete representations
m Equivalence conditions

m Discrete-time error bounds
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Continuous and discrete representations

Full-order model
ODE

|

time discretization

|

Full-order model
OAE
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Full-order model

m ODE (initial value problem)

dx
P f(x, t), x(0) = xo,

m OAE, linear multistep schemes: |r" (w") =0

k K
r" (w) := apw — AtSof(w, t") + Z ax" — Atz Bif (x”_j, t”_j>
j=1

j=1
x" = w" (explicit state update)

m OAE, Runge-Kutta: |r] (w],...,w{) = O‘, i=1,...,s

S
r(wy,. .., wg) i=w; — f(x" 1+ Atz ajw;, t" 1+ i At)
j=1

S
x"=x""14 Atz biw] (explicit state update)
i=1
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Continuous and discrete representations

Full-order model Galerkin | Continuous-optimal ROM
ODE projection ODE

|

time discretization

|

Full-order model
OAE
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Galerkin ROM: continuous representation

m ODE: Galerkin projection on FOM ODE

1X(t%( X.I’—)
N| _ )

dt

The Galerkin ROM velocity minimizes the error in the FOM velocity f

over range (®):

dx(d)x t) = arg m|n
d VvEran g
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Continuous and discrete representations

Full-order model Galerkin
ODE projection

Continuous-optimal ROM
ODE

|

time discretization

|

‘ Full-order model ‘ ‘

OAE

Discrete optimality

!

time discretization

!

Continuous-optimal ROM
OAE
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Galerkin ROM: discrete representation

m OAE, linear multistep schemes: |#" (W") =0

k k
P (W) == a0l — AtBe® F(OW, ") + > " — Ar> | foTF (¢f<"’j, t"*f)
j=1 j=1

an

K" = W" (explicit state update)

m OAE, Runge-Kutta: ‘?7 (Wi,...,w]) = O‘, i=1,...,s.

B (W, .o W) o= Wy — OTF(OK" ™+ ALY a0y, " + GAL)
j=1

sh __ gn

=&ty Atz biw; (explicit state update)
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Galerkin ROM: Commutativity

Projection and time discretization are commutative for Galerkin ROMs:

(W) =" (dw)

BT (We, ... W) = D¢ (dWy, ..

Full-order model Galerkin
ODE projection

time discretization

|

Full-order model Galerkin
OAE projection

Discrete optimality

Low), i=1,... s,

‘

Continuous-optimal ROM
ODE

!

time discretization

'

Continuous-optimal ROM
OAE
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Continuous and discrete representations

Full-order

model

time discretization

Residual
OAE minimization

Discrete optimality

ODE

|

Discrete- Full-order
optimal ROM < model

OAE

Galerkin Continuous-
projection optimal ROM
ODE
time discretization
. Continuous-
Galerki
r;'eegti:n optimal ROM
proJ OAE
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Discrete-optimal ROM: discrete representation

m OAE, linear multistep schemes:
W' = in [|Ar" (2) ||3.
" = arg min || Ar” (02)|3
[
or"
W) e (dW") =0, WI(W) —ATAar (W)
s A=1 Least—squares Petrov—Galerkin [LeGresley, 2006, Carlberg et al., 2011]

= A= (P¢,)+ P: GNAT [Carlberg et al., 2013]
m Alternative norm: 1 [abgrall and Amsaliem, 2015]

m OAE, Runge-Kutta:
(W'{,...,W") —arg min ZHAr (®2y,...,d2,) ||§

A)E]RPXS
s
lun An AM\T_n ¢An (D/\I'l _O _1
GOWT, . W) rj( w1, ..., ws)— , i=1,...,

nya or?
wij(wl7"'7 )_A 8WJ( 17"'7ws)
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Continuous and discrete representations

( ) Full-order Galerki Continuous-
| ? | model r;'eeétilonn optimal ROM
. ) ODE pres ODE

!

time discretization

time discretization

|

Discrete- . Full-order . Continuous-
. Residual Galerkin N
optimal ROM < minimization model projection —_—> optimal ROM
OAE OAE OAE
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Continuous and discrete representations

The discrete-optimal ROM sometimes has a
time-continuous representation.

! Discrete- | Petrov—Galerkin Full-order Galerkin Continuous-
: optimal ROM <€ - - projection model projection optimal ROM
R ODE | ODE ODE
' v
Y
time discretization time discretization time discretization
]
Y
Discrete- Residual Full-order Galerkin Continuous-
optimal ROM < inimizati model roiection —_—> optimal ROM
OAE minimization OAE proj OAE
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Discrete-optimal ROM: continuous representation

Theorem (Linear multistep schemes)

The discrete-optimal ROM is equivalent to applying a Petrov—Galerkin
projection to the ODE with test basis

w(x,t)=ATA <a0| - Atﬂog(xo + ®%, t)) o
and subsequently applying time integration with time step At if
B;=0,j>1 (eg., a single-step method),
the velocity f is linear in the state, or

Bo =0 (i.e., explicit schemes).
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Discrete-optimal ROM: continuous representation

Theorem (Runge—Kutta schemes)

The discrete-optimal ROM is equivalent to applying a Petrov—Galerkin
projection to the ODE with test basis

W(x, t) = ATA <| = At‘au%(XO + bx, i‘)> ()

and subsequently applying time integration if either
aj =0Vi#jand ajj = aj Vi,j, or

the scheme is explicit, i.e., aj =0, Vj > |.
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Outline

m Time-continuous and time-discrete representations
m Equivalence conditions

m Discrete-time error bounds
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Equivalence

V(W) = A g’ (W) = <a0| Atﬂo (¢w t”)>

Theorem (Linear multistep schemes)

Galerkin projection is discrete-optimal (W"(w) = ®)
in the limit of At — 0 with A =1/,/ogl,
if the scheme is explicit (6o = 0) with A =1/,/aol, or
with A the Cholesky factor of [%]_1
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Outline

m Time-continuous and time-discrete representations
m Equivalence conditions

m Discrete-time error bounds
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Discrete-time error bound

Theorem (Linear multistep schemes)

If the following conditions hold:
f(-, t) is Lipschitz continuous with Lipschitz constant x, and
At is such that 0 < h :=|ag| —|Bo| KAL,

then

At &
loxe | < = > 16l
£=0

(1—V)f (xo 1 ¢§(’(’;’Z)

[+ 15 g wtre ) |
h =1

)

At &
Josl < B¢ S
£=0

(Y (xo 4 ¢9<;;‘f)

k
|+ 5 32 (8l e o)
=1

with
m OXg = x] — ®XG. V=0’
n . n on 1
] 5XD =X, — ‘DXD m P =} <(wn)T¢) (wn)T
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Discrete-time error bound

Theorem (Backward Euler)
If conditions (1) and (2) hold then

loxe | < Atz (h)JJrl ‘(I -f (Xo + 09('&_/)

=4
49

n—1
oxp| < at> (h)%l ' (1=P") £ (x0 + @%57)
j=0

=/
D

6

k _
et |

ORE — Atf (x0 + ORE ) — ORE

=]

R — Atf (xo + mg) — oxk

= minHtDy — Atf (xo + ®y) — ¢)A(,E;1H
y

Corollary (Discrete-optimal smaller error bound)

ck—1 _ gk—1 k k
If x =Xg ~, thenef < e¢.
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Discrete-optimal time-step dependence

Corollary

Define X/ as the full-space solution centered at the discrete-optimal
solution:

)'(j:Atf(xo—i—)'(j) +o%ht j=1,....n
Then, the discrete-optimal error can be bounded as
7 :

n llnij oh—J
with , J_
m A% =% — 0%

. . ; /A)‘(j
AR =& - %57

= il i=|@nx], - A%

Effect of decreasing At:
+ The terms At(1+ kAt) and 1/(hY*! decrease
- The number of total time instances n increases
? The term 1./ may increase or decrease, depending on the
spectral content of the basis ®
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Example: Cavity-flow problem

m Unsteady Navier—Stokes m At, = 1.5 x 1073 sec by
m DES turbulence model time-step verification study
m 1.2 million degrees of = Re — 6.3 x 106

freedom

m Linear multistep: BDF2 m M, =06
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FOM responses

Figure : vorticity field

Figure : pressure field
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Galerkin and discrete-optimal responses for basis dimension p = 204
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time time
(a) Galerkin (b) Discrete optimal

- Galerkin ROMs unstable for all time steps. Consistent with
previous results [Carlberg et al., 2013, Carlberg et al., 2011, Carlberg, 2011]

+ Discrete-optimal ROMs accurate and stable, with a clear
dependence on the time step At.

Discrete optimality Carlberg, Barone, Antil 27 / 37




Superior performance (p = 204)

) o [
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v" When Galerkin is stable, the discrete-optimal ROM yields a
smaller error for all time intervals and time steps.
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Limiting equivalence

1072 1072

time-averaged
pressure difference

! - 107 - 10 —
104 107 1072 107! 0 1078 107 107! 104 107 102 107!

At At At
(f) p=204 (g) p=368 (h) p =564

Figure : Galerkin/discrete-optimal difference in the stable Galerkin
interval 0 < t <1.1.

v The discrete-optimal ROM converges to Galerkin as At — 0.
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POD basis spectral analysis

(a) mode 1 (b) mode 21 (c) mode 101

time scale

0 100 200 300 400 500 600

POD mode number

m Higher modes numbers associate with smaller spatial and
temporal scales.
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Backward Euler error bound

. n—1 /lnij o
[6xB ]| < At(1+ kAL (i 16z
j=0
Approximate p* := HOA)“(’E) — A)‘(kH /AX¥ with relative projection error.
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Adding basis vectors for larger time steps yields little improvement

Approximated error bound: intermediate time step — lowest bound
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Discrete-optimal performance in 0 <t <25
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Adding basis vectors for larger time steps yields little improvement
Intermediate time step — lowest error

p = 564 case:
m At =1.875 x 107* sec: relative error = 1.40%, time = 289 hrs

m At =15 x 1073 sec: relative error = 0.095%, time = 35.8 hrs
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GNAT model

W = arg min || (P®,)" Pr" (®2) ||3
zeRP

m Sample mesh [carberg et a1 2013): 4.1% nodes, 3.0% original cells
+ Allows GNAT to run on 2 cores instead of 48 cores
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GNAT performance
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m 1.5 x 1073 sec: relative error = 3.32%, cpu savings = 14.9

m 6.0 x 1073 sec: relative error = 2.25%, cpu savings = 55.7
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Conclusions

m Time-continuous and time-discrete representations
m Galerkin: projection and time-discretization are commutative
m Discrete-optimal: a continuous representation sometimes exists

m Equivalence conditions
Limit of At — 0
Explicit schemes
Positive definite residual Jacobians
m Discrete-time error bounds
m Discrete-optimal ROM yields smaller error bound than Galerkin
m Ambiguous role of time step
m Numerical experiments
m Discrete-optimal ROM always yields a smaller error than

Galerkin
m Equivalent as At — 0
m Approximated error bound and actual error minimized for

intermediate At

Discrete optimality Carlberg, Barone, Antil 35 /37




Acknowledgments

m Charbel Farhat: permitting the open use of AERO-F

m Julien Cortial, David Amsallam, Charbel Bou-Mosleh:
contributing to implementation of model reduction in AERO-F

m Stephen Pope: insightful conversations that inspired this work

m This research was supported in part by an appointment to the
Sandia National Laboratories Truman Fellowship in National
Security Science and Engineering, sponsored by Sandia
Corporation (a wholly owned subsidiary of Lockheed Martin
Corporation) as Operator of Sandia National Laboratories
under its U.S. Department of Energy Contract No.
DE-AC04-94AL85000.

Discrete optimality Carlberg, Barone, Antil 36 / 37




Questions?

m K. Carlberg, M. Barone, H. Antil. “Galerkin v. discrete-optimal
projection in nonlinear model reduction,” arXiv e-Print 1504.03749

(2015).
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Figure : Discrete-optimal ROM performance.
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